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Abstract

Richards model, Gompertz model, and logistic model are widely used to describe growth model of a
population. The Richards growth model is a modification of the logistic growth model. In this paper, we
present a new modified logistic growth model. The proposed model was derived from a modification of
the classical logistic differential equation. From the solution of the differential equation, we present a new
mathematical growth model so called a WEP-modified logistic growth model for describing growth function
of a living organism. We also extend the proposed model into couple WEP-modified logistic growth model.
We further simulated and verified the proposed model by using chicken weight data cited from the literature.
It was found that the proposed model gave more accurate predicted results compared to Richard, Gompertz,
and logistic model. Therefore the proposed model could be used as an alternative model to describe individual
growth.
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1. INTRODUCTION

Optimum food utilization strategy is one of the important efforts to increase meat production of livestock.
The dynamics of livestock growth over time is needed to obtain an optimal growth strategy of animal feeds.
Mathematical models of the growth curve could be used to determine the selection of suitable feeding
materials for livestock development [1]. In addition, the growth curve could also be used to determine the
age of livestock slaughter to be optimal. Moreover, the growth curve model could be used as a parameter
in pre-harvest methods in large livestock such as cattle, buffalo, goats, and sheep. The mathematical model
of livestock growth could also be used to analyze the efficiency of livestock production over the lifetime
(lifetime production efficiency) [2].

The growth process of livestock, including poultry, could be measured from mass (weight) profile of the
livestock versus time [3], [4]. Livestock and poultry growth generally follows a sigmoidal pattern. Poultry
growth usually starts with an accelerating growth phase from hatching. Then, poultry attains the maximum
growth rate at a certain time (the inflection time). After that, poultry growth is decelerating. At final phase,
poultry weight generally tends to a limiting value (asymptote) mature weight [1], [5].

Many nonlinear growth curves have proposed to describe and fit the sigmoid relationship between poultry
weight and time. Logistic model, Gompertz model. and Richards model are commonly for describing a
relationship between poultry weight and time [1], [3], [5]. Richards and Gompertz models gave good
descriptions of weight growth in many animal species including chicken, cattle, elks, ostrich, turkey, and
emus. Gompertz growth model has applied as the growth model for chicken. Gompertz model fitted many
actual data and its parameters had biological interpretations [6], [7], [8]. Moreover, the Gompertz model has
good fitting for weight information whose inflection points occur, when approximately 35 - 40% of growth
have been achieved [5].

Accurate and straightforward growth models are useful for describing life individual growth. In this paper,
we present a new mathematical model for the growth function of a living organism. The model was derived
from the modified logistic differential equation. Then, the model was implemented to describe body weight
growth of chicken (rooster and hen), where the growth data cite from literature. The accuracy of predicted
results from the model was compared to the standard logistic model, Gompertz model and Richards model.

This paper is organized as follows. Section 2 presents some modified logistic growth models. The proposed
model and its main property is discussed in section 3. Implementations of the proposed model, logistic model,
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Gompertz model and Richard model on chicken (rooster and hen) data cited from the literature are presented
in Section 4. Conclusions are written in the last section.

2. MODIFIED LOGISTIC GROWTH MODEL

The first mathematical model describing population growth is the Malthus model or exponential model [9].
Let y(t) is population size at time t In the exponential model, the growth rate dy

dt is assumed proportional the
size of existing population y(t). The exponential model could be represented by the following differential
equation

y (t) = Y0 exp(rt). (1)

Here r is the proportional growth rate parameter. The exponential growth model in Eq. (1) is rarely used to
describe population growth, since it produces an unbounded population growth.

The exponential growth model was improved by logistic growth model. In the logistic model, a population
grows until it attains a maximum capacity [9]. The logistic model is based on the assumption that the
growth rate dy

dt is proportional to the existing population and the remaining resources available to the existing
population. The logistic growth model be expressed as

y (t) =
K

1 + exp(−rt)
(
K
Y0
− 1
) =

K

1 + exp[−r (t− tinf)]
, (2)

where
tinf =

1

r
ln

(
K

Y0
− 1

)
. (3)

When y(t) represents body weight of a livestock at time t, then parameter K in Eq. (2) could be considered
as the mature weight (the maximum weight that could be attained by livestock). Here tinf is the inflection
time (the optimal time of a population growth).

