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Abstract

In this paper we introduce an agent-based epidemiological model that generalizes the classical SIR model
by Kermack and McKendrick. We further provide a multiscale approach to the derivation of a macroscopic
counterpart via the mean-field limit. The chain of equations acquired via the multiscale approach is investigated,
analytically as well as numerically. The outcome of these results provides strong evidence of the models’
robustness and justifies their practicality in describing disease dynamics, in particularly when mobility is
involved. The numerical results provide further insights into the applicability of the different scaling limits.
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1. INTRODUCTION

The understanding of disease dynamics for the purpose of prevention and control has become extremely cru-
cial in the recent years. The emergence and reemergence of infectious diseases such as influenza, HIV/AIDS,
SARS, and more recently the sudden outburst of the Ebola and Zika virus are events of concern and interest
to the general population throughout the world. Moreover, the environmental landscape in which we live is
dynamic and often experiences dramatic shifts due to technological innovations that periodically alter the
bounds of what we think is possible.

Mathematical models and computer simulations have become irreplaceable experimental tools for building
and testing theories, assessing quantitative conjectures, answering specific questions, determining sensitivities
to changes in parameter values, and estimating key parameters from data. Understanding the transmission
characteristics of infectious diseases in communities, regions, and countries may lead to better approaches to
decreasing the transmission of these diseases.

A classical epidemiologal model is the renowned SIR model formulated by Kermack and McKendrick in
1927 [1], [5], [19], [20], [22], [31], which describes the spread of a disease among a single species of N
individuals. It is a compartmental model, i.e., the population is split up into three classes of individuals denoted
by S, I,R, representing the total number of susceptible, infected and recovered individuals, respectively. Since
the effective time period is assumed to be sufficiently short, the model considers neither birth nor death
phenomena, nor migration of individuals. It further assumes that susceptible individuals S have never been
exposed to the disease, and that they may only be infected by contagious individuals. If β > 0 (transmission
rate) denotes the average number of adequate contacts of a person per unit time, multiplied by the risk of
infection, given contact between an infectious and a susceptible individual, and τ = 1/γ is the mean waiting
time until full recovery, then the SIR model reads

dS

dt
= −βSI, dI

dt
= βSI − γI, dR

dt
= γI,

supplemented with initial values S(0) = S0, I(0) = I0, R(0) = R0 for some S0, I0, R0 ∈ R≥0. Clearly
the system conserves the number of individuals N = S + I + R for all time t ≥ 0. Since its introduction,
extensive work has been done on extending the model in various directions.

The understanding of human mobility plays a fundamental role to the research of vector-based and rapid
geographical spread of emergent infectious diseases. A popular but rudimentary way to incorporate the
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spatial movement of hosts into epidemic models is to assume some type of random host movement, leading to
reaction-diffusion type equations [32]. This strand of development was built on the pioneering work of Fisher
in 1937, who used a logistic-based reaction-diffusion model to investigate the spread of an advantageous gene
in a spatially extended population [17]. For considering populations on large geographical scales, scientists
have integrated topological features of traffic networks, such as highways, railways and air transportation
into models for disease dynamics [25]. Many of these models are stochastic in nature, which results from
considering general random walks such as Brownian motion and Lévy flights [7], [25]. In recent years,
mathematical methods based on the kinetic theory of active particles has drastically evolved, including the
field of mathematical epidemiology [2], [11], [12].

Agent-based models and interacting particle systems have been widely used in understanding how order
and stability, or a lack thereof, arises from the interaction of many agents [26]. In addition to the rigorous
analysis of models that arise in statistical physics, biology, economics and, now, even in the physics of
society, they also provide the means to predict global behavior of a system from the local dynamics between
agents [29], [30]. Despite their simplicity, interacting particle systems may be easily extended to include
highly complex interactions. Unfortunately, as the number of agents N in the system increases, immense
computational cost becomes inevitable.

Multiscale modeling provides a way out. One begins by passing to the so-called mean-field limit N →∞,
to obtain equations that describe the evolution of the probability density function ft, over the possible
states of the agents [4], [6], [8], [9], [15], [16], [33], [34]. From this probabilistic description, one may
further characterize equations corresponding to average/statistical quantities, which have the tendency to be
analytically well understood, and numerically tractable.

Microscopic
(Xt, Vt)

Mesoscopic
ft(x, v)

Macroscopic
mean-field asymptotics

Fig. 1: Multiscale modeling.

In this paper, we discuss a multiscale approach in deriving macroscopic epidemiology models from agent-
based (microscopic) models. Fig. 1 illustrates the general strategy in passing over from the microscopic
to macroscopic regime, via the mesoscopic regime, thereby introducing the notion of multiscale [23]. In
Section 2 we introduce the agent-based (microscopic) model for epidemiology, that should generalize the
classical SIR model in two ways, namely the inclusion of mobility and the continuous transition of an agent’s
health status. The latter would allow for agents to resist an infection, which is absent from the classical SIR
model. A different model for spatially inhomogeneous epidemiology obtained via a multiscale approach has
been recently derived in [3]. Section 3 provides an overview and several results pertaining to the limiting
equation when the number of agents N tends to infinity. We further provide a way to derive the corresponding
macroscopic equation, which is a partial differential equation over the health status. In Section 4 we focus
on the well-posedness of the macroscopic equation derived in the previous section and discuss possible
stationary distributions. In this section we also point out a way to determine parameters, under which an
epidemic may occur for the macroscopic model. Section 5 is devoted to the numerical investigation of the
models discussed in the previous sections. Here, we consider various scenarios that justify the adoption of the
agent-based epidemiology model and its macroscopic counterpart to model disease dynamics in a spatially
inhomogeneous environment. We finally conclude the paper in Section 6 with an outlook to future work and
possible extensions of the models introduced within this paper.

2. AN AGENT-BASED EPIDEMIOLOGY MODEL

In this framework, we consider a system of N ∈ N identical agents with position Xi
t ∈ Ω ⊂ Rd, where Ω

is a smooth domain, and activity/health status U it ∈ J ⊂ R, i = 1, . . . , N at time t ∈ [0,∞), satisfying for
i ∈ {1, . . . , N}, the system of stochastic differential equations

dXi
t =
√

2σ dW i
t , dU it = −H′(U it ) dt+ FN (Xi

t , U
i
t ,Xt,Ut) dt, (1)
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with Xt = (X1
t , . . . , X

N
t ), Ut = (U1

t , . . . , U
N
t ), the standard Wiener process W i

t ∈ Rd (with normal
reflecting boundary conditions whenever Ω is bounded), and

FN (Xi
t , U

i
t ,Xt,Ut) =

1

N

∑
j 6=i
K(Xi

t , U
i
t , X

j
t , U

j
t ),

where H : J → R is a given potential landscape describing the transition between two activity status, and
K : S × S → R is the force describing inter-agent interactions on the state space S := Ω × J . The initial
configuration of the N ∈ N agents in SN are assumed to be independent and identically distributed random
variables.

Mimicking the SIR model, we set J = [−1, 1]. Then the activity U it is the internal variable describing an
agent’s health status, where U it = −1 is considered immune due to innate immunity, while U it = −1 is said
to be fully recovered, and therefore also immune. This gives us the possibility to work with a continuous
health state, which mimics reality, since the infection of an individual intensifies or diminishes more or less
continuously. As a first spatial extension to the SIR model and for clarity of presentation, the agents are only
modelled to move randomly following the standard Wiener process with diffusion coefficient

√
2σ.

Remark 1. The factor 1/N in FN rescales the interaction force K, and is typically called the weak coupling
scaling, which will allow for the passage to the mean-field. We will provide examples in Section 5 for this
case. Other forms of rescaling may be possible, but will not be discussed here.

The underlying idea to prescribe H and K stems from reaction rate theory and is adapted to disease
dynamics (cf. [18] and references therein). The following are three phenomenological features that are
accounted for in our current model:

1) A susceptible agent remains susceptible unless exposed to infectious agents. The exposure would need
to exceed a certain threshold u∗ := arg maxu∈J H(u) for an agent to inherit the disease. This provides
the possibility for an agent to resist the disease.

2) If a susceptible agent is exposed to a sufficient amount of infectious agents over a duration of time, it
will exceed the threshold u∗ and become infected. From that moment on, the recovery phase begins.
The agent will be infectious for a period of time and then lose its ability to infect others when its
activity exceeds some ū ∈ (u∗, 1). After some time it will arrive at the recovered state.

3) Having reached the recovered state, the agent becomes immune to the disease. Therefore u = 1 should
be an attractor, i.e., local minimum of H.

For comparison with the classical SIR model, we devide the interval J into compartments, indicating the
current active health state. We denote the disjoint partition of J by S = (−1, u∗), which represents the
susceptible class, I = (u∗, ū), the infectious class, and R = (ū, 1), the fully recovered class. The magnitude
of each compartment is then measured simply by counting the number of agents located in the corresponding
interval.

Owing to these features mentioned above, we formalize them in the following definition.

