
100 COMMUN. BIOMATH. SCI., VOL. 1, NO. 2, PP. 100-109

Modeling CD4+ T cells and CTL response in HIV-1 infection with
antiretroviral therapy

Sutimin1, Sunarsih and R. Heru Tjahjana
Department of Mathematics, Diponegoro University,

Jl. Prof. H. Soedarto SH, Tembalang, Semarang 50275, Indonesia
1Email: sutimin@undip.ac.id

Abstract

The majority of an immune system infected by HIV (Human Immunodeficiency Virus) is CD4+ T cells.
The HIV-1 transmission through cell to cell of CD4+ T cells supports the productive infection. On the other
hand, infected CD4+ T cells stimulate cytotoxic T-lymphocytes cells to control HIV-1 infection. We develop
and analyze a mathematical model incorporating the infection process through cell to cell contact of CD4+ T
cells, CTL compartment and the combination of RTI and PI treatments. By means of the alternative reproduction
ratio, it is analyzed the stability criteria and the existence of endemic equilibrium. Numerical simulations are
presented to study the implication of the combination of RTI and PI therapy. The results indicate that RTI
drug shows more significant effect in reducing HIV-1 infection compared to PI drug.
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1. INTRODUCTION

HIV (Human Immunodeficiency Virus) attacks the host cells expressing CD4+ molecule, the majority
is CD4+ T cells [1]. These cells play the main role in spreading HIV-1 infection within host cells. The
transmission of HIV in the immune system can occur through the contact of infected host cells or free virus
to healthy cells. Even viral transmission from infected host cells results the effective infection compared to
viral transmission via a free virus. [2], [3], [4].

Infected CD4+ T cells stimulate cytotoxic T-lymphocytes (CTL) cells. Cytotoxic (CD8+) cells are effector
cell that inhibits viral replication and eliminate by combating the infected cells. CD8+ T cells have an
important role in controlling HIV infection due to the elimination of infected cells forming viral replication
[5].

The process of viral reverse transcription that transcribes viral RNA to host DNA determines viral infection
in target cells. Upon incomplete transcription within the host cell, CD4+ T cells are able to degrade virus
in the cytoplasm and return to healthy state. Otherwise, upon complete reverse transcription occurred in host
cells, these cells become infectious and produce new viral particles to infect the target cells [6].

CD4+ T cells have a critical role in HIV-1 infection. The stimulated CD4+ T cells are able to create
a productive infection. On the other hand, the resting cells are able to prevent the process of viral reverse
transcription and lead to infection failure due to incomplete reverse transcription. The virus is degraded by
resting cells [7], [9], [8].

Recently, the treatments of RTI (reverse transcript inhibitor) and PI (protease inhibitor) have been used to
prevent HIV-1 infection for infected patients. RTI drugs function to block the mechanism of viral reverse
transcription, while PI drugs block new viral reproduction from infected CD4+ T cells. The therapy has been
conducted in preventing viral DNA synthesis and new viral production [7].

Some studies have been established regarding HIV-1 infections in host cells. A model was proposed by
Srivastava et al.. The model was established by considering on viral reverse transcription in the infection
process of CD4+ T cells [10]. Upon reverse transcription in CD4+ T cells, these cells are classified into two
sub populations, namely pre-RT and post-RT classes. They studied the effect of RTI treatment. Instead, they
have not considered the infection by cell to cell contact cell as well as PI treatment.

A model was proposed by Chirove et al. [11] and Sutimin et al. [12], [13], to capture HIV-1 the infection
of Langerhans and CD4+ T cells in early HIV-1 infection. Chirove et al. used the behavior of alternative
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reproduction ratio to analyze the dynamics of the model. A model by considering the effect of RTI and PI
drugs was proposed by Sutimin et.al to study the immune response of drugs in HIV-1 infection [12], [13].

Other studies, Tarfulea et al. established a model accommodating CTL cells and antiretroviral treatment in
reducing HIV-1 infection [14], [15]. They investigated numerically the effect of CTL response and treatment
of RTI and PI combination in controlling virus during early infection. The results show that the CTL response
is more significant in increasing healthy CD4+ T cells compared to therapy.

