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Abstract. In the past few decades, the large amount of available data has become 

a major challenge in data mining and machine learning. Feature selection is a 

significant preprocessing step for selecting the most informative features by 

removing irrelevant and redundant features, especially for large datasets. These 

selected features play an important role in information searching and enhancing 

the performance of machine learning models. In this research, we propose a new 

technique called One-level Forward Multi-level Backward Selection (OFMB). 

The proposed algorithm consists of two phases. The first phase aims to create 

preliminarily selected subsets. The second phase provides an improvement on 

the previous result by an adaptive multi-level backward searching technique. 

Hence, the idea is to apply an improvement step during the feature addition and 

an adaptive search method on the backtracking step. We have tested our 

algorithm on twelve standard UCI datasets based on k-nearest neighbor and 

naive Bayes classifiers. Their accuracy was then compared with some popular 

methods. OFMB showed better results than the other sequential forward 

searching techniques for most of the tested datasets. 

Keywords: classification accuracy; data mining; dimensionality reduction; sequential 

feature selection; supervised learning; wrapper approach. 

1 Introduction 

In data analysis tasks, the use of a large amount of data in high-dimensional 

datasets directly affects performance because irrelevant and redundant features 

also contribute to the analysis. To overcome this problem, these irrelevant and 

redundant features should be eliminated, leading to more effective dimensions. 

This data preprocessing step is called feature selection. Generally, the goal of 

feature selection is to determine the best subset of features for conducting 

statistical analysis or building a machine learning model. Feature selection 

assists in selecting the minimum features from the whole dataset. To ensure an 

optimal feature subset, a feature selection method has to evaluate a total of 2n – 

1 subsets, where n is the total number of features in the dataset. Even though 

this exhaustive search for the optimal feature subset results in an optimal 

solution, it is not very practical, especially with moderately large values of n. 
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This type of problem is said to be an NP-hard problem and many search 

strategies for suboptimal solutions have been proposed in the literature. Feature 

selection algorithms can be classified in many different ways. According to [1-

3], the most common ones can be categorized into three types, that is the filter 

approach, the wrapper approach, and the embedded approach. 

The filter approach uses an independent criterion function to select features 

without depending on the type of classifier used, which leads to a simple 

method, while the interactions with classifier and feature dependencies are 

ignored. The filter method ranks each individual feature according to 

measurements such as information, distance or similarity. It only considers the 

association between the feature and the class label. The nature of this method 

results in a drawback, namely that all features are considered separately. 

The wrapper approach uses the result of the classifier to determine the goodness 

of the given feature, therefore the selected features are dependent on the 

classification algorithm. This method removes the disadvantage of the filter 

approach by considering feature dependencies, but it is more time-consuming 

than the filter approach. The quality of the feature subset is directly related to 

the performance of the classifier. 

The embedded approach searches for the optimal feature subset during the 

model training that is built into the construction of the classifier. It returns both 

the learned model and the selected features simultaneously. The benefit of this 

method is that it takes less computational time than the wrapper approach. This 

method is also called the hybrid model. It incorporates a learning algorithm and 

is optimized for higher accuracy. The embedded approach utilizes a filter-based 

technique to select highly representative features and then applies a wrapper-

based technique to add candidate features. The candidate subsets are evaluated 

for selecting the best ones. This does not only reduce the dimensionality of the 

dataset but also decreases the computational time and improves the 

performance. Somol, et al. in [4] have proposed the flexible hybrid Sequential 

Forward Floating Selection (hSFFS) method by employing an evaluation 

function to filter some features and using a wrapper criterion to identify the 

optimal feature subset. The main benefit of this method is the ability to trade off 

the resulting quality with the computational cost in order to enable wrapper-

based selection in highly dimensional datasets. The experimental results showed 

promising classification accuracy. 

In this research, we explored an effective way to improve the classification 

accuracy of a machine learning model regarding sequential feature selection. 

Our method employs an adaptive multi-level backward search to maximize the 

resultant feature subset. The methodology of the proposed feature selection 
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method is presented along with a comparison against other sequential feature 

selection techniques on twelve standard UCI datasets. We conclude our paper 

by giving some directions for further research in the last section. 