The logistic growth model has various modifications. One of the modified version is the shifted logistic
function. The first version of the shifted logistic function could be presented in the following form [10]

y(t) = K

(
1

1 + exp(−r(t− tinf))
− 1

1 + exp(rtinf)

)
. (4)

The second version and the third version of the shifted logistic function could be expressed as [11]

y(t) =
K

1 + exp(−r(t− tinf))
+ L (5)

and
y(t) =

K +Mt

1 + exp(−r(t− tinf))
+ L (6)

respectively. Here, L and M are additional parameters.
Modification of the logistic growth model also occurred in the differential equations model. The logistic

differential equation has been modified into von Bertalanffy, Richards, Gompertz, Blumberg, Turner et al.
and Tsoularis differential equations. The von Bertalanffy differential equation has the following form [12],
[13]

dy

dt
= ry

2
3

(
1−

( y
K

) 1
3

)
, y(0) = Y0. (7)

Richards (1959) proposed a modified logistic differential equation so-called Richards differential equation.
The Richards differential equation has the following form [13], [14]

dy

dt
= ry

(
1−

( y
K

)β )
, y(0) = Y0. (8)
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Gompertz differential equation is a limiting case of a modified logistic differential equation. The Gompertz
differential equation is derived from

dy

dt
= lim
β→0

ry

(
1− ( yK )β

)
β

= ry ln(
K

y
), y(0) = Y0. (9)

Blumberg (1968) also introduced a modification of logistic differential equation so called the hyper logistic
function, accordingly [13], [15]

dy

dt
= ryα

(
1− y

K

)γ
, y(0) = Y0. (10)

Turner et al. (1976) proposed a modified logistic differential equation which they named the generic growth
function. The modification has the following form [13], [16]

dy

dt
= ry1+β(1−γ)

(
1−

( y
K

)β )γ
, y(0) = Y0. (11)

Tsoularis (2001) proposed a more general modification of logistic differential equation. The Tsoularis differ-
ential equation has the form [13]

dy

dt
= ryα

(
1−

( y
K

)β )γ
, y(0) = Y0. (12)

In the next section, we propose another version of a modified logistic differential equation.

3. THE PROPOSED MODEL

The logistic growth model and the modified logistic growth model presented in the previous section could
be represented in the Kolmogorov form

dy

dt
= yP (y) (13)

for some continuous function P . For classical (standard) logistic differential equation, the function P is
P (y) = r(1 − y

K ). In the logistic growth model, it is assumed that the growth rate of a population is
proportional to the population number at the current time. Here, we modify the model in Eq. (13) in more
general form, namely

dy

dt
= F (y) (14)

for some continuous function F . A simple growth model satisfies Eq. (14) but it does not satisfy the
Kolmogorov form in Eq. (13), is the monomolecular model. The monomolecular model satisfy the following
differential equation [17]

dy

dt
= q − sy, y(0) = Y0. (15)

Here, q could be considered as constant growth rate while s could be considered as the death rate of a
population.

In this section, we propose a generalized model of the monomolecular model and the standard logistic
growth model. We extend the monomolecular model and the logistic differential equation model into the
following differential equation.

dy

dt
= (q + ry)

(
1− y

K

)
, y > 0 (16)

and the initial condition y (0) = Y0 > 0. Note that region of biological interest of the model in Eq. (16)
is R+ := {x ∈ R : x > 0}, since a life organism could not grow from nothing. Here, q and r could be
considered as constant growth rate and proportional growth rate respectively.
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The modified logistic growth model in Eq. (16) has one equilibrium, namely y = K. Global stability of
the equilibrium is presented in the following theorem.

Theorem 3.1. The equilibrium y = K is globally asymptotically stable.

Proof : We define a Lyapunov function V : R → R by V (y) = (y −K)2. The function V is a C∞(R)
function. In addition, the equilibrium y = K is the global minimum of V . Moreover, V is a definite positive
function around the equilibrium where every y ∈ R \ {K}, V (y) > 0. The time derivative of V computed
along solutions of the mathematical model in Eq. (16) is given by the expression

dV

dt
=
−2
K

(q + ry) (y −K)
2
.

Since all parameters in the model are positive and the variable y is positive, it follows that dVdt ≤0 for y > 0.
In addition dV

dt = 0 if and only if y = K. Therefore the greatest compact invariant set in
{
y∈R+ : dVdt = 0

}
is the singleton {K}. By LaSalle’s invariance principle [18], the equilibrium y = K is globally asymptotically
stable in R+.