We develop the model’s Srivastava by incorporating HIV transmission through cell to cell, the effect of
PI drug and CTL compartment. We analyze the model to determine the existence and stability of equilibria,
as well as viral clearance effect of CD4+ T cells. We investigate numerically the implication of RTI and PI
treatment in various scenarios to find the effectiveness of drugs.

2. MODEL FORMULATION

We develop a model by considering HIV-1 transmission from the interaction between infected and healthy
CD4+ T cells, the effectiveness of RTI and PI drugs, and the compartment of CTL cells. The HIV-1
transmission in CD4+ T cells can be presented in the following diagram.

Fig. 1: Diagram HIV-1 transmission within CD4+ T cells with CTL cells response.

Upon HIV-1 fusion within CD4+ T cells, these cells are classified into two classes, namely pre-RT class
and post-RT (actively infected) class. The population of pre-RT class, in which the process of RT is not
efficient, denoted by T1. The population of post-RT class, in which the process of RT is complete, denoted
by Ti. The population of susceptible CD4+ T cells is denoted by T , the population of CTL cells, denoted
by Z, and the population of free virus is denoted by V . The model is given as follows.

dT

dt
= λ− β1 V T − β2TTi − µT + (εRTIα+ ρ)T1,

dT1
dt

= β1 TV + β2TTi − (µ1 + α+ ρ)T1,

dTi
dt

= (1− εRTI)αT1 − (µ+ δ)Ti − ωTiZ, (1)

dZ

dt
= λz + τTi − µzZ,

dV

dt
= Nδ (1− εPI)Ti − µvV − φV.

The population of CD4+ T cells are produced by thymus with constant rate λ, and die naturally at a rate
µ. Infection by a free virus and infected CD4+ T cells are at constant rates β1 and β2, respectively. Upon
RTI treatment and the process of inefficient reverse transcription, pre-RT class return to healthy CD4+ T
cells with the constant rates εRTIα+ρ. The incomplete reverse transcription leads to inflammation of pre-RT
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CD4+ T cells, assumed that this population dies at a constant rate µ1, due to the inflammation. Due to RTI
treatment, a part of εRTIαT1 of pre-RT population back to susceptible, while other part, (1− εRTI)αT1
become infectious, and pre-RT class move to post-RT class at a rate (1− εRTI)α. Infected CD4+ T cells
are killed by CTL cells with the constant rate ω.

The recruitment of CTL cells is assumed at constant rate λz . Due to the immune response of infected
CD4+ T cells, the proliferation of the CTL cells increase at a constant rate τ , and these cells die at the rate
µz. Due to PI treatment, new viral produced by infected CD4+ T cells reduce becoming Nδ (1− εPI). The
viral death rate and viral clearances level are µv and φ, respectively. The efficacy values of RTI and PI drugs
are denoted by εRTI and εPI , respectively with 0 ≤ εRTI , εPI ≤ 1.

3. MODEL ANALYSIS

We analyze the existence of the endemic equilibrium point and the stability of equilibria for the model.

3.1. Alternative reproduction ratio

The alternative reproduction ratio is derived from the next generation matrix. The next generation matrix
[16] of the Model 1 is given by

G =


0 β2λµz

µ(δ µz+λzω+µµz)
β1λ

µ(φ+µv)

(1−εRTI )α
µ1+α+ρ

0 0

0 Nδ (1−εPI )µz

δ µz+λzω+µµz
0

 . (2)

The characteristic polynomial corresponding to matrix G can be expressed as

P (X) = X3 −B1X −B0, (3)

where

B1 =
αβ2 (1− εRTI )λµz

(δ µz + λzω + µµz)µ (µ1 + α+ ρ)
,

B0 =
µzλ (1− εRTI ) (1− εPI )β1δ αN

(µ1 + α+ ρ)µ (φ+ µv) (δ µz + λzω + µµz)
.