2 Related Work 

2.1 Feature Selection 

Feature selection is a necessary step in the data mining process because the high 

dimensionality and vast amount of data is a challenge in learning tasks. Many 

irrelevant features do not add much value during the learning process, hence 

learning models tend to become highly complicated and decrease learning 

accuracy. Feature selection is one effective way of identifying relevant features 

for dimensionality reduction. However, the benefit of feature selection comes 

with an extra effort when trying to get an optimal subset that represents the 

original dataset.  

Jovic, et al. [5] categorize feature selection methods into three common search 

strategies. Exponential algorithms evaluate subsets that grow exponentially with 

the feature space size, for example exhaustive search and branch-and-bound. 

Sequential algorithms such as SFFS include or exclude features from the active 

subset sequentially. Random algorithms incorporate randomness into the search 

process to optimize the solution. An example of random algorithms are 

evolutionary computation algorithms using genetic or ant colony optimization. 

A recent study from Homsapaya & Sornil in [6] introduced a floating search 

technique employing a genetic algorithm (GA) to improve the quality of the 

selected feature subset. The results showed that GA improved the performance 

for the majority of sample datasets. Kadhum, et al. in [7] have proposed a new 

model for evolutionary wrapper feature selection by applying GA to explore the 

space of feature combinations from a set of features that already has its 

priorities assigned. Extreme Learning Machines (ELM) and Support Vector 

Machine (SVM) were used as the classifiers based on the Chronic Kidney 

Disease dataset (CKD) from the UCI repository. The application of the 

proposed model affected the classification performance by improving the 

accuracy rate while also reducing the computing time. 

Seeing that there is no optimization technique that is suitable for all feature 

selection problems, Ref. [8] presents a systematic literature review on the 

subject of multi-objective feature selection based on numerous multi-objective 

techniques and algorithms in order to help researchers find the best approach for 

their work. The study also showed that the majority of feature selection methods 

apply the wrapper method combined with supervised learning classification. 

Wan, et al. [9] proposed a novel discrete sine cosine algorithm (SCA) for multi-



4     Knitchepon Chotchantarakun & Ohm Sornil 

 

objective feature selection to trade off between information preservation and 

redundancy reduction. Their experiments on ten UCI datasets showed the 

superior capability of discrete sine cosine algorithm-based multi-objective 

feature selection (MOSCA_FS), which was confirmed with all the tested 

datasets. The important study by Al-Tashi, et al. in [10] applied a binary version 

of the Multi-objective Grey Wolf optimizer (MOGWO) based on a sigmoid 

transfer function called BMOGW-S. Its classification performance using a 

wrapper artificial neural network (ANN) was compared with MOGWO with a 

tanh transfer function, the Non-dominated Sorting Genetic Algorithm (NSGA-

II), and Multi-Objective Particle Swarm Optimization (MOPSO) on fifteen 

standard UCI datasets. The results showed that BMOGW-S outperformed the 

other techniques in both feature reduction and classification accuracy. 

A similar study on sequential feature selection in [11] introduced an adaptive 

Multi-level Forward Inclusion (MLFI) method, which focuses on the searching 

space in the forward direction by looking ahead for some specific level of 

generalization limits. Our study attempted to discover a better subset in the 

backward direction. A k-nearest neighbor classifier (k = 5) was applied in the 

performance validation using eight UCI datasets. The MLFI algorithm showed 

better performance than the other sequential forward searching techniques for 

the majority of the results. 

Other recent works in the feature selection domain focused on the application of 

feature selection techniques to other areas of work, such as face recognition, 

text classification and medical science [12-14]. The improvement of sequential 

feature selection tends to focus on non-deterministic algorithms like particle 

swarm optimization, genetic algorithms or deep neural networks in [15] and 

[16], while our study concerned a deterministic algorithm. 

Our research focused on a wrapper approach based on sequential feature 

selection algorithms. The proposed method uses the result of a data mining 

algorithm to determine the goodness of a given subset. During the search 

process, the space of possible feature subsets is defined to generate and evaluate 

features until we get the optimal subset. For the sequential floating search 

methods, the number of features dynamically increases and decreases until the 

desired target is reached.  

