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Abstract. Anomaly detection in the sound from machines is an important task in 

machine monitoring. An autoencoder architecture based on the reconstruction 

error using a log-Mel spectrogram feature is a conventional approach for this 

domain. However, because of the non-stationary nature of some sounds from the 

target machine, such a conventional approach does not perform well in those 

circumstances. In this paper, we propose a novel approach regarding the choice of 

used features and a new auto-encoder architecture. We created the Mixed Feature, 

which is a mixture of different sound representations, and a new deep learning 

method called Fully-Connected U-Net, a form of autoencoder architecture. With 

experiments on the same dataset as the baseline system, using the same 

architecture for all types of machines, the experimental results showed that our 

methods outperformed the baseline system in terms of the AUC and pAUC 

evaluation metrics. The optimized model achieved 83.38% AUC and 64.51% 

pAUC on average overall machine types on the developed dataset and 

outperformed the published baseline by 13.43% AUC and 8.13% pAUC. 

Keywords: anomaly detection; anomalous sound; auto-encoder; spectrogram; U-Net. 

1 Introduction 

Anomaly detection in sound is an important domain for many industrial 

applications, such as product inspection, predictive maintenance as given by 

Koizumi, et al. [1], and audio surveillance as given by Li, et al. [2] and Foggia, 

et al. [3]. Because anomaly detection in sound is used to discover symptoms of 

faulty or malicious activities, their prompt detection can prevent such problems. 

The problem of detecting abnormal sounds in machines is challenging because it 

is difficult to extract representative features from sound data, unlike from image 

data represented in RGB. Moreover, learning from correct sound data takes a lot 

of time for the machine-learning algorithm. While it is easy to collect normal 

data, actual anomalous sounds in machines are difficult to collect, since they 

rarely occur and are highly diverse. Therefore, exhaustive patterns of anomalous 
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sounds are impossible to deliberately make and/or collect. This means that we 

must detect unknown anomalous sounds that are not in the given training data. 

Therefore, the problem of detecting unknown anomalous sounds in factories 

based only on normal sound samples is an urgent and significant problem. This 

approach helps to solve the problem of getting enough anomalous data from 

machines as well as the enormous effort and cost of collecting them by training 

the data only on a normal dataset. Detecting anomalies early helps businesses to 

promptly repair or replace broken materials, avoid significant system failures, 

avoid heavy damage to the machine system, or other losses such as computer 

numerical control (CNC) machine blades. 

In order to detect anomalies in sounds through machine learning, we can use 

supervised methods or unsupervised methods. However, using a supervised 

method is hard because as was stated above it is difficult to collect an exhaustive 

volume of anomalous sounds. The frequency of equipment failure in real 

environments is low and the number of ways in which equipment can fail is large. 

Therefore, it is not feasible to collect a sufficient amount of training sound data 

corresponding to anomalous operating states. Therefore, these approaches are not 

suitable for detection of anomalies in sound [4]. 

Several studies have tried to address this issue. The WaveNet architecture was 

used by Hayashi, et al. [5]. In the literature, several different models have been 

used, but the majority of these approaches relied on a deep autoencoder (AE) 

architecture. The main working principle of these approaches lies in training an 

AE using normal/expected data and during testing checking if the network is 

struggling to decode the encoded test data accurately. AE is commonly applied 

in unsupervised problems and achieves high accuracy in various other domains 

[6,7]. The denoising AE structure using both feedforward units and LSTM units 

for acoustic anomaly detection tasks developed by Marchi, et al. [8] 

outperformed statistical approaches up to an absolute improvement of 16.4% 

average F-measure on three databases. Recently, a variant of the AE architecture, 

Interpolating Deep Neural Network (IDNN), has been developed by Suefusa, et 

al. [9], where the proposed model utilizes multiple frames of a spectrogram 

whose center frame is removed as the input; it predicts an interpolation of the 

removed frame as the output. Anomalies can be detected based on interpolation 

errors, i.e. the difference between the predicted frame and the true frame. The 

authors showed that IDNN performed significantly better than the baseline AE 

for machine condition monitoring tasks, especially for non-stationary sounds.  

To solve the difficulty above, we propose a new unsupervised auto-encoder 

architecture for anomaly detection in sound, called Fully Connected U-Net, and 

a new procedure for creating features, called Mixed Feature. This paper shows 

that with sounds with a complex distribution, adding representative features can 
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increase accuracy of machine-learning models. In contrast, for sounds with a 

simple distribution, using more features does not improve the accuracy. This 

paper also provides a method of improving accuracy compared with other 

methods in the literature, such as WaveNet, LSTM, IDNN, and Auto Encoder. 