The basic reproduction number <0 cannot be formulated explicitly. Instead, we can determine alternative
reproduction ratio, denoted <1 which is equivalent to <0. The alternative reproduction ratio is defined by
<2

1 = B0 +B1 (see [11]) that can be expressed as <0 = <Ti 7→Ti + <Ti 7→V 7→Ti , where

<Ti 7→Ti
=

β2α (1− εRTI )λµz
(δ µz + λzω + µµz)µ (µ1 + α+ ρ)

,

<Ti 7→V 7→Ti
=

µzλ (1− εRTI ) (1− εPI )β1δ αN

(µ1 + α+ ρ)µ (φ+ µv) (δ µz + λzω + µµz)
.

As in [11], [12], [13], sub-ratio <Ti 7→Ti
indicates the infection path from an infected CD4+ T cell to

healthy CD4+ T cells. Sub-ratio <Ti 7→V 7→Ti
indicates the infection path from infected CD4+ T cell then

reproduces new viral particles infecting healthy CD4+ T cells. The relation of basic reproduction ratio (<0)
and <1 was given the following Theorem 3.1.

Theorem 3.1. The reproduction ratio, <0 and alternative reproduction ratio, <1 for system 1 hold the
equivalent properties as follows.

i. <0 = 1 if only if <1 = 1.
ii. <0 < 1 if only if <1 < 1, and <0 > 1 if only if <1 > 1.



MODELING CD4+ T CELLS AND CTL RESPONSE IN HIV-1 INFECTION 103

Proof: First, we show that Eq. (3) has only one positive real root with the largest modulus. Let x1, x2
and x3 be the roots of polynomial in Eq. (3), then it holds

x1 + x2 + x3 = 0, (4)
x1x2 + x1x3 + x2x3 = −B1 < 0, (5)

x1x2x3 = B0 > 0. (6)

From Eq. (4) and Eq. (6), the polynomial equation has only real positive one root and two negative real
roots or two complex roots with negative real parts. Next, we show that one positive real root has the largest
modulus.
Case 1: For one positive root and two negative real roots. Without loss of the generality, let x1 > 0 and
x2, x3 < 0. From Eq. (4), we have x1 = −x2 − x3 > 0. Thus |x1| > |x2| and |x1| > |x3|.
Case 2: For one positive root and two complex roots. Let x1 > 0, x2 = ai+ b, and x3 = ai− b. From Eq.
(5), it can be written as x1 (x2 + x3) + a2 + b2 = −B1, thus

2ax1 + a2 + b2 = −B1 < 0 (7)

On the other hand, from Eq. (4), we have x1 + 2a = 0 or a = −x1

2 . Thus, the Equation (7) can be written as

−x21 + a2 + b2 = −B1 < 0 (8)

From the Equation (8), we have x21 > a2 + b2. It is shown that the polynomial in Eq. (3) has exactly one
positive real root that has the largest modulus. Next, we prove i. as follows. When <0 = 1, then it holds
P (1) = 0. It means 1−B1 −B0 = 0. Thus B1 +B0 = 1 = <1. Conversely, if <1 = 1, then 1 = B1 +B0

or 1−B1−B0 = 0. It means P (1) = 0, thus <0 = 1. The proof ii. is as follows. Let <0 < 1, then it holds

P (<0) ≡ <3
0 −B1<0 −B0 = 0 (9)

The Equation (9) can be written as

<0

(
<2

0 −B1

)
= B0, (10)
= <2

1 −B1, since <2
1 = B1 +B0. (11)

Since <0 > 1, we have <2
1 −B1 = <0

(
<2

0 −B1

)
> <2

0 −B1. It means that <2
1 > <2

0 > 1, thus <1 > 1. By
contrapositive, if <1 > 1 then <0 > 1, it means if <0 ≤ 1 then <1 ≤ 1. The proof, if <0 = 1 then <0 = 0,
is given in (i). Now, let <0 < 1, from Eq. (9), we have <2

1−B1 = <0

(
<2

0 −B1

)
< <2

0−B1. It is obtained
<2

1 < <2
0 < 1, thus <1 < 1. The second statement of (ii) is proven similarly. It completes the proof.

3.2. Stability analysis of uninfected steady state

Uninfected equilibrium point is E0 =
(
T 0, T 0

1 , T
0
i , Z

0, V 0
)
=
(
λ
µ , 0, 0,

λz

µz
, 0
)

. The local stability of E0 is
given in the following theorem.