The variables allow floating forward or backward so they can be flexibly 

changed without presetting any parameters. Because of this, a nesting effect 

may occur since the best k-subset does not necessarily contain the best (k–1)-

subset. Therefore, we made an improvement to the floating search algorithm to 

remove some of its drawbacks and tried to find a solution that is as close to the 

optimal solution as possible. 
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2.2 Sequential Forward Search 

The sequential forward search (SFS) [17] process in a forward search manner 

starts with an empty set and adds one feature to the selected subset during each 

iteration until a new feature subset is discovered that maximizes the criterion 

function value. SFS is essential for constructing other more complex 

algorithms. Large datasets normally contain many features, whereas only some 

of them are significant for model training. The idea is to select the feature 

subset that gives the highest learning accuracy. Assume we have a set Y = {y1, 

y2,…, yD}, where D is the number of input dimensions. We want to find a subset 

Xk = {xj | j = 1, 2,…, k; xj  Y}, where k = (0, 1, 2,…, D), and d is the required 

subset size. Initialize X0 = {} and k = 0, and x+ is an included feature where x  

Y – Xk. The algorithm can be described as follows: 

Step 1: Inclusion step. 

 x+ = arg max J(xk = x), where x  Y – Xk 

 Xk+1 = Xk + x+ 

 k = k + 1 

 (Add a selected feature x+ to subset Xk, where x+ is a feature that 

maximizes the criterion function (J).) 

Step 2: Continue step 1 until d features are selected. 

2.3 Sequential Forward Floating Selection 

One of the most significant innovations in this area is the Sequential Forward 

Floating Selection (SFFS) proposed by Pudil, et al. in [18]. This technique 

combines the concept of SFS with sequential backward search (SBS). SBS 

gives it more effectiveness than SFS by introducing a backtracking step. The 

SBS method starts with a full feature subset and eliminates one feature in each 

iteration until a predetermined criterion is satisfied.  

The backtracking step is a conditional step, where an improvement can be made 

during the search process. SFFS is said to be a state-of-the-art method that is 

widely used in several applications. Researchers in sequential feature selection 

normally extend their method using SFFS as the standard method to compare 

their results. To explain the SFFS algorithm below, let x– be an excluded feature 

where x  Xk. 

Step 1: Inclusion step (apply the SFS algorithm). 

Step 2: Conditional exclusion step (this step is similar to the SBS 

algorithm). 

 x– = arg max J(xk = x), where x  Xk 

 If J(xk – x–) > J(xk–1): 

  Xk–1 = Xk – x– 

  k = k – 1 
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 (Remove a feature if the resulting subset improves the 

performance. If k  2 or there is no improvement, go to step 1, else 

repeat step 2.) 

Step 3: Continue steps 1 and 2 until d features are selected. 
 

After the introduction of SFFS, several improved versions have been proposed 

to obtain better performance. An adaptive version of the floating search method 

was presented by Somol, et al. in [19]. The idea behind Adaptive SFFS 

(ASFFS) is selecting features to add or remove more than one feature in each 

sequential step in order to search for a better subset. The number of search 

features in each step can be varied depending on the remaining features in the 

dataset. The result is a more thorough search with a better chance of finding an 

optimal solution by setting a higher generalization level. There are two free 

parameters, rmax and b, in ASFFS that specify the generalization limit and range 

of the adaptive search. The parameter r specifies the number of features to be 

added in the forward phase or inclusion phase and is calculated adaptively. The 

backward phase or exclusion phase removes o features if it increases the 

performance. ASFFS is identical to SFFS if we assign rmax = 1. The suggestions 

for the two values are 4 and 3, respectively. The nearer the current subset size to 

d, the higher the generalization limit. The reason behind this characteristic is to 

save time by limiting the generalization level while the current subset is still far 

from the desired one. The generalization level (r) increases when the number of 

features (k) in the current subset gets close to d until it reaches rmax. ASFFS has 

shown better results than SFFS due to a more thorough search. 

Calculation of the r value is done at the beginning of every forward and 

backward phase using the following conditions: 

1. If |k – d| < b, let r = rmax 

2. Else if |k – d| < b + rmax, let r = rmax + b – |k – d| 

3. Else let r = 1 

 

While the number of features is far from the required subset size, r is assigned a 

value of 1, which is exactly the same as SFFS’s procedure. When k gets closer 

to d, the value for r increases but no more than rmax. Even though ASFFS has 

shown slightly better results than SFFS, it takes more computational time due to 

the complexity of the algorithm. The adaptive step leads to additional work to 

the SFFS structure both in the forward and the backward direction. Elements of 

the current feature subset can be increased or decreased along the searching 

process, which is another reason for the longer time required. The 

generalization level can be helpful during the search only when k in the current 

subset is getting close to the target size, thus the detailed search concept works 

only when k almost reaches the end of the process. 
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2.4 Improved Forward Floating Selection 

Improved Forward Floating Selection (IFFS) was introduced by Nakariyakul & 

Casasent in [20], which successfully removed the weakness of SFFS by adding 

an additional step to improve the criterion function value. Based on the fact that 

it is not necessary that the best k-subset contains all features from the best (k–1) 

subset, IFFS was introduced. This improved step is called ‘replacing the weak 

features’, that is to check whether removing any feature in the currently selected 

feature subset and adding a new one at each sequential step can improve the 

current feature subset.  