Furthermore, instead of using different models for different types, this study used 

a single machine-learning model for different types of sounds, helping to simplify 

the installation and increase the predictive latency in real time. 

2 Proposed Method  

2.1 Used Features 

It is difficult to extract representative features from audio signals. An audio signal 

is a variation in frequency in a certain quantity over time. A digital representation 

of a captured audio signal is a waveform of the signal. In the experiment, we 

loaded an audio file with a duration of 10 seconds, preserved the native sampling 

rate of the file (sampling per second), and use the stereo separation (two 

channels). But the waveform of the signal is only a two-dimensional 

representation of this complex phenomenon, representing time and amplitude. To 

extract information from the waveform, without going into too much detail, the 

Fourier transform is a function that gets a signal in the time domain as input and 

outputs its decomposition into frequencies.  

This frequency warping can allow for a better representation of sound. Because 

most sounds humans hear are concentrated in very narrow frequency and 

amplitude ranges, we can also include information about auditory perception in 

the model. More specifically, by introducing information about human 

perception, we focus the model on that part of the information that human 

listeners would find important. So we transform both the y-axis (frequency) to 

log scale, and the ‘color’ axis (amplitude) to decibels. Corresponding to the 

frequencies in the Mel scale, the Mel Frequency Cepstral Coefficient (MFCC), 

or the log-Mel spectrogram, is widely used in audio detection tasks. Because 

MFCC values are not very robust in the presence of additive noise, we chose the 

log-Mel spectrogram. To extract additional useful information from the 

waveform, we propose different representations, which we call Mixed Feature. 

Depending on the types of machines, we use the log-Mel Spectrogram feature or 

the Mixed Feature. 

2.1.1 Log-Mel Spectrogram 

The log-Mel spectrogram was originally provided in the baseline system as 

developed by Koizumi, et al. in [10]. We used a Hanning window that covers 

1024 sample points of the input audio signal. The window moves with a stride 
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(hop-length) of 512 points, which guarantees a 50% overlap. If we load an audio 

file and convert the sampling rate to 22.05KHz (sampling per second), the height 

of feature (H) = (sampling rate/hop length) * time = (22050 𝐻𝑧/512) ∗ 10 =
 430. However, we load an audio file and preserve the native sampling rate of the 

file, so the height of the log-Mel spectrogram of every machine type is different. 

We only cut off the height of the log-Mel spectrogram to a smaller H value: down-

sampling by a factor of 2 after every convolution block in the encoder and up-

sampling by a factor of 2 after every transpose convolution block in the decoder. 

We choose the new H value by cutting off the H value reduced by 1 until H 

module 16 (2^5) is zero.  

For example, H is (16000𝐻𝑧/512)  ∗ 10 =  312,5, the H value is reduced by 1 

until H = 304. With H = 304, we can down-sample from 304 to 152, 152 down-

sample to 76, etc., and vice versa for the up-sampling, up-sample 76 to 152, up-

sample 152 to 304. This new H value helps to make the shape of the output the 

same as the shape of the input in the auto-encoder architecture after 5 convolution 

blocks and 5 transpose convolution blocks. Each sound file is split into 5 frames. 

The number of Mel filters is 128, which makes the width of the log-Mel 

spectrogram image 128. Therefore, each width of the feature is a 640 (5 x 128)-

dimensional vector. If the native sampling rate of an audio file is 16 KHz, the 

shape of the log-Mel spectrogram feature is 304 x 640, shown in Figure 1.  

 

Figure 1 The waveform is converted to the log-Mel spectrogram feature. 

We use 304 as the batch size in training and 640 as the 1D feature. Because the 

feature is created by being split into 5 frames and some machine type data has 

repeating patterns in the log-Mel spectrogram distribution, the log-Mel 

spectrogram is suitable to represent these types of machines. 



    Machine Condition Monitoring using Fully Connected U-Net 45 

2.1.2 The Mixed Feature 

Based only on the log-Mel spectrogram, some important characteristics from the 

temporal domain may be missing from the feature space. The purpose of mixing 

different types of representations is to extract more information from the raw 

data. More information extraction leads to more coverage of the complex 

distribution of data. For example, for the machine type data in which there is no 

repeating pattern in the log-Mel spectrogram distribution, mixing different types 

of representations is more suitable. Acoustic features can be diverse, hardly 

following any repeating pattern. Based on the experimental results we selected 

five types of acoustic features to combine, which we call the Mixed Feature. 