The population weight at the inflection time ( tinf ) could be determined as follows. By differentiating both
sides of Eq. (16) and setting d2y

dt2 (tinf) = 0, we find

y (tinf) =
K

2
− q

2r
. (17)

Hence, the population weight at the inflection time for this model is smaller than the values obtained from the
logistic growth model. Exact values of the inflection time could be obtained whenever the analytical solution
of the model in Eq. (16) could be found.

The differential equation in Eq. (16) could be written as(
r

q + ry
+

1

K − y

)
dy =

( q
K

+ r
)
dt.

By integrating the left side with respect to y and the right side with respect to t gives

ln

(
q + ry

K − y

)
=
( q
K

+ r
)
t+ c0 (18)

for some constant c0. The mathematical expression in the Eq. (18) could be written as

q + ry

K − y
= c1 exp

(( q
K

+ r
)
t
)
, c1 = exp (c0) . (19)

By solving Eq. (19) for y, it could be obtained explicit solution of the modified logistic differential equation
as

y (t) =
c1K exp

(
qt
K + rt

)
− q

r + c1 exp
(
qt
K + rt

) . (20)

By substituting the initial condition y (0) = Y0, then c1 = qY0+a
K−Y0

. Hence, the explicit solution in Eq. (20)
could be written as

y (t) =
K − q

(
K−Y0

rY0+q

)
exp

(−qt
K − rt

)
1 + r

(
K−Y0

rY0+q

)
exp

(−qt
K − rt

) . (21)

By defining the following parameters

α =
q

K
+ r, A = K − q

(
K − Y0
rY0 + q

)
, B = r

(
K − Y0
rY0 + q

)
, (22)
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then the modified logistic growth model in Eq. (21) could be written as

y (t) =
K − (K −A) exp (−αt)

1 +B exp (−αt)
. (23)

Here α,A,B,K are positive parameters and A≤K. The parameter α is effective growth rate, K is the
maximum capacity (mature weight), while the parameter A,B are corresponding to initial weight and
inflection time. The inflection time ( tinf ) of the model in Eq. (23) is

tinf =
lnB

α
=

K

q + rK
ln

(
r

(
K − Y0
rY0 + q

))
. (24)

The inflection time in (24) could be determined by evaluating the second derivative of y in Eq. (23) and
setting d2y

dt2 (tinf) = 0. If the constant growth rate parameter (q) is zero, then the inflection time in Eq. (24)
could be simplified into Eq. (3). From Eq. (24), the modified logistic growth model in Eq. (23) could be
presented in the following form

y (t) =
K − (K −A) exp (−αt)
1 + exp (−α(t− tinf))

. (25)

Since there are some well-known modified logistic growth model, then the presented growth model presented
in Eq. (29) could be called by a WEP-modified logistic growth model. Here WEP comes from Windarto-
Eridani-Purwati.

4. EXTENSION OF THE PROPOSED MODEL

It is well known that the length and weight of fish species will grow until they attain some maximum
values. By applying the presented model in the previous section, the dynamics of fish weight and fish length
could be modeled by following differential equations

dW

dt
= (qw + rwW )

(
1− W

Kw

)
, W (0) = w0, (26)

and

dL

dt
= (ql + rlL)

(
1− L

Kl

)
, L(0) = l0, (27)

respectively. Here, W (t) and L(t) are fish weight and fish length at time t respectively. In Eq. (26)-(27), qw,
ql are constant growth rate of fish weight and fish length, while rw, rl are proportional growth rate of fish
weight and fish length respectively. By applying the analytical solution of the previous section, we found
dynamic of fish weight and fish length could be described by

W (t) =
Kw − qw

(
Kw−w0

rww0+qw

)
exp

(
−qw t
Kw
− rw t

)
1 + rw

(
Kw−w0

rwY0+qw

)
exp

(
−qw t
Kw
− rw t

) (28)

and

L (t) =
Kl − ql

(
Kl−l0
rll0+ql

)
exp

(
−ql t
Kl
− rl t

)
1 + rl

(
Kl−l0
rll0+ql

)
exp

(
−ql t
Kl
− rl t

) (29)

respectively.
It is also well known that there is length-weight relationship (LWR) of fish species. A mathematical

equation was used to show relationships between the average weight of fish at a given length [19], [20]. The
length-weight relationship is given by
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W (t) = aL(t)b. (30)

Here a and b are empirical parameters. Typically, the b parameters range from 2 to 4. Fish can attain either
isometric or allometric growth. Isometric growth indicates that both fish length and fish weight are increasing
at the same rate [20]. Here, we estimated parameters empirical parameters a and b for the threadfin bream
(Nemipterus marginatus) from the South China Sea, where the data cited from literature [21]. The length-
weight relationship data is shown in Table I.