IFFS can impressively prevent the nesting effect of SFFS and the algorithm is 

simpler than ASFFS with an exceptionally short computing time. IFFS yields 

better performance than both SFFS and ASFFS with a little more process time 

than SFFS. The IFFS algorithm is described below, applying the same variables 

as SFFS: 

Step 1: Inclusion step (apply the SFS algorithm). 

Step 2: Conditional exclusion step (apply the SBS algorithm). 

Step 3: Check if replacing a weak feature helps. 

 For xi in Xk : 

  Xk–1 = Xk – xi 

  For xj in Y  Xk–1 : 

   xj = arg max J(xj) 

   If J(Xk–1 + xj) > J(Xk): 

    Xk = Xk–1 + xj 

 (Generate k new subsets of k features by removing one feature and 

adding one feature using SFS. Calculate the J-values of k-subsets. 

If the subset with the largest J-value gives an improvement, then 

replace the new subset with the current subset and go to step 2. 

Otherwise, go to step 1.) 

Step 4: Continue steps 1, 2 and 3 until d features are selected. 

3 Proposed Method 

Feature selection using the wrapper approach is more of interest due to the high 

classification accuracy when compared with other approaches. Several methods 

apply the wrapper approach to sequential feature selection. The most popular 

sequential search algorithm is SFFS, which represents the standard method. 

Other techniques are usually developed from SFFS in order to improve 

classification accuracy with a reasonable time complexity and also to overcome 

the effect of the nesting problem. The development of ASFFS and IFFS has 

been shown to be superior to the standard SFFS. 
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In our study, we present One-level Forward Multi-level Backward Selection 

(OFMB), which is a sequential forward selection method that explores possible 

subsets several levels deeper in order to maximize the classification accuracy of 

the learning dataset. The idea is to explore backward after feature inclusion 

since newly included features may affect smaller subsets. This backward search 

can examine many levels by excluding more than one feature in each iteration. 

This method considers a wider range of features when searching backwards 

deeper. OFMB is similar to the backtracking step of SFFS but it can explore 

feature subsets to much greater depth. Subsequently, a new, smaller subset with 

a higher criterion function can be discovered, whereas the standard SFFS or 

even IFFS are not capable of finding such subsets. 

This is a description of the OFMB algorithm: 

Step 1:  Apply SFS to select one feature from the remaining feature set. 

Add this feature to the selected feature subset. Continue step 2 with 

the feature subset Xk where k = k + 1. 

Step 2: From the selected feature subset size k, remove 1 feature 

iteratively. We have Xk–1 and use SFS to select a new feature from 

the remaining feature set (Y  Xk–1) for adding to each feature 

subset. Then calculate whether there is an improvement. If there is 

an improvement, replace that previous feature subset with the 

newly selected feature subset and repeat step 2. Otherwise, 

continue step 3 with feature subset Xk. 

Step 3: From the selected feature subset (Xk), remove s features iteratively 

from 1 to r. Then, search for the best (k–s)-subset. If there is a 

better subset Xk–s, then replace it with the previous Xk–s. Repeat 

steps 3 until s > r, then continue step 4. 

Step 4: Compute the r value, then continue step 5. 

Step 5: Continue steps 1, 2, 3 and 4 until d features are selected. 

From Figure 1, starting with an empty set, first we add features using SFS until 

we get more than two features and then the process can continue to include 

features according to which feature can give a higher J value for a subset of 

size k. This process allows the number of features to be either increased or 

remain the same without a backtracking step. The insertion of ‘replacing a weak 

feature’ from IFFS during the forward phase makes it possible to improve the 

feature subset and remove the nesting effect problem. While using SFS to 

include one feature, we try to find a better feature subset by removing one 

feature in that subset for every element except the one that has just been added. 