Definition 1. A potential landscape H is said to be feasible if H ∈ Lip1
b(J)

1) has two local minima at u = 1 and u = −1, respectively, and
2) has one global maximum at u∗ ∈ (−1, 1),

where Lipkb , k ∈ N0 is the space of k-times differentiable functions with the k-th derivative being Lipschitz
and bounded.

An inter-agent interaction force K is said to be feasible if K ∈ Lipb(S × S),
1) K(x, u, y, u) vanishes for any x, y ∈ Ω, u ∈ J , and
2) K(x, u, y, ν) vanishes at u ∈ R ∪ {−1} for any x, y ∈ Ω, ν ∈ J .

Remark 2. Notice that an agent at the state u = −1 is considered to be immune to the disease. For this
reason, our feasible interaction force K does not allow interactions with agents that are at the state u = −1.

The solvability of our microscopic model (1) for any finite number of agents N ∈ N and Ω = Rd is
an easy consequence of the strong existence and uniqueness for Itô processes [14]. When Ω is bounded,
well-posedness may be deduced from eg. [27].
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In the following we set Zit = (Xi
t , U

i
t ) for 1 ≤ i ≤ N and denote Pp(S) to be the set of Borel probability

measures with finite p-th moment.

Proposition 1. Let T > 0 be arbitrary, H and K be feasible, and N ∈ N. Furthermore, let the initial values
{Zi0} be mutually independent and f0-distributed random variables with f0 ∈ P2(S). Then there exists a
unique strong solution Zt = (Xt,Ut) of the microscopic model (1) with E

[ ∫ T
0
|Zt|2 dt

]
<∞.

Potential landscapes: An exemplary class of potential landscapes H satisfying these features are known
as double-well potentials, which includes, for example, potentials of the form

Hα,β(u) = α(u2 − 1)2 + β(1− sin(πu/2)),

for suitable parameters α, β ≥ 0. It is easy to see that the set of parameters α > 0, β < 25α/π2, provides a
feasible set of potential landscapes. One observes that the minima are local attractors. Therefore, an agent at
the state u in a neighborhood around {−1, 1} will remain there unless perturbed by a sufficient amount of
external force. Moreover, an agent is said to have been infected at some point in time if its activity exceeded
the threshold H(u∗).

There are other possibilities for the potential landscape H. For instance, one may use a smooth version of
a piecewise affine linear function, as seen in Fig. 2. Practically, the potential landscapes provided in Fig. 2
describes a disease that is easily contracted, and requires a relatively long time for complete recovery.

u
-1 u∗ 1

1

(a) Double-well potential H 1
2
, 1
2

u
-1 u∗ 1

1

(b) Piecewise linear potential Hlin

Fig. 2: Examples of potential landscapes H.

Interaction forces: The inter-agent interactions are described by the force K, which typically depends on
the distance r = |Xi

t −X
j
t | between agents i and j, and their corresponding activities U it and U jt . A product

ansatz of the form
K(x, u, y, ν) = Φ(x− y)ψ(u)χ(ν), (x, u), (y, ν) ∈ S,

may be used, since it easily captures the features mentioned above. Roughly speaking, the function Φ should
be a non-negative even function, i.e., Φ(r) = Φ(−r), which indicates if two agents are within close proximity
for possible interactions to occur. Since the probability of infection is highest when particles are closest, we
set Φ(0) = 1. On the other hand, the function ψ indicates when an agent is susceptible to infection, whereas
χ indicates when an agent is infectious. Based on our basic features, an infected agent should not be allowed
to infect an agent that is already infected. Furthermore, an infected agent should not change the activity of a
recovered agent. Therefore, a feasible K would have that supp(ψ) ∩ supp(χ) = ∅. A sufficient condition for
this would be to require supp(ψ) ⊂ S and supp(χ) ⊂ I.

To conceive an easy and intuitive interaction force that fits the requirements for the model, we choose
Φ(r) = 1BR(0)(r), ψ = 1S and χ = cχ1I , where cχ represents the strength of infection. Fig. 3 provides an
elementary example of an interaction force K made up of the functions Φ, ψ and χ. For feasibility reasons,
smooth versions of Φ, ψ and χ shown in the figure are used instead.

3. THE MEAN-FIELD AND MACROSCOPIC EQUATIONS

In this section, we discuss the limiting process that appears when passing to the mean-field limit N →∞.
The idea in obtaining a limiting equation is to replace the interaction term FN , which depends on all binary
interactions of any pair (Zit , Z

j
t ), with an interaction term F that describes the interaction of a single agent
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r
−R R

1

Φ(r)

(a) Activation function Φ

u
-1 u∗ ū 1

1

ψ(u)

(b) Passive infection potential ψ

ν
-1 u∗ ū 1

cχ

χ(u)

(c) Active infection potential χ

Fig. 3: Possible choice of interaction force K(x, u, y, ν) = Φ(x− y)ψ(u)χ(ν).

with an averaged field, the so-called mean-field ft. Intuitively, if one considers the empirical measure µNt of
the stochastic processes {Zit} given by

µNt (dz) =
1

N

∑N

i=1
δZit (dz),

where δz denotes the Dirac measure at z ∈ S, then one could formally write

FN (Zit ,Zt) =
1

N

∑
j 6=i
K(Zit , Z

j
t ) =

∫
S

K(Zit , z
′)µNt (dz′).

One then strives to show that the empirical measure µNt converges to a deterministic limit measure ft in the
sense of convergence in law for the underlying random variables. In this case, one may then show that

FN (Zit ,Zt) −→ F [ft](Z
i
t) =

∫
S

K(Zit , z
′)ft(dz

′),

in some appropriate notion of convergence, as N →∞.

3.1. Nonlinear process and mean-field equations
Indeed, the conjecture is that the process Zit for some fixed 1 ≤ i ≤ N generated by the microscopic

system (1) converges to a mean-field process, the so-called McKean nonlinear process, given by the solution
of

dX̄i
t =
√

2σ dW i
t , dŪ it = −H′(Ū it ) dt+ F [ft](X̄

i
t , Ū

i
t ) dt, (2)

with the same family of standard Wiener processes {W i
t } as in (1), and

F [ft](z) =

∫
S

K(z, z′)ft(dz
′),

where ft = law(Z̄it) is the law of the random variable Z̄it = (X̄i
t , Ū

i
t ). Since the law ft is required in

the definition of the process Z̄it , we have a nonlinear stochastic system at hand. This nonlinear process is
supplemented with mutually independent f0-distributed initial conditions Z̄i0. Note that the solutions {Z̄it}
are also independent and identically distributed with the joint law f⊗Nt .

Applying Itô’s formula to the nonlinear process provides an evolution equation for their common law ft,
given by

∂tft − ∂u(H′ft −F [ft]ft) = σ∆xft, limt↘0 ft = f0. (3)

This nonlinear and nonlocal kinetic equation is commonly known as the Fokker–Planck equation correspond-
ing to the nonlinear process (2).

As in the microscopic case, we recall an existence and uniqueness result for the nonlinear process (2), as
well as the nonlinear kinetic equation (3). Under the feasibility assumptions on H and K, the proof of the
following result is rather standard and may be found, for example, in [4], [34].
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Proposition 2. Let T > 0 be arbitrary, H and K be feasible, f0 ∈ P2(S). Then the nonlinear process (2)
has a pathwise unique solution Z̄ ∈ C([0, T ), S), with ft = law(Z̄t) ∈ P2(S), t ∈ [0, T ), satisfying the
Fokker–Planck equation (3) in the sense of distributions.

Having unique strong solutions corresponding to (1) and (2), we may provide a quantitative estimate
of the difference between the two solutions Zit and Z̄it for any 1 ≤ i ≤ N , and consequently also the
difference between their respective laws. For completeness, we provide the proof of the following theorem
in Appendix A.

Theorem 1. Let T > 0 be arbitrary, H and K be feasible, and f0 ∈ P2(S). Consider the solutions Zit , Z̄
i
t

to the equations (1), (2) for t ∈ [0, T ] and each 1 ≤ i ≤ N ∈ N with mutually independent f0-distributed
Zi0, Z̄i0, provided by Propositions 1 and 2 respectively. Then there exists a constant C > 0, independent of
N ∈ N, such that

supt∈[0,T ] E[|Zit − Z̄it |2] ≤ CN−1, (4)

for any 1 ≤ i ≤ N ∈ N.

The property of the stochastic empirical measure becoming deterministic in the limit is equivalent to the
requirement that the law of the N particles become chaotic in the limit [34]. This means that, for a fixed k,
the law of the first k agents f (k)

t satisfies

f
(k)
t −→ f⊗kt in P(Sk),

as N →∞, assuming the k agents to be initially f⊗k0 -distributed.
In fact, estimate (4) ensures both theses properties:
1) Propagation of chaos property. Indeed, we deduce from (4) the estimate

W 2
2 (f

(k)
t , f⊗kt ) ≤ E[|(Z1

t , . . . , Z
k
t )− (Z̄1

t , . . . , Z̄
k
t )|2] ≤ k CN−1,

where W2 denotes the Wasserstein distance between measures in P2(S) defined by

W2(µ, µ̄) = inf
√
E[|Z − Z̄|2].