The Mixed Feature is a 1D vector constructed from five types of sound 

representations, i.e. MFCC, Chroma Feature, Mel Spectrogram, Spectral 

Contrast, and Tonnetz, respectively, as shown in Figure 2. 

 

Figure 2 The five types of sound representations: MFCC, Chroma Feature 

(short-time Fourier transform), Mel Spectrogram, Spectral Contrast, and Tonnetz. 

We chose these features based on their properties and to get more information 

from the sound so that we can better represent types of sounds with certain 

irregular distributions in the sound spectrum. We did not choose any more 

because the more time it takes to create these features, the more the latency in 

real-time prediction is increased. Corresponding to the frequencies in the Mel 

scale, we still keep the MFCC or the log-Mel spectrogram to combine with other 

feature types. We chose Chroma Feature because “identifying spectral 

components that differ by a musical octave, Chroma Feature show a high degree 

of invariance to variations in timbre and instrumentation while keeping their 

discriminative power” (Muller, et al. [11]). Spectral Contrast, “represents the 
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relative spectral distribution instead of average spectral envelope. Spectral 

Contrast deals with the strength of spectral peaks, valleys, and their difference 

separately in each sub-band, and represents the relative spectral characteristics. 

Octave-based Spectral Contrast feature has a better discrimination among 

different music types than MFCC” (Dan-Ning, et al. [12]). As for Tonnetz, 

research into music cognition has demonstrated that the human brain uses a ‘chart 

of the regions’ to process tonal relationships (Wikipedia contributors in [13]). 

1. We have 40 values from the mean of MFCC with the 40 cepstral coefficients. 
2. We have 12 values from the mean of Chroma Feature by computing a 

chromagram from a power spectrogram (short-time Fourier transform). 

3. We have 128 values from the mean of Mel Spectrogram by computing a Mel-

scale spectrogram. 
4. We have 7 values from the mean of Spectral Contrast by computing spectral 

contrast from a power spectrogram. 

5. We have 6 values from the mean of Tonnetz by computing the tonal centroid 

features. 

The way to compute these five extracted feature types is shown in the feature 

extraction part of the Librosa library documentation [14]. All parameters were 

default.  

Figure 3 shows the way in which the vector is constructed by average, after which 

these five extract feature types are stacked together. Therefore, each shape of the 

Mixed Feature is 1 x 193, is 1D with a 193 (40 + 12 + 128 + 7 + 6)-dimensional 

vector, which is then used as the input layer of the proposed method. 

 

Figure 3 The waveform is converted into a new representation by average, 

stacking five types of features. 

Figure 4 shows features of all machine types, respectively: ToyCar normal, 

ToyCar anomaly, ToyConveyor normal, ToyConveyor anomaly, Fan normal, 
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Fan anomaly, Pump normal, Pump anomaly, Slider normal, Slider anomaly, 

Valve normal, and Valve anomaly. The repeating patterns in the log-Mel 

spectrogram distribution are seen in Slider and Valve, whereas no repeating 

patterns occur in the log-Mel spectrogram distribution in ToyCar, ToyConveyor, 

Fan, and Pump. Therefore, the Log-Mel Spectrogram Feature was used for Slider 

and Valve, and the Mixed Feature was used for ToyCar, ToyConveyor, Fan, and 

Pump. 

 

Figure 4 Log-Mel spectrogram of all machine types, respectively: ToyCar 

normal, ToyCar anomaly, ToyConveyor normal, ToyConveyor anomaly, Fan 

normal, Fan anomaly, Pump normal, Pump anomaly, Slider normal, Slider 

anomaly, Valve normal, Valve anomaly. 

2.2 Fully Connected U-Net Architecture 

Detecting abnormal sounds based only on normal sound samples is often used 

with autoencoder to produce the sound closest to the input sound for comparison 

with an anomalous sound. We still use the properties of the AE network. 

However, because we want to better keep information through layers, we apply 

the properties of the U-Net network given by Ronneberger, et al. [15]. However, 

the disadvantage of the original U-Net is that it can only work with two-

dimensional data.  