If an improvement can be made, replace the new subset with the current one. If 

there is no improvement, we will add another feature in the next iteration. This 

is a feature improvement step that applies a technique from the IFFS algorithm. 
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Figure 1 Flowchart of the OFMB algorithm. 

The first phase of OFMB consists of constructing a set of feature subsets that 

have relatively high classification accuracy, similar to IFFS. The second phase 

consists of exploring the last selected subset deeper backwards, up to some 

specified point. After the inclusion and improvement steps, we remove one or 

more features from the currently selected subset to form many subsets of size 

(k–s), where s refers to the number of removed features ranging from 1 to r, 

and r is the generalization limit. The searching target is a subset with a higher J 

value for a particular subset size. We propose the conditions used to calculate 

the value of r in the next subsection. As a result of applying the OFMB 

technique, there is a better chance of finding a better feature subset of size (k–s). 

Pseudo code for the OFMB algorithm is provided below. 
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Algorithm: One-level Forward Multi-level Backward Selection (OFMB) 

Input: A set of features Y = {y1, y2,…, yD}, where D is the number of input 

dimension; J is a criterion function; d is the required subset size; r is the 

generalization level, which is limited by rmax. 

Output: A feature subset Xk = {xj | j = 1, 2,…, k; xj  Y}, where k = (0, 1,  2,…, d). 

Initialize: Initialize X0 = {}; k = 0; s = 1; r = rmax; z = 0. 

(1) Feature Inclusion 

 #Find the best feature and update Xk 

 x+ = arg max J(xk = x), where x  Y – Xk 

 Xk+1 = Xk + x+ 

 k = k + 1 

 max(Xk) = Xk+1 

(2) Feature Improvement 

#Replace weak features by removing one and adding one  

 Repeat  

 For xj in Xk : #where j = 1, 2,…, k 

 Xk–1 = Xk – xi 

 For xi in Y  Xk–1 : #where i = 1, 2,…, d  (k–1) 

 xi = arg max J(xi) 

 If J(Xk–1 + xi) > J(Xk): 

  Xk = Xk–1 + xi 

  max(Xk) = Xk 

 Until J(Xk–1 + xi)  J(Xk) 

(3) Multi-level Backward Selection 

 #Searching for better subsets by multiple backtracking step 

 Repeat  

 xs in Xk : #where  s = 1,…, r and xs are the features from 1 to r 

 Xk–s = Xk – xs 

 If J(Xk–s) > J(max(Xk–s)): 

 max(Xk–s) = Xk–s 

 z = z + 1 

  s = s + 1  

 Until s > r 

(4) Compute r-value 

 If z < rmax : 

 r = rmax – z 

 Else : 

 r = 1 

 z = 0 

 s = 1 

(5) Termination Condition 

 #Terminate when k > d 

 If k  d 

 Go to step 1 

 Xk = max(Xk) #for all k 

 Return the best individual subset Xk 
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We can see that the subset increases in size along with an improvement across 

the process until it reaches the required value of d. This method also solves the 

nesting problem that occurs in SFFS and produces a result equal to or greater 

than IFFS without backtracking step. Our proposed method solely consists of 

three main parts, that is Feature Inclusion, Feature Improvement, and Multi-

level Backward Selection. The first two parts provide preliminary results for the 

multi-level backward tracking, which is the technique that most noticeably 

improves the performance in terms of classification accuracy. The criterion 

functions (J) can be calculated using the classifiers described in Section 4.1. 

3.1 Computation of r Value 

The generalization limit (r) needs to be carefully specified since a larger value 

of r results in a more thorough search, which increases the time complexity. We 

introduce a user-defined parametric limit, rmax, to restrict the maximum 

generalization level. This number can be any integer depending on how deep we 

need to search, but normally it is only a small integer. In our experiments, we 

assigned the value of rmax to be 5 for all tested datasets. Level s is similar to 

level o in the ASFFS method, where s is determined dynamically according to 

the r calculation technique we propose. 

The generalization limit can change adaptively depending on the number of 

times we have found better k-subsets. If we have found a small number of better 

subsets in the previous iteration, then we should try a deeper search in the next 

iteration, which will increase the value of r. On the other hand, if the previous 

iteration found many better subsets, the next iteration should not need to go too 

deep, decreasing the value of r. Conversely, the search should go deeper when it 

cannot find a better subset. The application of this calculation technique leads to 

better performance than the previous works. We have selected the first 20 

features from the whole dataset for the experiments. OFMB considers a wider 

range of features, which leads to a thorough search. As a result, it has a better 

chance of improving the current feature subset. 