The infimum is taken over all coupling of random variables (Z, Z̄) in S × S having distributions µ
and µ̄ respectively (cf. [36]).

2) Convergence of the stochastic empirical measure µNt towards the deterministic mean-field distribution
ft. Due to (4), we have for any ϕ ∈ Lipb(S) the estimate

E
[∣∣∣∣ 1

N

∑N

i=1
ϕ(Zit)−

∫
S

ϕft(dz)

∣∣∣∣]
≤ 2E

[
1

N

∑N

i=1
|ϕ(Zit)− ϕ(Z̄it)|2 +

∣∣∣∣ 1

N

∑N

i=1
ϕ(Z̄it)−

∫
S

ϕft(dz)

∣∣∣∣2
]
≤ CN−1,

for some constant C > 0 independent of N and t ∈ [0, T ]. Notice that the second term in the
first inequality follows from the law of large numbers. Indeed, this holds since {Z̄it} are mutually
independent and identically distributed (see also Appendix A).

Rigorous results of this form were known for the deterministic case since the 70’s [6], [13], [33], and then
extended to the stochastic case in [4], [34], see also [28].

3.2. Macroscopic equations
At this point, one may derive equations governing macroscopic quantities based on the moments of ft by

introducing closure relations or further assumptions on H and K. In the following, we assume ft to have a
sufficiently smooth density with respect to the Lebesgue measure on S, which we denote again by ft.

The following are several examples that may be of interest:
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Model 1. The zeroth order moment of ft w.r.t. u, i.e., the first marginal of ft:

ρt =

∫
J

ft(·, u) du,

satisfies the simple heat equation

∂tρt = σ∆xρt, limt↘0 ρt = ρ0,

which precisely describes the purely diffusive behavior of the nonlinear stochastic process in its first com-
ponent, namely X̄t. Indeed, for feasible H and K, we have∫

J

∂u(H′ft −F [ft]ft) du = (H′ft −F [ft]ft)
∣∣∣1
−1

= 0.

If we consider the Wiener process Wt in a bounded domain Ω ⊂ Rd with reflective boundary conditions,
i.e., we allow the motion of agents only within a bounded region Ω, we obtain the homogeneous Neumann
boundary condition for the heat equation. In this case, the unique equilibrium for this equation is the constant
ρstat ≡ 1/|Ω|, i.e., the uniform distribution in the x-variable.
Remark 3. Instead of considering a bounded domain Ω ⊂ Rd with reflecting boundary conditions for the
Wiener process, one could introduce a sufficiently smooth and convex confining potential V : Rd → R with
a sufficiently strong growth condition, and additionally

∫
Rd e

−V/σ dx = 1. In this case, the mean-field spatial
process becomes

dX̄t = −∇xV (X̄t) dt+
√

2σ dWt,

and the resulting Fokker–Planck equation reads

∂tft − ∂u(H′ft −F [ft]ft) = divx(σ∇xft + ft∇xV ).

As in Model 1, we may take the first marginal of ft to obtain

∂tρt = divx(σ∇xρt + ρt∇xV ),

which is the Fokker–Planck equation corresponding to the Ornstein–Uhlenbeck process. Its unique stationary
state is simply given by ρstat = e−V/σ .
Model 2. Disintegrating the joint probability distribution ft = ft(x, u) into its first marginal ρt and the
corresponding conditional distribution gxt , i.e., ft(x, u) = gxt (u)ρt(x), and inserting this into the mean-field
equation yields

∂tg
x
t − ∂u

(
H′gxt −F [ft]g

x
t

)
= σ

(
∆xg

x
t +∇x ln ρ2

t · ∇xgxt
)
, (5)

which is a closed equation for gxt , given ρt. In fact, if one is given a stationary spatial density ρstat of the
population, this can be included directly by simply setting ρt = ρstat. Notice that this equation is nonlocal in
the spatial variable, unless further assumptions are made.

Nevertheless, (5) allows for the computation of gxt for any given spatial density ρt, i.e., also those that
do not necessarily satisfy the heat equation. Therefore, this macroscopic equation is capable of describing
disease dynamics in spatially inhomogeneous populations, where the spatial inhomogeneity is provided by
an arbitrary time dependent spatial density ρt.
Model 3. A crude approximation to localize the spatial variable in (5) would be to neglect the spatial
derivatives on the right-hand side, and to use the product ansatz for the interaction term of the form
K(x, u, y, ν) = δx(y)Ψ(u)χ(ν), which may be justified in the following sense. Suppose we rescale the
spatial variable as x̃ ∼ εx and the density as f̃t ∼ ft(·/ε), i.e., we assume that the spatial domain Ω is large
in comparison to the range of interaction given by Φ. Then, we obtain the scaled equation (dropping the
tildes)

∂tg
x
t − ∂u

(
H′gxt −Fε[ft]gxt

)
= ε2σ

(
∆xg

x
t +∇x ln ρ2

t · ∇xgxt
)
,

where
Fε[ft](x, u) =

∫
S

ε−d Φ(y/ε)ψ(u)χ(ν)ft(x− y, ν) dydν.



A MULTISCALE APPROACH FOR SPATIALLY INHOMOGENEOUS DISEASE DYNAMICS 69

Now, if Φ has a form of a mollifier, then ε−d Φ(·/ε) converges towards the Dirac δ0 in distribution. By
assuming ft to be sufficiently smooth, we may formally pass to the limit ε→ 0 to obtain

∂tg
x
t − ∂u

(
H′gxt − ρtM[gxt ]gxt

)
= 0, (6)

with the nonlocal (in the activity variable u) operator

M[g](u) = ψ(u)

∫
J

χ(ν)g(ν) dν. (7)

This localization procedure in the spatial variable provides a pointwise description of the activity, which,
from the numerical point of view, is advantageous over the complete mean-field equation, since solving for
gxt with respect to the spatial variable x ∈ Ω may be carried out in a pointwise manner, independent of the
activity variable u ∈ J .
Model 4. Assuming further that ρt ≡ ρstat = 1/|Ω|, which is the case in spatially homogeneous epidemiology
models, a spatially independent model is recovered in the form

∂tgt − ∂u
(
H′gt − ρstatM[gt]gt

)
= 0, (8)

which describes the probability distribution only in the activity variable u ∈ J . One can further extract other
relevant information, such as the probability of finding agents with a certain activity set A ∈ B(J), simply
given by

∫
A
gt du ∈ [0, 1]. For example, by choosing A = S, we recover the probability of finding particles

that are susceptible at time t ≥ 0.
The last two equations (6), (8) are the simplest of the macroscopic equations. Nevertheless, they sufficiently

exhibit important characteristics of a basic epidemiological model modulo the spatial resolution. For this
reason, we will study these equations in more detail in the next section.

4. THE NONLOCAL SPATIALLY HOMOGENEOUS MACROSCOPIC EQUATION

In this section, we provide an analytical study of the macroscopic equation

∂tg
x
t − ∂u

(
H′gxt − ρ̄(x)M[gxt ]gxt

)
= 0, limt↘0 g

x
t = gx0 , x ∈ Ω,

where ρ̄ is a given stationary smooth spatial distribution, and M is as given in (7). Since this equation may
be solved pointwise in x ∈ Ω, we consider the simpler variant

∂tgt − ∂u
(
H′gt − ρ̄M[gt]gt

)
= 0, limt↘0 gt = g0, (9)

where ρ̄ is simply a constant, ρ̄ > 0, and g0 is an initial distribution of activity.

4.1. Existence and uniqueness
The well-posedness of a nonlocal continuity equation such as (9) may be found, for example, in [10].

Nevertheless, for the convenience of the reader, we provide the principal ideas behind the solvability of the
equation.

As in the standard method of characteristics for first order partial differential equations, we may derive
the characteristic equation corresponding to the continuity equation (9), which reads

d

dt
Ut(u) = −H′(Ut(u)) + ρ̄M[gt](Ut(u)), U0(u) = u ∈ J. (10)

One recognizes that this equation is again of the form of a nonlinear process since the flow Ut depends on
its law gt. In fact, if Ut satisfies the characteristic equation (10), then its law gt may be represented by the
push-forward of the flow Ut, i.e., gt = Ut#g0, or equivalently∫

J

ϕ(u)dgt =

∫
J

(ϕ ◦ Ut)(v) dg0 for all ϕ ∈ Cb(J).
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Therefore, we define the notion of a Lagrangian solution of (9) with initial data g0 ∈ P1(J) as a probability
measure g ∈ C([0, T ],P1(J)) satisfying the push-forward formula gt = Ut#g0 with the flow U ∈ C([0, T ]×
J, J) satisfying (10). It is known that Lagrangian solutions and weak measure solutions for (9) coincide
(cf. [10]). The main result of this section is the following theorem.