Theorem 3.2. The uninfected equilibrium point E0 is locally asymptotically stable, if <1 < 1.

Proof: The Jacobian matrix of the model 1 at E0 can be written by

J
(
E0
)

=



−µ α εRTI + ρ −β2λ
µ 0 −λβ1

µ

0 −µ1 − α− ρ β2λ
µ 0 λβ1

µ

0 (1− εRTI )α −λzω
µz
− δ − µ 0 0

0 0 τ −µz 0

0 0 Nδ (1− εPI ) 0 −φ− µv


. (12)

The eigenvalues of J
(
E0
)

are −µ,−µz , and others are solutions of the cube equation

λ3 +A2λ
2 +A1λ+A0 = 0, (13)
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where

A2 = α+ δ + φ+ ρ+ µ1 + µ + µv +
λzω

µz
,

A1 =
1

µz

(
1−<2

1

)
(µ1 + α+ ρ) (δ µz + λzω + µµz)

+
λ (1− εRTI )αNδ (1− εPI )β1

µ (φ+ µv)
+

(φ+ µv)ω λz
µz

+ (φ+ µv) (α+ δ + ρ+ µ1 + µ) ,

A0 =
1

µz

(
1−<2

1

)
(µ1 + α+ ρ) (δ µz + λzω + µµz) (φ+ µv) .

It is seen that A2, A1 > 0 if <1 < 1. Next, we calculate A2A1−A0. Manipulating calculation, it is obtained

A2A1 −A0 =
(δ µz + λzω + µµz) (µ1 + α+ ρ) Ψ1 (1−<0 )

µz2

+
Nαδ (1− εPI ) (1− εRTI )λΨ2β1

µzµ (φ+ µv)
+

(φ+ µv) Ψ1Ψ2

µz2
, (14)

where

Ψ1 = (α+ δ + ρ+ µ1 + µ)µz + λzω,

Ψ2 = (α+ δ + φ+ ρ+ µ1 + µ + µv)µz + λzω.

The Routh-Hurwitz criterion is fulfilled when <1 < 1. It shows that E0 locally asymptotically stable.

3.3. The existence and uniqueness of endemic equilibrium
The endemic equilibrium point of the model is E∗ = (T ∗, T ∗1 , T

∗
i , Z

∗, V ∗), where

T ∗ =
ω τ (φ+ µv) (µ1 + α+ ρ)T ∗i

α (1− εRTI )µz (Nδ β1 (1− εPI ) + β2φ+ β2µv)
+

(φ+ µv) (δ µz + λzω + µµz) (µ1 + α+ ρ)

α (1− εRTI )µz (Nδ β1 (1− εPI ) + β2φ+ β2µv)
,

T ∗1 =
T ∗i (T ∗i ω τ + δ µz + λzω + µµz)

α (1− εRTI )µz
,

Z∗ =
τ T ∗i + λz

µz
,

V ∗ =
NT ∗i δ (1− εPI )

φ+ µv
.

The value of T ∗i is the positive root of a quadratic equation

b2T
2
i + b1Ti + b0 = 0, (15)

where

b2 = ω τ ((1− εRTI )α+ µ1) (Nδ β1 (1− εPI ) + β2φ+ β2µv) > 0,

b1 = Nδ (1− εPI ) (δ µz + λzω + µµz) ((1− εRTI )α+ µ1)β1
+ (φ+ µv) (δ µz + λzω + µµz) ((1− εRTI )α+ µ1)β2
+ω τ µ (φ+ µv) (µ1 + α+ ρ) ,

b0 = µ (µ1 + α+ ρ) (δ µz + λzω + µµz) (φ+ µv)
(
1−<2

1

)
.