Assume rmax = 5, thus 1  r  5. Let z be the number of times the algorithm has 

found a better subset for that particular iteration. Suppose that z is related to r 

by rmax – z. Adaptive determination of r is defined as follows: 

1. If z < rmax, let r = rmax – z 

2. Else, let r = 1 

From the condition above we can build the graph in Figure 2, which shows the 

value of r for the first 20 features; if we have z = {0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 3, 0, 

2, 1, 0, 0, 3, 0, 4, 0}. The example of the z values come from the Ionosphere 

dataset. The value for r decreases while z increases. 
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Figure 2  Graph of r values. 

3.2 An Example Using the Wine Dataset 

To demonstrate the OFMB algorithm, we selected the Wine dataset from the 

UCI repository based on the KNN classifier. First, assume we have a dataset Y 

= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with 13 features; the required subset 

size (d) is 20 features, and we assign rmax = 5. Since the Wine dataset contains 

only 13 features, we need to process until d = 13, and we have z = {0, 0, 0, 0, 0, 

2, 0, 1, 2, 0, 0, 0, 0}. 

3.2.1 Feature Inclusion 

At the beginning, assume we apply SFS for the first 3 features, thus for k = 1, 2 

and 3 we have X1 = {6}, X2 = {6, 10} and X3 = {6, 10, 2} respectively. Now, the 

current subset of k = 3 is X3 = {6, 10, 2}. This subset is the best 3-subset that 

has been found so far. 

3.2.2 Feature Improvement 

Assume we continue the process up to k = 4. We have X4 = {6, 10, 2, 7} with 

90.09% classification accuracy. Remove one feature except x4 = 7 and we have 

{6, 10, 7}, {6, 2, 7} and {10, 2, 7}. Then, select one feature from the remaining 

set that produces the best J value with those 3 subsets. Now we have new 

subsets of size 4 for consideration. After calculation we find that J({10, 6, 7, 9}) 

produces the highest J value with 92.84% accuracy. Therefore, replace {6, 10, 

2, 7} with {10, 6, 7, 9} as the best subset of size 4 that has been found so far. 

Repeat the same process for X4 = {10, 6, 7, 9} and we cannot find any better 

subset, thus we continue to the next step with X4 = {10, 6, 7, 9}. The next step 

will be an optimization of this solution. 
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3.2.3 Multi-level Backward Selection 

Assume we continue the process until we reach k = 9 and we have X9 = {0, 1, 2, 

5, 6, 9, 10, 7, 8} with 92.25% accuracy. After the feature improvement step we 

have X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11} with 92.82% accuracy that is the best 9-

subset that has been found so far. For Multi-level Backward Selection, starting 

with s = 1, remove one feature to find a better 8-subset. Now we consider only 

subsets containing the feature x9 = {8}, which are {0, 1, 2, 5, 6, 7, 8, 11}, {0, 1, 

2, 6, 7, 8, 9, 11}, {0, 1, 2, 5, 6, 7, 8, 9}, {1, 2, 5, 6, 7, 8, 9, 11}, {0, 1, 2, 5, 7, 8, 

9, 11}, {0, 1, 2, 5, 6, 8, 9, 11}, {0, 2, 5, 6, 7, 8, 9, 11}, {0, 1, 5, 6, 7, 8, 9, 11}. 

We calculate the J values for all the combinations of 8-subset but cannot find a 

better 8-subset. The process continues to the next inner loop for s = 2. Remove 

two features from X9 = {0, 1, 2, 5, 6, 7, 8, 9, 11} and we have {0, 2, 5, 6, 8, 9, 

11}, {2, 5, 6, 7, 8, 9, 11}, {0, 2, 5, 7, 8, 9, 11},…, {0, 5, 6, 7, 8, 9, 11} for 28 

subsets of size 7 to be considered. The calculation has shown no better result, 

thus continue to the next inner loop for s = 3. Remove three features from X9 = 

{0, 1, 2, 5, 6, 7, 8, 9, 11} and we have {1, 2, 6, 7, 8, 11}, {0, 1, 2, 6, 8, 11}, {1, 

2, 5, 6, 8, 11},…, {2, 5, 6, 7, 8, 11}. There are 56 subsets of size 6 to be 

considered. At this point, we can find a better 6-subset, which is {0, 6, 7, 8, 9, 

11} with 93.36% accuracy. Replace X6 with {0, 6, 7, 8, 9, 11} as the best 6-

subset that has been found so far. From Figure 3 shows that X6 now has the 

highest accuracy, which cannot be found by other sequential searching 

techniques. 