TABLE I: Length-weight relationship data for the threadfin bream (Nemipterus marginatus)

L (cm) W (grams) L (cm) W (grams)
8.1 6.3 16.6 65.6
9.1 9.60 17.7 69.4

10.2 11.6 18.7 76.4
11.9 18.5 19 82.5
12.2 26.2 20.6 106.6
13.8 36.1 21.9 119.8
14.8 40.1 22.9 169.2
15.7 47.3 23.5 173.3

By taking natural logarithm of eq. (30), the relationship could be converted into

lnW = ln a+ b lnL. (31)

Then by using linear regression method, we find the parameter values of ln a = −4.53786 and b = 3.05735.
Hence the parameter value of a is 0.01070. Since the parameter value of b does not significantly differ from
3, then the species attain isometric growth [20]. In order to estimate parameters in Eq. (28) and (29), we need
fish weight and fish length data over time. In the next section, we apply the proposed model (WEP-modified
logistic growth model) to some secondary data cited from the literature.

5. APPLICATION OF THE PROPOSED MODEL

In this section, the proposed model is implemented to describe chicken body weight (rooster and hen)
growth, where the data are cited form literature [3], [22]. Rooster (x) and hen (y) body weight at different
age (t) are presented in Table 2. In addition, accuracy result of the proposed model will be compared to the
logistic model, Gompertz model, and Richards model. The logistic model was presented in Eq. (2), while
Richards and Gompertz differential equations were presented in Eq. (8) and (9) respectively. Analytical
solution of the Richards differential equation in Eq. (8) was given by

yR(t) =
K[

1 + β exp(−rβ(t− tinf))
] 1
β

, (32)

where the inflection time tinf = 1
rβ ln

(
( KY0

)β−1
β

)
. By defining m = β + 1, r∗ = rβ, then the Richards

growth model in Eq. (32) could be expressed as

yR = K

[
1− (1−m) exp

(
− r∗(t− tinf)

)] 1
(1−m)

. (33)

Exact solution of the Gompertz differential equation in Eq. (9) was given by

yG (t) =
K

exp

(
exp(−r(t− tinf))

) (34)
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where tinf = 1
r ln

(
ln(KY0

)

)
. Some authors used the following Gompertz-Laid growth model [3]

yG (t) =W0 exp

(
exp(rtinf)

(
1− exp(−rt)

))
. (35)

Here, W0 is initial chicken weight in the Gompertz model and m is the shape parameter in Richards model.
For m = 2, then the Richards model could be simplified into logistic model. For m tends to one, then the
Richards model could be simplified into the Gompertz model.

TABLE II: Means of rooster and hen chicken weight data

t (days) x (grams) y(grams) t (days) x (grams) y (grams)
0 37 36.68 42 519.72 436.51
3 41.74 40.8 45 577.27 480.31
6 59.19 57.33 48 633.59 522.91
9 79.94 77.24 51 667.18 547.23
12 102.96 97.96 54 717.17 583.56
15 132.13 121.92 57 786.35 631.77
18 170.18 155.08 71 1069.28 832.57
21 206.56 184.24 85 1326.49 1009.48
24 250.71 218.37 99 1589.71 1183.8
27 285.27 247.12 113 1859.26 1440.18
30 324.92 279.58 127 2015.44 1561.89
33 372.83 319.55 141 2142.31 1619.34
36 417.41 355.13 155 2220.54 1680.29
39 469.13 396.32 170 2262.63 1717.78

There are four parameters in the model should be estimated, namely parameter α (effective growth rate),
K (maximum weight/ mature weight of chicken), the inflection time tinf and parameter A (correspond to
the initial chicken weight). Since growth function of the model is explicitly presented in the Eq. (25), then
nonlinear regression procedures could be applied to estimate the parameters.