Due to b2 > 0, Eq. (15) has exactly one positive root if only if b0 < 0, it is fulfilled when <1 > 1.
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We investigate the parameter <1 due to the effect of viral lysis corresponding to the critical number of
viral production for the endemicity of HIV-1 infection. Differentiating <2

1 with respect to δ is obtained as
follows,

∂<2
1

∂δ
=

(1− εRTI )αλµzβ1 (1− εPI ) (λzω + µµz) (N −Nc)

µ (µ1 + α+ ρ) (δ µz + λzω + µµz)
2

(φ+ µv)
, (16)

where

Nc =
β2µz (φ+ µv)

β1 (1− εPI ) (λzω + µµz)
. (17)

The quantity Nc is defined as the critical viral production of infected CD4+ T cells. From this result, the
relationship between N and Nc is given in the following theorem.

Theorem 3.3. The critical number Nc determines the endemicity level of HIV-1 infection as follows
i. The level of <1 decreases with respect to δ, when N < Nc.

ii. The level of <1 increase with respect to δ, when N > Nc, and
iii. The level of <1 remains constant with respect to δ, when N = Nc.

Proof: When N < Nc, it implies that ∂<2
1

∂δ < 0, so <1 decreases with respect to δ. But when N > Nc,
it implies ∂<2

1

∂δ > 0, it means that <1 increases with respect to δ. For N = Nc, implies ∂<2
1

∂δ = 0. It shows
that <1 remains constant with respect to δ.

3.4. The stability of endemic equilibrium

We use Lyapunov function to analyze global stability of endemic equilibrium. The global stability is given
in the following Theorem.

Theorem 3.4. The endemic equilibrium point E0 is globally asymptotically stable, if <1 > 1.

Proof: We construct a Lyapunov function as follows,

L (T, L, Ti, V ) = T − T ∗ − T ∗ ln

(
T

T ∗

)
+ c1

(
T1 − T ∗1 − L∗ ln

(
T1
T ∗1

))
+

c2

(
Ti − T ∗i − T ∗i ln

(
Ti

T ∗i

))
+ c3

(
Z − Z∗ − Z∗ ln

(
Z

Z∗

))
+c4

(
V − V ∗ − V ∗ ln

(
V

V ∗

))
, (18)

where c1, c2, c3 and c4 are positive constants that must be determined. It is shown F ∈ C1, F (E∗) = 0.
Differentiating F due to t in along solutions, we obtain

dL

dt
=

T − T ∗

T

dT

dt
+ a1

T1 − T ∗1
T1

dT1

dt
+ c2

Ti − T ∗i
Ti

dTi

dt
+ c3

Z − Z∗

Z

dZ

dt

+c4
V − V ∗

V

dV

dt
= K − µT + [A0 − c1A1 + c2 (1− εRTI)α]T1 + [c2ωT

∗
i − c3µz]Z

+ [β2T
∗ − c2A2 + c3τ + a4 (1− εPINδ)]Ti + [β1T

∗ − c4A3]V

+ [c1β1 − β1]V T + [c1β2 − β2]TTi − c2ωTiZ − λ
T ∗

T
−A0T

∗T1
T

−c1β1L∗
TV

T1
− c1β2L∗

TTi
T1
− c2 (1− εRTI)αT ∗i

T1
Ti
− c3λz

Z∗

Z

−c3τZ∗
Ti
Z
− c4 (1− εPI)NδV ∗

Ti
V
, (19)
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where K = λ+µT ∗+c1A1T
∗
1 +c2A2T

∗
i +c3µzZ

∗+c4A3V
∗+c3λz , with A0 = εRTIα+ρ, A1 = µ1+α+ρ,

A2 = µ + δ and A3 = µv + φ. We let the new notations, x = T
T∗ , y = L

L∗ , w = Ti

T∗
i
, z = Z

Z∗ and u = V
V ∗ .