Theorem 2. Let T > 0 be arbitrary, g0 ∈ P1(J), and H be feasible and ψ, χ ∈ Lipb(S). Then, there exists
a unique Lagrangian solution g ∈ C([0, T ],P1(J)) to the equation (9).

Its proof relies on the use of the well-known Banach fixed point theorem [37] for complete metric spaces.
For this reason, we consider the space C([0, T ],P1(J)), endowed with the distance

d(µ, ν) = supt∈[0,T ]W1(µt, νt), µ, ν ∈ C([0, T ],P1(J)),

where W1 denotes the 1-Wasserstein distance, given by

W1(µ, ν) = infπ∈Π(µ,ν)

∫∫
J×J
|u− v| dπ(u, v), µ, ν ∈ P1(J).

Here Π(µ, ν) denotes the set of all measures π with marginals π(·, J) = µ and π(J, ·) = ν. It is known that
the 1-Wasserstein distance metrizes the narrow convergence in P1(J), i.e., the convergence tested against
continuous and bounded functions, which makes (P1(J),W1) a separable complete metric space, since J is
complete [36]. Consequently, the function space C([0, T ],P1(J)) endowed with the distance d above is also
a separable complete metric space.

Now consider, for any given ĝ ∈ C([0, T ],P1(J)), the auxiliary problem

d

dt
Ut(u) = −H′(Ut(u)) + ρ̄M[ĝt](Ut(u)), U0(u) = u ∈ J. (11)

It is easy to see that the right-hand side of the equation is continuous in the temporal variable, and globally
Lipschitz-continuous in the activity variable for any feasible functions H, ψ and χ. Therefore, the Picard–
Lindelöf theorem, or similarly, the Cauchy–Lipschitz theorem, provides a unique global solution U·(u) ∈
C([0, T ], J) for any u ∈ J , and thereby a flow U ∈ C([0, T ] × J, J). We then construct a new probability
measure g ∈ C([0, T ],P1(J)) by means of push-forward, i.e., gt = Ut#g0, where g0 ≡ ĝ0 ∈ P1(J).

Consequently, this induces a mapping T : C([0, T ],P1(J)) → C([0, T ],P1(J)), ĝ 7→ g, which we show
to admit a fixed point satisfying the nonlocal continuity equation (9). Before proceeding with the proof of
Theorem 2, we provide a stability estimate that will assist in showing the required contracting property of
the mapping T .

Lemma 1. Let ĝ, ĥ ∈ C([0, T ],P1(J)) be given and g, h be Lagrangian solutions to

∂tgt − ∂u
(
H′gt − ρ̄M[ĝt]gt

)
= 0, ∂tht − ∂u

(
H′ht − ρ̄M[ĥt]ht

)
= 0,

with initial conditions g0 = ĝ0 and h0 = ĥ0 in P1(J), respectively. Then the estimate

W1(gt, ht) ≤
(
W1(g0, h0) + c2

∫ t

0

W1(ĝs, ĥs) ds

)
ec1t for all t ≥ 0,

holds true with positive constants c1, c2, depending only on ρ̄, H, ψ and χ.

Proof: We first note that gt = Ut#g0 and ht = Vt#h0, where U, V ∈ C([0, T ]× J, J) satisfy

Ut(u) = u−
∫ t

0

H′(Us(u))− ρ̄M[ĝs](Us(u)) ds,

Vt(u) = v −
∫ t

0

H′(Vs(v))− ρ̄M[ĥs](Vs(v)) ds,
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respectively. Now let π0 ∈ Π(g0, h0) be an optimal coupling of g0 and h0, and πt = (Ut, Vt)#π0. Then
πt ∈ Π(Ut#g0, Vt#h0) = Π(gt, ht), which is not necessarily optimal. For πt, we have

W1(gt, ht) ≤
∫∫

J×J
|u− v| dπt(u, v) =

∫∫
J×J
|Ut(u)− Vt(v)| dπ0(û, v̂)

≤
∫∫

J×J
|u− v| dπ0(u, v) +

∫ t

0

∫∫
J×J
|H′(Us(u))−H′(Vs(v))| dπ0(u, v) ds

+ ρ̄

∫ t

0

∫∫
J×J
|M[ĝs](Us(u))−M[ĥs](Vs(v))| dπ0(u, v) ds

= W1(h0, g0) + I1 + I2.

To estimate I1, we simply use the Lipschitz-continuity of H′ to obtain

I1 ≤ LH′
∫ t

0

∫∫
J×J
|Us(u)− Vs(v)| dπ0(u, v) ds = LH′

∫ t

0

∫∫
J×J
|u− v| dπs(u, v) ds.

Similarly, we use the Lipschitz-continuity of ψ to obtain

I2 = ρ̄

∫ t

0

∫∫
J×J

∣∣∣∣ψ(Us(u))

(∫
J

χ(û) dĝs(û)

)
− ψ(Vs(v))

(∫
J

χ(v̂) dĥs(v̂)

)∣∣∣∣ dπ0(u, v) ds

≤ ρ̄Lψ‖χ‖∞
∫ t

0

∫∫
J×J
|Us(u)− Vs(v)| dπ0(u, v) ds

+ ρ̄‖ψ‖∞
∫ t

0

∣∣∣∣∫
J

χ(û) dĝs(û)−
∫
J

χ(v̂) dĥs(v̂)

∣∣∣∣ ds,
where we used the fact that ψ and χ are bounded, and ĝt and π are a probability measures over J and J×J ,
respectively. Concerning the last term, we estimate further to obtain∣∣∣∣∫

J

χ(û) dĝs(û)−
∫
J

χ(v̂) dĥs(v̂)

∣∣∣∣ ≤ ∫∫
J×J
|χ(û)− χ(v̂)| d(ĝs ⊗ ĥs)(û, v̂)

≤ Lχ
∫∫

J×J
|û− v̂|d(ĝs ⊗ ĥs)(û, v̂).

Putting all the terms together yields

W1(gt, ht) ≤W1(h0, g0) +
(
LH′ + ρ̄Lψ‖χ‖∞

) ∫ t

0

∫∫
J×J
|u− v| dπs(u, v) ds

+ ρ̄Lχ‖ψ‖∞
∫ t

0

∫∫
J×J
|u− v|d(ĝs ⊗ ĥs)(u, v) ds.

Optimizing the right-hand side over all possible couplings in Π(gs, hs) and Π(ĝs, ĝs) gives

W1(gt, ht) ≤W1(g0, h0) + c1

∫ t

0

W1(gs, hs) ds+ c2

∫ t

0

W1(ĝs, ĥs) ds,

with c1 = LH′ + ρ̄Lψ‖χ‖∞ and c2 = ρ̄Lχ‖ψ‖∞. From Gronwall’s inequality, we finally obtain

W1(gt, ht) ≤
(
W1(g0, h0) + c2

∫ t

0

W1(ĝs, ĥs) ds

)
ec1t,

which completes the proof.
We now have all the ingredients necessary to complete the proof of Theorem 2.

Proof of Theorem 2: We consider the mapping T : C([0, T ],P1(J)) → C([0, T ],P1(J)) as discussed
above. However, we consider a weighted metric of the form

dλ(g, h) = supt∈[0,T ] e
−λtW1(gt, ht),
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which is clearly equivalent to the usual metric d, for any λ > 0. Therefore, the space C([0, T ],P1(J))
endowed with the metric dλ is again a separable complete metric space.

Now let g = T (ĝ) and h = T (ĥ), with g0 = h0. Then Lemma 1 provides the estimate

W1(gt, ht) = c2e
c1t

∫ t

0

W1(ĝs, ĥs) ds ≤ (c2e
c1t/λ)(eλt − 1)dλ(ĝ, ĥ).

Multiplying both sides by exp(−λt) and taking the supremum over time t ∈ [0, T ] yields

dλ(T (ĝ), T (ĥ)) ≤ (c2e
c1T /λ)dλ(ĝ, ĥ).

Therefore, choosing λ > c2 exp(c1T ) makes T a contraction mapping with respect to the metric dλ. Finally,
we invoke the Banach fixed point theorem to obtain a unique fixed point in the space C([0, T ],P1(J)), which
satisfies the nonlocal macroscopic equation (9).

In fact, one can further show that if the initial measure g0 ∈ Pent
1 (J), where Pent

1 (J) denotes the space of
probability measures with finite first moment that are, additionally, absolutely continuous with respect to the
Lebesgue measure and have finite entropy

0 ≤ Ent(g) =

∫
J

(
g log(g)− g + 1

)
du <∞, g ∈ Pent

1 (J),

then gt ∈ Pent
1 (J) for all times t ≥ 0. Indeed, assuming H, ψ and χ to be feasible, then

d

dt
Ent(gt) = −

∫
J

∂ugt

(
H′(u)− ρ̄M[gt]

)
du =

∫
J

gt

(
H′′(u)− ρ̄∂uM[gt]

)
du

≤
(
1 + ρ̄‖χ‖∞

)
Ent(gt) +

∫
J

(
eH
′′(u) − 1

)
du+ ρ̄‖χ‖∞

∫
J

(
eψ
′(u) − 1

)
du

= c1Ent(gt) + c2,

where we integrated by parts in the first two equalities, and applied Young’s inequality of the form ab ≤
ea + b ln(b)− b for a, b ∈ R, b ≥ 0 in the inequality. Equivalently, we have in integral form

Ent(gt) ≤ (Ent(g0) + c2t) + c1

∫ t

0

Ent(gs) ds.