The parameters α,K, tinf and A are estimated such that the normalized residual sum of squares (NRSS)

NRSS =
∑
i

(zi − ẑi)2

(zi − z)2
, z = x ∨ z = y (36)

is minimum. In Eq. (36), z is the average of z and ẑi is chicken weight at time i predicted from the model.
The normalized residual sum of square corresponds to the determination coefficient via the following relation

R2 = 1−NRSS . (37)

Parameters in the logistics, Gompertz, and Richards model also be estimated with a similar manner. The
accuracy of the predicted results could also be measured by evaluation of Mean Absolute Percentage Error
(MAPE), which is given by the following formula

MAPE =
∑
i

1

n

∣∣∣∣zi − ẑizi

∣∣∣∣100%. (38)

Here n is the number of observational data. The nonlinear least square (nls) procedure of R open source
software is used to estimate parameters of the proposed model, logistic, Gompertz, and Richards model.
R open source software was built by the R Foundation for Statistical Computing. Estimation results of
the proposed model, logistic, Gompertz, and Richards model for rooster and hen weight, the determination
coefficient (R2) and Mean Absolute Percentage Error (MAPE) for the models are presented in Table III,
while the dynamics of rooster weight and hen weight are shown in Fig. 1 and Fig. 2 respectively.
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Fig. 1: Dynamic of rooster weight.
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Fig. 2: Dynamic of hen weight.
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TABLE III: Estimated parameters for the proposed model, logistic, Richards and Gompertz growth model

Model Parameters Rooster Hen
The proposed model Mature weight (K) 2399.749 1847.162
(WEP-modified logistic Effective growth rate (α) 0.031 0.029
growth model) Inflection time (tinf ) 71.584 69.015

A 166.323 183.061
NRSS 0.00031 0.00119
R2 0.99969 0.99881
MAPE 0.04754 0.04267

Logistic model Mature weight (K) 2279.904 1739.652
Growth rate (r) 0.040 0.039
Inflection time (tinf ) 74.677 73.331
NRSS 0.00357 0.00501
R2 0.99643 0.99499
MAPE 0.299927 0.25398

Richards model Mature weight (K) 2512.972 1945.342
Growth rate (r*) 0.023 0.021
Inflection time (tinf ) 64.307 61.344
Shape parameter (m) 1.054 0.978
NRSS 0.00071 0.00175
R2 0.99929 0.99825
MAPE 0.07373 0.06552

Gompertz model Growth rate (r) 0.022 0.021
Inflection time (tinf ) 63.498 61.704
Mature weight (K) 2539.651 1936.385
NRSS 0.00073 0.00175
R2 0.99927 0.99825
MAPE 0.06007 0.07031

It could be seen from Fig. 1 and Fig. 2 that rooster growth and hen growth follow sigmoidal patterns.
Rooster growth and hen growth stars by an accelerating growth phase from hatching. Then, the chicken
attains a maximum growth rate at the inflection time. At final phase, the chicken weight tends to a mature
weight. Qualitatively, all of the models, describe the chicken growth well, as seen in the figures. But, if we
compare its MAPE, as seen in Table III, we see that the logistic model have the biggest MAPE, and it mean
that its accuracy is poorer than the other models. This apparently due to the logistic model is not accurate
in predicting the dynamics of rooster and hen weight at the early times (Fig. 1 and Fig. 2). By adding one
additional parameter (q) to the presented model, the dynamics of rooster and hen weight could be better
estimated by using the presented model.

From the Table III, it was found that the growth rate (the effective growth rate) or the maturation rate
(α in the proposed model, r in the logistic and Gompertz model and r∗ in the Richards model) was higher
in rooster than in hen. This result is consistent with the result from Aggrey (2002) [3]. It also could be
found that inflection time of the proposed model is relatively close to inflection time of the logistic model. In
addition, inflection time of the Richards model is relatively close to the Gompertz model. It is apparently due
to the shape parameter m in the Richards model is close to one. Moreover, it was found that the proposed
model, logistic model, Richards model, and Gompertz model produced a high determination coefficient (R2

is greater than 0.99). Although the determination coefficients of the four models did not differ significantly,
Mean Absolute Percentage Error (MAPE) of the models considerably varied. It was found the proposed model
has the smallest MAPE, which is 4.754% in rooster and 4.267% in hen. This indicates that the proposed
model could be used as an alternative model to describe poultry growth curve or individual growth.

6. CONCLUSION

A new growth model was presented in this paper. The model was derived from the modification of logistic
differential equation. The proposed model also was simulated and verified using rooster and hen weight
data cited from the literature. The estimation results from the model ware compared to the logistic model,
Richards, and Gompertz growth model. It was found that the model gave better results compared to the
logistic model, Richards, and Gompertz growth model. It indicates that model could be used as an alternative
model to describe poultry growth curve or individual growth.
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