The Equation (19) becomes

dL

dt
= K − µT ∗x+ [A0 − c1A1 + c2 (1− εRTI)α]T ∗1 y + [c2ωT

∗
i − c3µz]Z∗z

[β2T
∗ − c2A2 + c3τ + a4 (1− εPINδ)]T ∗i w + [β1T

∗ − c4A3]V ∗u

+ [c1β1 − β1]V ∗T ∗xu+ [c1β2 − β2]T ∗T ∗i xw − c2ωT ∗i Z∗zw − λ
1

x
−A0T

∗
1

y

x

−c1β1T ∗V ∗
xu

y
− c1β2T ∗T ∗i

xw

y
− c2 (1− εRTI)αT ∗1

y

w
− c3λz

1

z

−c3τT ∗i
w

z
− c4 (1− εPI)NδT ∗i

w

z
. (20)

We construct a variable set, D =
{
x, y, z, w, u, xw, xu, zw, 1x ,

1
z ,

y
x ,

w
z ,

w
u ,

xz
y ,

xu
y ,

xw
y

}
related to terms in

Eq. (20). There are three sub sets of D, in which the product of elements is unity, namely
{
x, 1x

}
,
{

1
x ,

y
w ,

xw
y

}
and

{
1
x ,

y
w ,

w
u , ,

xu
y

}
. Equating coefficients of y, w, u, z, xu, xw to zero in Eq. (20). The Equation (20) can

be constructed as follows,

dL

dt
= b1

(
2− x− 1

x

)
+ b2

(
2− z − 1

z

)
+ b3

(
3− 1

x
− y

w
− xw

y

)
+

b4

(
4− 1

x
− y

w
− w

u
− xu

y

)
− c2ωT ∗i Z∗zw −A0L

∗ y

x
− c3τT ∗i

w

z
. (21)

The constants b1, b2, b3, a1, a2, a3 can be obtained with considering the relation

λ+ (εRTIα+ ρ)T ∗1 = β1T
∗V ∗ + β2T

∗T ∗i + µT ∗,

β1T
∗V ∗ + β2T

∗T ∗i = (µ1 + α+ ρ)L∗,

(µ+ δ)T ∗i + ωT ∗i Z
∗ = (1− εRTI)αL∗,

µzZ
∗ = λz + τT ∗i ,

(µv + φ)V ∗ = Nδ (1− εPI)T ∗i .

Equating coefficients in the similar terms of Equation (20) and (21), we get,
2b1 + 2b2 + 3b3 + 4b4 = K, c1 − 1 = 0, b1 = µT ∗, b2 = c3µz − c2ωT ∗i = c3λz,
b1 + b2 + b3 = λ, b3 + b4 = c2 (1− εRTI)αT ∗1 , b3 = c1β2T

∗T ∗i
b3 + b4 = c2 (1− εRTI)αT ∗1 , b4 = c4 (1− εPI)NδT ∗i = c1β1V

∗T ∗. We can choose c1 = 1, c2 =
A1T

∗
1

(1−εRTI)αT∗
1
, c3 =

ωA1T
∗
1 T

∗
i

(1−εPI)(µz−λz)
and c4 = β1V

∗T∗

(1−εPI)NδT∗
i

. Considering the inequality of arithmetic and
geometric mean, the Equation 21 can be written by

dL

dt
= µT ∗

(
2− x− 1

x

)
+

ωλzA1T
∗
1 T
∗
i

(1− εPI) (µz − λz)

(
2− z − 1

z

)
+

β2T
∗V ∗

(
3− 1

x
− y

w
− xw

y

)
+ β1T

∗V ∗
(

4− 1

x
− y

w
− w

u
− xu

y

)
−A0T

∗
1

y

x
− ωA1T

∗
1 T
∗
i Z
∗

(1− εRTI)αT ∗1
zw − ωτA1T

∗
1 T
∗
i

(1− εRTI)αT ∗ (µz − λz)
w

z
≤ 0.

It can be seen that dL
dt = 0 when T = T ∗, T1 = T ∗1 , Ti = T ∗i , Z = Z∗ and V = V ∗ thus the maximal

invariance set of
{

(T, T1, Ti, Z, V ) |dLdt = 0
}

is the singleton E∗. Thus E∗ indicates globally asymptotically
stable. The proof is completed.
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4. NUMERICAL SIMULATIONS

In the section, we present the simulation results regarding to evolutions of CD4+ T cells, CTL cells, and
viral free populations to investigate the impact of combining RTI and PI treatments. The parameter values
used in the simulations are determined from literature as given in Table I.