 

Figure 3  Accuracy graph for Wine dataset using KNN. 
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3.2.4 Compute the r Value 

An adaptive determination of r is applied to find the value of r for the next 

iteration. There are two input variables: one is the maximum value of r (rmax), 

which is 5 for this particular example. The other one is z, which has recently 

been acquired from the multi-level backward selection step. If k = 6, the value 

of z would be 2. Apply an adaptive determination of r that matches with the first 

condition, which is ‘If z < rmax, let r = rmax – z’. Thus we have r = 5 – 2 = 3. 

Now, r = 3 will be applied to the algorithm for k = 7. The value of r can vary 

from 1 to 5 depending on the value of z. Therefore, r changes adaptively in 

different iterations. 

3.2.5 Termination Condition 

The OFMB algorithm processes sequentially until the subset size (k) reaches the 

required subset size (d). The best of all feature subsets are copied into Xk and 

the program is terminated. This method applies the idea of adaptive search in 

order to explore the potential subset thoroughly, in other words, it provides a 

better chance of finding the optimal solution via a more detailed search by 

adjusting the generalization limit adaptively. 

4 Experimental Evaluation 

4.1 Experimental Setup 

To compare our method with other algorithms we developed an experimental 

environment similar to previous works. The performance of feature selection 

methods is usually evaluated by a machine learning model. Due to the 

robustness and versatility of the k-nearest neighbor (KNN) classifier, it is used 

in various applications that can outperform other more powerful classifiers. 

Therefore, we decided to use KNN to compare our performance with different 

sequential floating feature selection algorithms.  

The naïve Bayes (NB) classifier is the other classification model we selected. It 

is based on probability theory by applying Bayes’ theorem. It has been used 

widely in machine learning research since the 1950s because of its effectiveness 

and ease of implementation without complicated iterative parameter estimation. 

The NB classifier often outperforms more sophisticated classification methods. 

We used KNN and NB to compare our method’s performance on different 

algorithms based on 5-fold cross-validation. Data normalization is preferred as a 

preprocessing step. We selected Python as the programming language, using the 

Jupyter notebook editor for program development. 
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Table 1 shows the twelve standard datasets with various sizes from the UCI 

repository used in this research to evaluate our results. We randomly selected 

some instances for a large dataset and also eliminated some missing values 

when necessary. We applied the same randomly selected instances to all 

techniques to ensure that they received the same input. 

Table 1  Datasets used in the experiments. 

Name 
Feature 

Type 

No. of 

instances 

No. of 

features 

No. of 

classes 

Wine Integer, real 178 13 3 

Thoracic Surgery Integer, real 470 17 2 

Online Shoppers Integer, real 12330 17 2 

Lymphography Categorical 148 18 2 

Image Segmentation Real 2310 19 7 

Crowdsourced Real 10546 29 6 

Breast Cancer Real 569 32 2 

Ionosphere Integer, real 351 34 2 

Soybean Categorical 307 35 15 

Spambase Integer, real 4601 57 2 

Sonar Real 208 60 2 

Urban Land Cover Real 675 147 9 

4.2 Results and Discussions 

In this section, we discuss our results for the OFMB algorithm compared with 

popular suboptimal methods, that is SFS, SFFS and IFFS. This research aimed 

to increase the classification accuracy rather than reducing the time complexity. 

The size of the dataset does not affect the algorithm. The number of features 

calculated from each dataset would be either 20 or less depending on the size of 

the dataset. We studied the effectiveness of the proposed sequential feature 

selection algorithm based on two classification methods, that is KNN and NB, 

on twelve standard UCI datasets. Their performance was evaluated by 

classification accuracy and the minimum number of selected features that 

produced the maximum accuracy. The classification accuracy is the first priority 

for the best performance. If the accuracy results for the different algorithms 

were equal, then the smallest number of selected features was considered. 