The original U-Net uses convolution layers [16], which is very suitable in image 

data processing in order to reduce the number of hidden node units in the encoder 

and to increase the number of hidden nodes in the decoder. However, our data is 

sound and performs in 1D format. Our new proposed architecture, a fully 

connected architecture based on the original U-Net called Fully Connected U-

Net, solves this problem by replacing convolution layers with dense/fully-

connected layers. Our new architecture inherits the benefits of keeping 

information from the encoder to the decoder to minimize the reconstruction error 

in normal data. In short, Fully Connected U-Net performs better because this 

architecture uses a fully connected layer instead of the convolutional layer in the 

original U-Net. 
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Dense/fully connected layers have the same formulas as linear layers 𝑤 ∗ 𝑥 + 𝑏, 

but the end result is passed through a nonlinear function called the activation 

function, as shown in Eq. (1): 

 𝑦 =  𝑓(𝑤 ∗ 𝑥 + 𝑏) (1) 

where 𝑥 is the input, 𝑦 is the output, 𝑤 is the weight, 𝑏 is bias and 𝑓 is a non-

linear activation function. 

 

Figure 5 Fully-connected U-Net architecture. 
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Figure 5 shows the architecture with U-Net formed in a fully-connected structure. 

The architecture looks like a ‘U’, hence its name. 

The architecture consists of three sections: the contraction section, the bottleneck 

section, and the expansion section. The contraction section consists of many 

contraction blocks. The number of kernels or feature maps after each block 

doubles so that the architecture can learn complex structures effectively. The 

bottleneck layer lies between the contraction layer and the expansion layer. The 

structure and number of units for each hidden layer is the same as the baseline 

auto-encoder from Koizumi, et al. [10], but Fully Connected U-Net uses 

concatenate layers to contract between pairs of layers in the encoder and decoder. 

The concatenate layer is the most significant part of this model because a lot of 

information is still kept from the encoder to the decoder. This is a strong novelty 

of the proposed method. 

3 Experiment Settings 

In our experiments, we used the Toy ADMOS from Koizumi, et al. [17] and the 

MIMII Dataset from Purohit, et al. [18] consisting of normal/anomalous 

operating sounds of six types of toys/real machines. Each recording is a single-

channel, 10-second long audio that includes both the target machine’s operating 

sound and environmental noise. 

The following six types of toys/real machines were used: ToyCar (Toy ADMOS), 

ToyConveyor (Toy ADMOS), Fan (MIMII Dataset), Pump (MIMII Dataset), 

Slider (MIMII Dataset), and Valve (MIMII Dataset). 

Our experimental results were used to compare with the result of the baseline 

system. The baseline system is the simple autoencoder-based anomaly score 

calculator from Koizumi, et al. [10]. The anomaly score is calculated as the 

reconstruction error of the observed sound. To obtain small anomaly scores for 

normal sounds, the autoencoder architecture was trained to minimize the 

reconstruction error of the normal training data. 

We used only the development dataset, with a 90/10 train/validation split. To 

reduce the learning rate when a metric has stopped improving, we used the 

Reduce LR On Plateau method, developed at Google by the Keras team in [19] 

with a factor of 0.5, a minimum learning rate of 10−4, and patience 30. We also 

used the early stopping method with patience 50 for stop training when a metric 

stopped improving after 50 epochs. We trained 10,000 epochs, with a batch size 

of 512, and the Adam optimizer with a learning rate of 10−3. The loss function 

for all methods was the default mean square error (MSE) as expressed in Eq. (2): 
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 𝑀𝑆𝐸 =  
1

𝑛
∑𝑛

𝑖=1 (𝑌𝑖 − 𝑌𝑖)2 (2) 

where n is the number of data points in a single batch, Y is the observed value, 

and 𝑌 is the predicted value. 

4 Results 

Figure 6 shows the five frames in the log-Mel spectrogram concatenated together. 

Regarding the error difference between the original input and the reconstruction 

(error = input – reconstruction), we can observe the bold dots on the error of 

Valve’s anomaly data more clearly than on the error of Valve’s normal data. This 

shows that the loss value of the anomaly data is higher than the loss value of the 

normal data. 

 

Figure 6 Comparison between input, output (reconstruction), error for the 

log-Mel spectrogram of Valve. 

Figure 7 shows the Mixed Feature, which contains much information from the 

raw data. 
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Figure 7 Comparison between input and reconstruction from the Mixed 

Feature of Valve. 

Our target was to minimize the reconstruction error of the normal data. Based on 

experimentation, the loss value of our proposed method was lower than the loss 

value of the baseline system with a corresponding ratio of 4 and 10. 