A simple application of the Gronwall inequality leads to the estimate

Ent(gt) ≤ (Ent(g0) + c2t)e
c1t,

which shows that gt ∈ Pent
1 (J) for all times t ≥ 0 as asserted. Summarizing, we have

Proposition 3. Let H be feasible, ψ, χ ∈ Lipb(S) and g0 ∈ Pent
1 (J). Then gt ∈ Pent

1 (J) for all times t ≥ 0.

4.2. Stationary measures and transitions
Here, we would like to explore the possible stationary states of the nonlocal macroscopic equation (9) and

provide an expression similar to the classical SIR model in order to determine the occurrence of an epidemic,
or otherwise.

As noted in Remark 2, any agent that begins with the state u = −1 remains there for all times. Therefore,
we expect δ−1 to be a natural stationary measure for (9). In fact, it is not difficult to see that, if H is feasible
and supp(ψ) ∩ supp(χ) = ∅, then δu∗ and δ1 are also stationary measures. Indeed, since every stationary
measure should satisfy∫

J

(H′(u)− ρ̄M[g∞]) ∂uϕ(u) dg∞ = 0, for all ϕ ∈ Cb(J),

we simply substitute g∞ = δσ , σ ∈ {−1, u∗, 1} into the equation and use the fact that H′(σ) = 0, supp(ψ)∩
supp(χ) = ∅, to verify its stationarity.
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Definition 2 (Asymptotic stable). A stationary state g∞ ∈ P1(J) is said to be asymptotically stable if there
exists ε > 0 such that the solution gη of (9) with initial condition η ∈ P(J) with W∞(g∞, η) < ε converges
narrowly to g∞ as t→∞, where W∞ is the infinite Wasserstein distance defined by

W∞(µ, ν) = infπ∈Π(µ,ν)

{
π-esssup(u,v)∈J×J |u− v|

}
, µ, ν ∈ P(J).

The following result classifies all asymptotically stable states whenever H attains strict local minima at
u = −1 and u = 1.

Theorem 3. Let H be feasible, where H has strict local minima at u ∈ {−1, 1}, a global maxima at
u∗ ∈ (−1, 1), and ψ, χ ∈ Lipb(S) with supp(ψ) ∩ supp(χ) = ∅. Then only measure of the form

g∞ = (1− α)δ−1 + αδ1, α ∈ [0, 1],

are asymptotically stable states of the nonlocal macroscopic equation (9).

Proof: Let g∞ = (1− α)δ−1 + αδ1 for some α ∈ [0, 1]. We show that g∞ is asymptotically stable. In
order to determine ε > 0 appropriately, we first establish non-empty neighborhoods B−1 ⊂ S and B1 ⊂ R
around u = −1 and u = 1, respectively, where H is strictly convex. Such neighborhoods exists since H has
strict local minima at u ∈ {−1, 1}. Moreover, these sets are disjoint since S and R are disjoint. We then
choose

0 < ε < min{diam(B−1), diam(B1)},

where the diameter of a set A is given by diam(A) = sup{|x− y|, x, y ∈ A}.
Suppose for the moment that η ∈ P(J) is atomic, i.e., η =

∑
u∈Iη cuδu with

∑
u∈Iη cu = 1 for some

discrete set Iη ⊂ J . Now consider two sets N−1 and N1. We allocate each u ∈ Iη to one of these sets as
follows,

u ∈ Nj ⇔ |u− j| = min{|u+ 1|, |u− 1|}, j ∈ {−1, 1}.

In this case, it is not difficult to see that any π ∈ Π(η, g∞) satisfies

π-esssup(u,v)∈J×J |u− v| = π-esssup(u,v)∈Iη×{−1,1}|u− v| = maxj∈{−1,1} supu∈Nj |u− j|.

Therefore, the requirement W∞(η, g∞) < ε dictates that

maxj∈{−1,1} supu∈Nj |u− j| <∞.

i.e., Nj ⊂ Bj , j ∈ {−1, 1}, and hence supp(η) ⊂ B−1 ∪B1.
Now consider the Lagrangian solution gη corresponding to (9) with initial condition η, or equivalently,

d

dt
Uηt (u) = −H′(Uηt (u)) + ρ̄M[gηt ](Uηt (u))

with u ∈ supp(η). Since S and R are disjoint sets, we may consider first u ∈ supp(η) ∩ S ⊂ B−1. In this
case, we have that

d

dt
Uηt (u)

∣∣∣
t=0

= −H′(u) + ρ̄M[η](u) = −H′(u) < 0,

which says that Uηt (u) remains in B−1 for sufficiently small t > 0, due to continuity. Analogously, we can
show that Uηt (u) ∈ B1 for any u ∈ supp(η)∩R ⊂ B1 when t > 0 is sufficiently small. Therefore, the support
of gηt is contained within B−1 ∪ B1 for t > 0 sufficiently small. By iterating this argument along the flow
Uηt , we have that supp(gηt ) ⊂ B−1 ∪B1 for all times t ≥ 0. Equivalently, we have that Uηt (u) ∈ B1 ∪B−1

for all t ≥ 0, for any u ∈ supp(η).
The previous discussion implies that M[gηt ](v) = 0 for any v ∈ J , and hence

d

dt
Uηt (u) = −H′(Uηt (u)), u ∈ supp(η).

Taking the time derivative of H along the flow Ut(u) yields

d

dt
H(Uηt (u)) = H′(Uηt (u))

d

dt
Uηt (u) = −|H′(Uηt (u))|2 < 0 for all t ≥ 0,
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which says that the flow Uηt (u) minimizes H with time. Since H is strictly convex in B−1 ∪ B1, we have
that H′(v) 6= 0 for any v ∈ B−1 ∪B1, v /∈ {−1, 1}. Thus,

Uηt (u) −→
{
−1, for u ∈ supp(η) ∩ S

1, for u ∈ supp(η) ∩R as t→∞.

Since supp(η)∩S and supp(η)∩R are disjoint, the mass of gηt within B−1 is (1−α), and B1 is α, due to
conservation of mass. Consequently,∫

J

φ(u) dgηt =

∫
J

φ(u) dUηt #η =

∫
J

φ ◦ Uηt (u) dη

=

∫
B−1

φ ◦ Uηt (u) dη +

∫
B1

φ ◦ Uηt (u) dη,

for every φ ∈ Cb(J). Passing to the limit t→∞, we obtain

lim
t→∞

∫
J

φ(u) dgηt =

∫
B−1

φ(−1) dη +

∫
B1

φ(1) dη = (1− α)φ(−1) + αφ(1) =

∫
J

φdg∞,

i.e., gηt converges narrowly to g∞ as t→∞.
Now let g∞ be an asymptotically stable state. Then g∞ takes the form

g∞ = c−1δ−1 + cu∗δu∗ + c1δ1 with
∑

i∈{−1,u∗,1}
ci = 1,

since these form all possible stationary states. We show that cu∗ = 0. To do so, we suppose otherwise, i.e.,
cu∗ > 0, and show that

∀ε > 0, ∃η with W∞(η, g∞) < ε : gηt 6→ g∞ narrowly as t→∞,

i.e., g∞ is not asymptotically stable. More precisely, we show that

∃q > 0,∃φ ∈ Cb(J) :

∣∣∣∣∫
J

φdgηt −
∫
J

φdg∞

∣∣∣∣ ≥ q for all t ≥ 0.

We begin by taking an arbitrary ε > 0. Choosing η = c−1δ−1 + cu∗δv + c1δ1, we find that

W∞(η, g∞) ≤ |v − u∗|.

Since u∗ is a global maximum, there is a neighborhood B∗ around u∗ such that H|B∗ is concave. Therefore,
taking v ∈ B∗ ∩ I such that 0 < q := |v − u∗| < ε provides a candidate. Now consider the Lagrangian
solution gηt = Uηt #η where

d

dt
Uηt (u) = −H′(Uηt (u)) + ρ̄M[gηt ](Uηt (u)).

Following a similar argument as above, we determine that

d

dt
Uηt (v)

∣∣∣
t=0

= −H′(v) + ρ̄M[η](v) = −H′(v) ≥ 0,

thus implying the existence of some t∗ > 0 such that Uηt (v) ≥ v for t ∈ [0, t∗). Iterating this procedure, we
find that Uηt (v) ≥ v for all t ≥ 0. Finally, choosing φ(u) = u, we obtain∣∣∣∣∫

J

φdgηt −
∫
J

φdg∞

∣∣∣∣ = cu∗
∣∣Uηt (v)− u∗

∣∣ ≥ cu∗ |v − u∗| = q > 0,

for all t ≥ 0, which shows that gηt 6→ g∞ narrowly as t→∞, thus concluding the proof.
Remark 4. One easily verifies that stable stationary states for the mean-field equation (3) may be identified
with the measure f∞(dx, du) = ρstat(dx)⊗ g∞(du).