TABLE I: The values of parameter and units

Parameters Values Units References
λ 10, 20 cells day−1 [18], [22]
λz 0.0001 cells day−1 [21]
τ 0.1 day−1 [23]
α 0.4 day−1 [10]
β1 (0.00002, 0.005) virions−1day−1 [19], [20]
ρ 0.05 day−1 [10]
ω 0.01 day−1 [21]
β2 (0.00001, 0.01) cells−1day−1 [11]
µ 0.01, 0.02 day−1 [18], [22]
µ1 0.015 day−1 [10]
µz 0.1, 0.2 day−1 [14], [24]
µv 2.4 day−1 [18]
δ 0.24 day−1 [18]
N (100, 1000) virions day−1 [21]
φ (2, 9) day−1 [18]

We simulate the evolution of CD4+ T cells, CTL cells, and virus populations to investigate numerically the
effect of RTIs and PIs treatments. The initial conditions are taken T (0) = 850 cells

mm3 , T1(0) = 40 cells
mm3 ,Ti(0) =

41 cells
mm3 , and V (0) = 3.76 virions

mm3 [26]. Next, we shall investigate the clearance effect of the virus to the
dynamic of CD4+ T cells and free virus population.

Fig. 2: The evolution of CD4+ T cells, CTL cells and free viral populations in different scenarios of RTI
and PI treatments with λ = 10, λz = 0.0001, β1 = 0.000024, β2 = 0.0022, α = 0.4, ρ = 0.05, ω = 0.01, δ =
0.26, µ = 0.01, µ1 = 0.015, µv = 2.4, N = 900, φ = 3, τ = 0.1, µz = 0.1.
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In the simulation, we investigate the impact of RTI and PI treatments related to the dynamics of CD4+

T cells, CTL cells, and free virus in various scenarios. We consider the certain value of the overall drug
efficacy for RTI and PI drugs when these drugs are administered simultaneously, then using the value to
compare therapy in the different combination of RTI and PI drugs. The value of the overall drug efficacy was
defined [25] as ε = 1− (1− εRTI) (1− εPI). We take ε = 0.91 with different values of εRTI and εPI . We
consider the scenario of treatments as follows. Scenario 1: when RTI and PI drugs are administered with the
efficacy values εRTI = 0.7, εPI = 0.7, respectively. Scenario 2: when efficacy values of RTI and PI drugs
are considered εRTI = 0.6, εPI = 0.775, respectively. And scenario 3: when drug efficacies of RTI and PI
are taken εRTI = 0.755, εPI = 0.6, respectively.

In Figure 2, we can see that by considering the drug efficacy values, it shows that RTI drug contributes
more effectively to the number of healthy CD4+ T cells compare to PI drug, otherwise, it reduces to the
number of CTL cells and free viral populations. Furthermore, the contribution of RTI drug is higher compared
to PI drug in increasing CD4+ T cells, and it is related to the decreasing of infected CD4+ T cells, CTL
cells, and free viral populations. In the combination treatments of RTI and PI drugs, increasing RTI drug
efficacy is more effective in reducing HIV-1 infection compare to PI drug.

5. CONCLUSION

The mechanism of HIV-1 infection in CD4+ T cells through reverse transcription process and cell to
cells contact determine the spread of HIV-1 infection. We modified a modeling from Srivastava’s model
[10] that considers the incomplete and complete reverse transcription. In the paper, we develop a model by
incorporating the factor of cell to cells contact between CD4+ T cells in transmitting the virus and CTL
compartment. We also study the impact of the combination of RTI and PI treatments in reducing HIV infection
during early infection.

By using the alternative reproduction ratio composed two cycles of infections, we analyze the local stability
of uninfected equilibrium and the existence of the endemic equilibrium. The global stability of endemic
equilibrium is analyzed by establishing Lyapunov function. When the ratio exceeds unity, the virus died out
finally. Conversely, when the ratio larger than one, HIV disease still persist in the body.

In the combination of RTI and PI treatments, it shows that RTI drug provides more significant effect in
reducing HIV-1 infection compared to PI drug. Thus, we suggest that RTI drug may be more effective in
reducing the progression of HIV-1 infection compared to PI drug, in the absence of drugs resistance.
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