For this task, the evaluation metrics used is the area under the receiver operating 

characteristic (ROC) curve (AUC) and the partial-AUC (pAUC). The AUC and 

pAUC are defined in Eq. (3) and Eq. (4): 

 𝐴𝑈𝐶 =  
1

𝑁−𝑁+
∑𝑁−

𝑖=1 ∑𝑁+
𝑗=1 𝐻(𝐴𝜃(𝑥𝑗

+) − 𝐴𝜃(𝑥𝑖
−)) (3) 

 𝑝𝐴𝑈𝐶 =  
1

⌊𝑝𝑁−⌋𝑁+
∑⌊𝑝𝑁−⌋

𝑖=1 ∑
𝑁+
𝑗=1 𝐻(𝐴𝜃(𝑥𝑗

+) − 𝐴𝜃(𝑥𝑖
−)) (4) 

The pAUC is derived from the AUC, calculated from a portion of the ROC curve 

over a pre-specified range of interest. In our metric, the pAUC is calculated as 

the AUC over a low false-positive-rate (FPR) range [0, p] with p = 0.1, from 

Koizumi et al. [10]. 

The AUC in Figure 8 shows that Fully Connected U-Net outperformed the auto-

encoder architecture from the baseline system taken from [10].  
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Figure 8 Mean AUC of 10 trials on every machine. 

Fully Connected U-Net using the Mixed Feature was effective towards the 

ToyCar, ToyConveyor, Fan, Pump, and Slider machine types. Using the Mixed 

Feature, we observed the most improved results from Fan and Pump machine 

types. Fully Connected U-Net using the Log-Mel Spectrogram Feature was 

effective towards the Slider and Valve machine types. Fully Connected U-Net 

using the Log-Mel Spectrogram Feature for the Slider and Valve machine types 

helped to improve the average score of all machine types, such as AUC from 

79.20 to 83.38, and pAUC from 61.50 to 64.51. Using only the Mixed Feature 

still outperformed the baseline system. For optimal results, we used the Log-Mel 

Spectrogram Feature for the Slider and Valve machine types, and Mixed Feature 

for the ToyCar, ToyConveyor, Fan, and Pump. 

The AUC and pAUC were evaluated using GTX 1080 Tion the development 

dataset. Because the results produced with a GPU are generally non-

deterministic, to simulate the same experiments as the baseline system, we also 

averaged 10 independent trials in training and testing. The experimental results 

for the means of 10 trials are shown in the following Table 1. This table shows 

that conventional U-Net and other CNN structures (WaveNet, LSTM) did not 

perform well, either underfitting or overfitting. All AUC and pAUC scores of our 

methods were higher than the AUC and pAUC scores of other methods from the 

literature (AE, IDNN). 
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Table 1 Experimental results for the means of 10 independent trials. 

Machine Type 

Mean AUC Mean pAUC 

Base 

line 

Wave 

Net 
UNet LSTM IDNN Proposed 

Base 

line 
Proposed 

ToyCar 78.77 59.43 44.60 58.81 73.92 82.52 67.58 66.34 

ToyConveyor 72.53 66.09 46.35 52.85 77.00 76.75 60.43 55.65 

Fan 65.83 51.34 50.77 51.27 70.74 80.06 52.45 58.61 

Pump 72.89 61.57 31.04 62.36 75.44 85.97 59.99 71.10 

Slider 84.76 61.34 31.48 61.49 90.42 90.13 66.53 73.97 

Valve 66.28 55.45 49.12 48.14 92.52 84.87 50.98 61.38 

Average 73.51 59.03 42.22 55.82 80.80 83.38 59.66 64.51 

5 Conclusion 

In this paper, we proposed methods to detect anomalies in sounds from machines. 

The proposed methods were applied to normal datasets without abnormal data. 

The contributions of this paper are as follows: 

1. Propose and evaluate the Mixed Feature for data with no repeating patterns 

in the log-Mel spectrogram distribution. 

2. Propose the Fully Connected U-Net architecture, a single model effective for 

all types of machine data for anomaly detection tasks.  

The experimental results verified that our methods performed better than the 

baseline system. With the same model architecture and all hyperparameters fixed, 

our model achieved 83.38% AUC and 64.51% pAUC on average overall machine 

types provided with the developed dataset and outperformed the published 

baseline by 13.43% AUC and 8.13% pAUC. 

In the future, we plan to enhance training using data augmentation. We will 

continue to develop algorithms that can detect more types of complex sounds, 

and we will tackle the remaining anomaly detection issues with the sound systems 

in real environments. 
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