We now proceed to derive an equivalent expression for the basic reproduction number R0 present in
the classical SIR model, which determines if a disease leads to an epidemic or otherwise. For the classical
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SIR model, the basic reproduction number R0 is given by the formula R0 = βS0/γ, where β > 0 is the
transmission rate, γ the recovery rate, and S0 the initial susceptible population.

To provide a correspondence between the nonlocal macroscopic model (9) and the SIR model, we make
simplifying assumptions on H, ψ and χ. More precisely, we assume that

ψ = 1εS , χ = cχ1εI , H′ = λ1εS − γ1εI , (12)

where cχ, λ, γ are positive constants, and 1εA are mollified versions of the indicator function over a Borel set
A ⊂ J with supp(1εA) ⊂ A. We further assume that ū = 1, i.e., R = {1}.
Definition 3. We define the effective transition from the class of susceptible agents S to the class of infectious
agents I as

Et =

∫
S
u dgt −

∫
I
u dgt,

for all times t ≥ 0. Roughly speaking, Et gives an indication of the probability of agents that lie within a
infinitesimal neighborhood of u∗, i.e., around the point of transition.

Similar to the classical case, the disease is said to be epidemic if

d

dt
Et
∣∣∣
t=0

> 0,

which suggests the presence of agents transitioning from class S to class I.

By taking the temporal derivative of Et, we obtain

d

dt
Et = −

∫
S

(
H′ − ρ̄M[gt]

)
dgt + u

(
H′gt − ρ̄M[gt]gt

)∣∣∣u∗
−1

+

∫
I

(
H′ − ρ̄M[gt]

)
dgt − u

(
H′gt − ρ̄M[gt]gt

)∣∣∣1
u∗

= −λSt + ρ̄ cχStIt − γIt,

where we denote St =
∫

1εS dgt and It =
∫

1εI dgt. Consequently, we have

d

dt
Et
∣∣∣
t=0

= γI0(R0 − 1),

with the basic reproduction number R0 = ρ̄ cχS0/γ − λS0/(γI0), which indicates that an epidemic only
occurs when R0 > 1. Notice that if λ = 0, we recover the classical basic reproduction number.

Summarizing the discussion above yields the following statement.

Theorem 4. Let H, ψ and χ be feasible and satisfy additionally (12). Then

d

dt
Et
∣∣∣
t=0

= γI0(R0 − 1),

with the basic reproduction number R0 = ρ̄ cχS0/γ − λS0/(γI0).
In particular, an epidemic occurs when R0 > 1.

5. NUMERICAL INVESTIGATIONS

We recall the two epidemiological models that will be under investigation within this section, namely the
microscopic model

dXi
t =
√

2σ dW i
t , dU it = −H′(U it ) dt+ FN (Xi

t , U
i
t ,Xt,Ut) dt,

and the macroscopic model

∂tgt − ∂u
(
H′gt − ρ̄M[gt]gt

)
= 0.
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In all our numerical simulations, we consider the spatial dynamics to be within the bounded domain Ω =
[0, 1]2, with reflecting boundary conditions for the Wiener processes W i

t . Furthermore, we only consider
interactions of product form, i.e.,

K(x, u, y, ν) = Φ(x− y)ψ(u)χ(ν), (x, u), (y, ν) ∈ S.

The standard Euler–Maruyama scheme was employed to solve the microscopic equations numerically [24].
Appropriate step sizes were chosen to ensure stability of the explicit scheme. In the absence of noise, i.e.,
σ = 0, we simply use the standard explicit Euler scheme. Since stochastic processes admit different solution
paths for different realizations, we consider multiple realizations (often M = 100 realizations) to obtain
statistical information such as the mean and variance.

To compute the mean mϕ
t of a given observable bounded ϕ, we use the well-known estimator

mϕ
t =

1

M

∑M

j=1
ϕ(Z

(j)
t ),

which ensures convergence towards the mean via the law of large numbers. Here, the superscript index j
represents the jth realization of the microscopic simulation. Typical observables we often use are the number
of agents within the health classes S, I and R:

St =
∑N

i=1
1S(U it ), It =

∑N

i=1
1I(U it ), Rt =

∑N

i=1
1R(U it ).

As an estimator for the variance, we choose the unbiased sample variance

varϕt =
1

M − 1

∑M

j=1

(
ϕ(Z

(j)
t )−mϕ

t

)2

, sϕt =
√

varϕt .

In all the plots below, we use the color blue to identify St, red for It and green for Rt. The standard deviation
for each observable sϕt will be shown as shaded regions around its sample mean mϕ

t .
As for the numerical realization of the macroscopic equation, we employ a Riemann solver, or more

precisely the Harten–Lax–Leer (HLL) Riemann solver [35]. In this method, an approximation for the intercell
numerical flux is obtained directly, without the need to solve the local Riemann problems exactly. Therefore
this is only an approximate Godunov method. The grid and time step sizes are chosen appropriately to satisfy
the CFL condition demanded by the method.

All numerical simulations were implemented in python 2.7.6 with additional scientific computing packages,
such as numpy and scipy.

5.1. Comparison with the classical SIR model
Here, we address the question of whether the microscopic model (1) can recover results obtained from

the classical SIR model (cf. Section 1), at least in the qualitative sense. Obviously, this would require us
to construct an appropriate potential landscape H and interaction force K. However, while the microscopic
model has multiple functions as parameters, the standard SIR model only has two parameters, namely β and
γ. For this reason, it is crucial to correctly understand and interpret these parameters accordingly. We further
restrict the microscopic model to agents having no mobility (σ = 0) that are located on an equidistant grid
in the domain Ω. This reduces the model to a deterministic ordinary differential equation, apart from the
initial distribution.

As mentioned before, the parameter β in the classical SIR model is known as the transmission rate, which
depends on the probability of transmission p and the average number of contacts per agent C0 = C0(N),
irregardless of an agent’s activity. More specifically, β = pC0. Since the agents are stationary, it is possible
to explicitly determine the number of contacts per agent.

Using the indicator function 1BR(x), we determine C0 the number of agents within the vicinity of x ∈ Ω
that are maximal radius R away from x ∈ Ω (cf. Fig. 4). On the other hand, if we assume a uniform
distribution for the spatial density, i.e., ρstat ≡ 1/|Ω|, then C0 may be considered as the product of the
number density Nρstat and the area of interaction indicated by 1BR(x), i.e.,

C0 = C0(N) = N

∫
Ω

1BR(x)(y) dρstat(y) =
N

|Ω|
|BR(x)| = NπR2/|Ω|,



A MULTISCALE APPROACH FOR SPATIALLY INHOMOGENEOUS DISEASE DYNAMICS 77

R2

R1

Fig. 4: Agents on an equidistant grid in Ω with possible interaction regions.

which depends explicitly on the number of agents. Considering the equidistant grid in Ω = [0, 1]2 for any
N � 1, we rescale the radius as R = R0/

√
N − 1, where R0 > 0 is a fixed constant, in order to keep the

number of individual contacts bounded as N →∞. More precisely, we have

C0(N) =
N

N − 1

π

|Ω|
R2

0 −→ c0 :=
π

|Ω|
R2

0, as N →∞. (13)

There are also other ways of scaling the contact rate (see, for example [21]). However, this consideration is,
in fact, the weak coupling scaling mentioned in Remark 1, which allows for the mean-field limit. Indeed, if
we set ρN = 1

N

∑
j δXj as the empirical measure of locations, then∑
j

1BR(x)(X
j) = NρN (BR(x)) ≈ ρN (BR0(x)) =

1

N

∑
j

1BR0
(x)(X

j),

for a large number of agents N � 1. Hence, it makes sense to use the activation function

Φ(x, y) = 1BR0
(x)(y),

where R0 is chosen appropriately, depending on β.

S I

u∗−1 ū

F(z)

Fig. 5: Interaction force acting on the class S.

We now work towards identifying the transmission probability p by considering the mean-field equation
(2) with the product distribution ft = ρstat ⊗ gt and ψ = 1εS , χ = cχ1εI , as adopted in (12). The expected
effective intensity of interaction between the class of susceptible and infectious agents (cf. Fig. 5) may then
be computed as

E
[
F [ft](X̄t, Ūt)

]
= cχ

∫∫
S×S

1BR0
(x)(y)1εS(u)1εI(ν)dft(y, ν)dft(x, u) = cχc0StIt,

where St =
∫

1εS dgt and It =
∫

1εI dgt provides the probabilities in classes S and I, respectively. A direct
comparison with the classical SIR model reveals the correspondence β = cχc0. However, since c0 denotes the
average number of contacts per agent, we have the relation p = cχ. Therefore, cχ may also be considered as
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the probability of transmission of a specific disease. Let us summarize the discussion so far. Given β = pC0

from the classical SIR model, we choose R0 satisfying (13), thereby yielding the interaction term

FN (Xi, U i,X,U) =
p

N

∑
j 6=i

1BR0
(Xi)(X

j)1εS(U i)1εI(U j).

As for the potential landscape H, we first note that the classical SIR model does not describe the resistance
of an agent towards an infection. Therefore, H′|S ≡ 0. On the other hand, if an agent has been infected,
i.e., U i ∈ I ∪ R the interaction term vanishes. Hence, H|I∪R should describe the process of recovery. We
further assume that H|I∪R is linear, with a maximum at u = u∗ and minimum at u = 1 (cf. Fig. 2(b)). Then
the evolution of an infected agent is given by

d

dt
U it = −H′(U it ) = λ, U i0 = u∗,

with λ > 0, where −λ is the slope of H|I∪R. Solving this equation gives U it = u∗ + λt. Recalling the
definition of the recovery rate γ = 1/τ , where τ > 0 denotes the mean waiting time until an infected
individual recovers, we deduce U iτ = 1. Hence, we obtain the relation

λ = (1− u∗)/τ = γ(1− u∗).

Putting all conditions together, we end up with a piecewise linear potential landscape satisfying

H′ = γ(1− u∗)1I∪R. (14)

The piecewise linear potential landscape Hlin depicted in Fig. 2, for instance, verifies the above requirements
and provides a prototype for this comparison throughout this section.
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Fig. 6: Compartmental evolution for the microscopic model on an equidistant grid with N = 100 agents and
M = 100 realizations in comparison with classical SIR model. The dashed line represents the classical SIR
model.

Fig. 6 shows an acceptable amount of similarity between the two models since the classical SIR model
provides solutions that lie within the shaded region of the microscopic model. For the simulation in Fig. 6,
we distribute the agents’ locations on an equidistant grid, with 90% of the agents having activity uniformly
distributed in S and 10% of the agents having activity uniformly distributed in I. Other parameters used are
C0 = 8, p = 0.5, u∗ = 0, ū = 0.3 and γ = 1.5.
Remark 5. If we determine C0 via a standard Gaussian distribution with variance σ2 > 0, instead of using
1BR(x), we obtain the formula

C0(N) = N

∫
Ω

exp

(
−|x− y|

2

2σ2

)
dρstat(y) = 2Nπσ2/|Ω|,
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which depends again on the number of agents. To ensure that C0 remains constant for any N ∈ N, we rescale
the variance as σ2 = σ2

0/N , which yields C0 = 2πσ2
0/|Ω|. As opposed to the indicator function, the Gaussian

distribution considers every agent as a neighbor. Neighbors that are closer are given more weight than those
that are further away. This might be more appropriate whenever considering a domain Ω that represents, for
example, an enclosed medium sized room.
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Fig. 7: Compartmental evolution for the microscopic model on an equidistant grid with N = 225 agents,
M = 100 realizations and a Gaussian-type activation function in comparison with classical SIR model.

Fig.7 depicts the comparison between the microscopic model with a Gaussian-type activation function Φ,
as described above. One observes a slight disparity between the two models, especially in the non-epidemic
case, where the number of recovered agents are fewer than the susceptible ones, in contrast to the classical
SIR model. Nevertheless, the qualitative behavior of the solutions do coincide to some extend.

5.2. Links between the microscopic and macroscopic models
Another interesting context for the agent-based model is its connection to its macroscopic counterpart.

We now investigate this relationship via two ways, namely the direct link, and the mobility link. Unless
stated otherwise, we consider a linear potential landscape H satisfying (14), and ψ = 1εS , χ = cχ1εI for the
simulations within this subsection. Furthermore, the agents’ locations are initially distributed on an equidistant
grid, with 80% of the agents having activity uniformly distributed in S and 20% of the agents having activity
uniformly distributed in I.

1) Direct link: Looking back at the derivation of the macroscopic model, we first derived the mean-field
equation by passing to the limit N → ∞, and thereafter the spatial activation function Φ was removed in
the process. Therefore, we will need to look for an appropriate Φ for the microscopic model for comparison.
In fact, the spatial scaling x̃ ∼ εx conducted in Model 3 contracts the bounded domain Ω into a spatially
concentrated point as ε→ 0. Hence, the macroscopic model may also be seen as a complete mixture model,
where the support of Φ is the entire domain, i.e., supp(Φ) = Ω. Consequently, choosing Φ ≡ 1 results in an
agent based model, which is independent of spatial resolution. Since the spatial configuration is obsolete in
this case, we may consider any spatial location for the agents.

As seen in Fig. 8, the solution provided by the microscopic model evidently converges to the solution of
the macroscopic model as N → ∞. This verifies on one hand the mean-field limit discussed in Section 3,
as well as the choice Φ ≡ 1. To supplement the validation, we investigate the behavior of the probability
distribution corresponding to the microscopic model with N = 1600 agents and the macroscopic model,
respectively. From this point of view, we recover the complete information concerning the temporal evolution
of activity, which provides comprehensive behavior of transitions between the three health classes S, I and
R.
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(c) N = 1600 agents
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(d) Macroscopic model

Fig. 8: Compartmental evolution for the microscopic model on an equidistant grid with increasing number
of agents in comparison with the evolution generated by the macroscopic model. Other parameters used are
C0 = 8, cχ = 0.5, u∗ = 0, ū = 0.3 and γ = 1.5.
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Fig. 9: Marginal distribution in the activity space of the microscopic model with N = 1600 agents with
parameters as used in Fig. 8.
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Fig. 10: Distribution gt corresponding to the macroscopic model (9) with parameters as used in Fig. 8.
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(d) σ = 1

Fig. 11: Convergence of the microscopic model with N = 225 for increasing mobility σ towards the complete
mixture model. The dashed line represents the stationary microscopic model, while the dotted line depicts
the complete mixture model. Other parameters used are C0 = 8, cχ = 0.5, u∗ = 0, ū = 0.3 and γ = 1.5.
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A quick comparison of the figures shown in Fig. 9 and Fig. 10 clearly shows evidence of conformity between
the two models, even for the complete distribution sense. Fig. 10 additionally depicts the convergence towards
the stationary state g∞ = δ1 derived in Section 4.2.

2) Mobility link: In this case, we consider spatial movements of the agents in the form of the standard
Wiener process within the bounded domain Ω = [0, 1]2, i.e., we consider the complete microscopic equation
(1) with reflective boundary conditions for the Wiener process. The simulations in this part concentrates on
the connection between the stationary microscopic model introduced in Section 5.1, which coincides with the
classical SIR model, and the complete mixture model described in the previous case. Practically speaking,
the presence of mobility ’interpolates’ between theses two scenarios, with σ ∈ [0, 1], i.e., the intensity of
mobility being the interpolation parameter, as may be seen in Fig. 11.

The results shown in Fig. 11 suggest that increasing mobility increases the mixture of susceptible and
infectious agents. This observation is to be expected since the increase in mobility speeds up the rate at
which the spatial distribution reaches uniformity, which expresses that the amount of time an agent remains
in a particular location is the same amount of time it remains everywhere else. This means that the Wiener
process with σ = 1 ensures that every susceptible agent has the same probability to meet an infectious agent
as with other susceptible ones, and vice versa. Hence, a microscopic system with a high mobility intensity
may just as well be modeled by the macroscopic model which demands less computational effort, since the
spatial activation function Φ in the microscopic model has to be recomputed at every time step.

5.3. Microscopic model: A spatially inhomogeneous setting
We finally consider a case the classical SIR model is unable to capture, namely the case where initial

distribution of susceptible and infectious agents are no longer uniformly distributed within Ω. To simplify
the presentation, we consider an inhomogeneous setting (in initial activity/health status) for the microscopic
model with locations distributed equidistantly in Ω.

In Fig. 12, one clearly observes that the distribution of location for infectious agents remains inhomogeneous
at time t > 0. Note that the activity of susceptible agents are evenly distributed in activity space. In this
particular example, the susceptible agents bordering the upper region of the infectious agents at time t = 0
have an activity close to being immune, i.e., u ≈ −1, and therefore remain susceptible for all times t ≥ 0.

Fig. 13 depicts the compartmental evolution of the microscopic simulation shown in Fig. 12. Plots of this
sort cannot be observed when using the classical SIR model, especially in the qualitative behavior of classes
I and R between t = 0 and t = 0.5.

5.4. Verification of Theorem 4
Here, we verify the validity of Theorem 4. Therefore, following the assumptions made on the potential

landscape and interaction term in Section 4.2, we set

ψ = 1εS , χ = cχ1εI , H′ = λ1εS − γ1εI ,

with S = (−1, 0) and I = (0, 1), for different choices of parameters cχ, λ, γ and initial conditions S0, I0, to
obtain the cases R0 = ρ̄cχS0/γ − λS0/(γI0) > 1 (epidemic) or R0 < 1 (non-epidemic). As in Section 5.2,
the agents’ locations are initially distributed on an equidistant grid, with 80% of the agents having activity
uniformly distributed in S and 20% of the agents having activity uniformly distributed in I. In all cases, we
set ρ̄ = 2, to allow for larger values of λ and γ, thereby speeding up the evolution, while keeping cχ ∈ (0, 1)
fixed. We also set λ = γ, which leaves only γ to be varied. In this case, the basic reproduction number
simplifies to R0 = ρ̄cχS0/γ − S0/I0.

Fig. 14 provides the verification of Theorem 4. In Fig. 14(a), one clearly observes both cases, namely
epidemic and non-epidemic, when the basic reproduction number R0 is either greater than 1 or less than
1. This figure also affirms the stationary states suggested in Section 4.2. Indeed, for R0 > 1, we see that
gt converges towards g∞ = δ1 as t → ∞, while for R0 < 1, the stationary state is g∞ = (1 − α)δ−1 +
αδ1 with α ≈ 0.3. Fig. 14(b), on the other hand, provides the evolution of the effective transition Et. As
expected the temporal derivative of Et at t = 0 has the correct sign as indicated by Theorem 4. Essentially,
Fig. 14(b) describes the complete behavior of the transition from the class S to class I within an infinitesimal
neighborhood of the point u∗ ∈ J .
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Fig. 12: Microscopic model with N = 100 agents on an equidistant grid and a clustered initial distribution
of activity. Other parameters used are C0 = 8, cχ = 0.5, u∗ = 0, ū = 0.3 and γ = 1.5.

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

t

P
o
p
u
la

t
io

n

Fig. 13: Compartmental evolution corresponding to Fig. 12.

6. SUMMARY AND OUTLOOK

In this paper, we successfully developed a model for mathematical epidemiology with spatial resolution,
which also allows for a more detailed description of an agent’s health status. This clearly paves a way for
a more general description of disease transmission, thereby rendering it possible not only to determine the
total number of individuals in a certain class of health state, but would also assist in locating the source of a
disease. Due to the diversity of the parameters involved in its derivation, the model is able to describe various
situations. However, this flexibility becomes also a drawback since the specification of these parameters is
not easily accessible and therefore deserves further investigation.
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Fig. 14: Evolution of the macroscopic model with cχ = 0.3. The solid lines depict the case R0 = 2 (epidemic)
with γ = 0.08, while the dashed lines represent the case R0 = 0.8 (non-epidemic) with γ = 0.1.

We further provided a recipe for deriving spatial macroscopic models for disease dynamics via passage
to the mesoscopic scale. For our specific macroscopic model, we were able to derive a quantity that reflects
upon the basic reproduction number R0, which determines the possibility of an outburst. We also showed
that stable stationary states exist for the macroscopic equation and that these stationary states are of the
form g∞ = (1 − α)δ−1 + αδ1, α ∈ [0, 1]. Unfortunately, the determination of α, depending on the initial
distribution g0 remains an open problem and would therefore require further investigation.

An obvious extension of the current microscopic model would be to incorporate spatial demographic
information, as well as spatial interactions among agents. In fact, this was already pointed out in Remark 3.
More specifically, one may consider the interacting system

dXi
t = −

[
∇xV (Xi

t) +
1

N

∑
j 6=i

U(Xi
t , X

j
t )
]
dt+

√
2σ dW i

t ,

where V : Rd → R describes the landscape of an area of a populated region, and U : Rd × Rd → R is an
interaction potential which may be both attracting and repulsive. The convex neighborhood of the local minima
of V provide areas that model higher concentration of population, which have a reduced communication
between the clusters but still allow for transitions between these clustered populations. This may represent,
for example, cities and meeting points. Such potentials may also be used to model special paths on which
agents may travel, such as the migration of animals.

Another possible extension is to include different types of agents. Such models may be used to describe
vector-based transmitted diseases such as malaria, dengue fever and the Zika virus. In this case, the importance
of spatial inhomogeneity is indispensable. The mean-field and macroscopic equations corresponding to such
systems are then coupled partial differential equations.

An interesting aspect for modification is the activity set J , which was fixed as J = [−1, 1] in this paper.
Using a different set J could lead to different dynamics for the activity variable. For instance, we may take
J = S1 = {x ∈ R2 | |x| = 1} as the unit circle in R2. On this activity set, one can allow for recovered agents
to become susceptible again after having been infected, thereby leading to generalization of the well-known
classical SIS model. The spatially homogeneous nonlocal macroscopic equation analogous to (9) will then
be posed on J = S1, or equivalently on [−1, 1] with a periodic boundary condition for gt on [−1, 1], i.e.,
gt(−1) = gt(1) for all times t ≥ 0.

All in all, the basic models introduced in this paper can pave a way to further generalizations that should
be numerically investigated and thoroughly analyzed on every scale.
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APPENDIX

Without loss of generality, we may suppose Zi0 = Z̄i0, since they are identically distributed. Then, taking
the difference of the solutions leads to

d(Xi
t − X̄i

t) = 0, d(U it − Ū it ) = −aiN dt+ biN dt,

where the last two terms are given by

aiN = H′(U it )−H′(Ū it ),

biN =
1

N

∑
j 6=i
K(Zit , Z

j
t )−

∫
S

K(Z̄it , z
′)ft(dz

′).

The term biN may be further decomposed to obtain biN = ciN + diN , where

ciN =
1

N

∑
j 6=i

[
K(Zit , Z

j
t )−K(Z̄it , Z̄

j
t )
]
,

diN =
1

N

∑
j 6=i
K(Z̄it , Z̄

j
t )−

∫
S

K(Z̄it , z
′)f(dz′).

Morever, the sums may be extended to sums over all of j since K is feasible, i.e., K(x, u, y, u) = 0 for any
x, y ∈ Ω, u ∈ J . We now investigate the terms separately.

We begin with the term aiN that is easily estimated due to the regularity of H,

−E[〈U it − Ū it , aiN 〉] ≤ cHE[|Zis − Z̄is|2],

where 〈·, ·〉 is usual the scalar product on an Euclidean space. As for ciN , we simply use the Lipschitz
continuity of K to obtain

E[〈U it − Ū it , ciN 〉] ≤ cK
[
E[|Zis − Z̄is|2] +

1

N

∑N

j=1
E[|Zjs − Z̄js |2]

]
.

To estimate diN , we first define

κit(Z̄
j
t ) := K(Z̄it , Z̄

j
t )− E[K(Z̄it , Z̄

j
t )] = K(Z̄it , Z̄

j
t )−

∫
S

K(Z̄it , z
′)ft(dz

′),

Clearly E[κit(Z̄
j
t )|Z̄it ] = 0 for any j 6= i. Furthermore, we have

E[κit(Z̄
j
t )κit(Z̄

k
t )] = E[E[κit(Z̄

j
t )κit(Z̄

k
t )|Z̄it ]] = E[E[κit(Z̄

j
t )|Z̄it ]E[κit(Z̄

k
t )|Z̄it ]] = 0,

since the processes Z̄jt and Z̄kt are independent for j 6= k 6= i. Consequently

E

[∣∣∣∣ 1

N

∑
j 6=i

κit(Z̄
j
t )

∣∣∣∣2
]

=
1

N2

∑
j,k 6=i

E[κit(Z̄
j
t )κit(Z̄

k
t )] =

N − 1

N2
E[κit(Z̄

j
t )2]

≤ N − 1

N2

∫∫
S×S
|K(z, z′)|2ft(dz′)ft(dz).

Therefore, we obtain, by Young’s inequality, the estimate

E[〈Zit − Z̄it , diN 〉] ≤
1

2
E[|Zit − Z̄it |2] +

1

2
E[|diN |2]

≤ 1

2
E[|Zit − Z̄it |2] +

N − 1

2N2

∫∫
S×S
|K(z, z′)|2ft(dz′)ft(dz)

≤ 1

2
E[|Zit − Z̄it |2] +

c0
N
.

Now, set Y it = E[|Zit − Z̄it |2]. Then, by Itô’s calculus and the estimates above, we obtain

d

dt
Y it = 2E

[
〈Zit − Z̄it , aiN + ciN + diN 〉

]
≤ c

[
Y it +

1

N

∑N

j=1
Y jt +

1

N

]
.
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Averaging over 1 ≤ i ≤ N gives

d

dt
Y

(N)
t :=

d

dt

1

N

∑N

i=1
Y it ≤ c̃

[
Y

(N)
t +

1

N

]
.

An application of the Gronwall inequality yields

Y Nt ≤
c̃

N
tec̃t.

Substituting this into the inequality for Y it and using Gronwall’s inequality again yields

supt∈[0,T ] Y
i
t ≤

c̃

N
Te2c̃T ,

which is precisely the required estimate for any 1 ≤ i ≤ N ∈ N.
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