The results in Table 2 show that the classification accuracy was noticeably 

enhanced by the proposed algorithm compared to the previous works using 

KNN as performance validation method. OFMB had the best performance in the 

majority of the datasets because it produced either the highest accuracy and/or a 

lower number of features. With the Wine dataset, OFMB achieved the same 
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optimal solutions as SFFS and IFFS due to the size of the dataset being small. 

With the Breast Cancer dataset, SFFS was the best method among the other 

three with the same maximum accuracy, but with a lower number of selected 

features. 

Table 2 Comparison of maximum classification accuracy (%) and resulting 

number of selected features in parentheses using KNN from different feature 

selection algorithms (the highest accuracy for each dataset is in bold). 

Dataset Name SFS SFFS IFFS OFMB 

Wine (13) 92.82 (10) 93.38 (7) 93.38 (7) 93.38 (7) 

Thoracic Surgery (17) 84.89 (5) 85.96 (9) 85.96 (10) 86.96 (10) 

Online Shopper (17) 90.43 (7) 90.59 (7) 90.67 (5) 90.67 (5) 

Lymphography (18) 88.00 (15) 88.76 (13) 90.14 (11) 90.81 (10) 

Image Segmentation (19) 80.95 (10) 80.95 (7) 81.43 (8) 81.43 (7) 

Crowdsourced (29) 89.46 (20) 88.98 (20) 90.13 (19) 90.42 (20) 

Breast Cancer (32) 95.44 (18) 95.44 (12) 95.44 (16) 95.44 (13) 

Ionosphere (34) 93.45 (5) 94.02 (12) 94.59 (12) 94.89 (11) 

Soybean (35) 89.1 (18) 90.23 (18) 90.23 (19) 90.23 (17) 

Spambase (57) 90.43 (12) 90.43 (12) 93.04 (19) 93.04 (19) 

Sonar (60) 78.56 (11) 77.44 (6) 80.88 (20) 81.76 (19) 

Urban land cover (147) 60.49 (9) 60.48 (9) 61.37 (6) 61.37 (6) 

SFFS produced a better result than IFFS and OFMB due to the relationship 

between the smaller subset and the larger subset. Higher accuracy in the smaller 

subset may lead to a trap in the local optimum solution. Therefore, while the 

subset size increases, the searching process may not gain the maximum 

accuracy. For the rest of the results, the OFMB algorithm showed the best 

performance among the other techniques. Only for the Online Shopper, 

Spambase and Urban Land Cover datasets, IFFS had equal solutions to the 

OFMB algorithm. 

The results in Table 3 also show that the classification accuracy was enhanced 

by the OFMB algorithm compared to the previous works using the NB 

classifier. Only the Wine and Online Shopper datasets had equal results for all 

techniques. Apart from the two datasets mentioned above, IFFS produced the 

same maximum accuracy as OFMB with the Image Segmentation, 

Crowdsourced, Breast Cancer, Soybean, Sonar and Urban Land Cover datasets. 

The rest of the tested datasets provide the best results obtained by the proposed 

algorithm. Therefore, OFMB had the best performance with all datasets because 

it produced the highest classification accuracy with the smallest number of 

selected features equal to or better than the other methods. 
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Table 3 Comparison of maximum classification accuracy (%) and resulting 

number of selected features in parentheses using NB from different feature 

selection algorithms (the highest accuracy for each dataset is in bold). 

Dataset Name SFS SFFS IFFS OFMB 

Wine (13) 93.35 (5) 93.35 (5) 93.35 (5) 93.35 (5) 

Thoracic Surgery (17) 85.11 (1) 85.11 (1) 85.11 (1) 85.32 (5) 

Online Shopper (17) 90.67 (2) 90.67 (2) 90.67 (2) 90.67 (2) 

Lymphography (18) 86.48 (7) 86.52 (10) 87.33 (9) 88.05 (8) 

Image Segmentation (19) 81.91 (5) 81.91 (5) 82.86 (5) 82.86 (5) 

Crowdsourced (29) 82.92 (18) 83.01 (16) 83.4 (19) 83.4 (19) 

Breast Cancer (32) 95.44 (8) 95.44 (8) 96.14 (6) 96.14 (6) 

Ionosphere (34) 92.58 (14) 93.44 (11) 93.72 (14) 93.72 (11) 

Soybean (35) 83.86 (20) 84.61 (15) 91.73 (12) 91.73 (12) 

Spambase (57) 79.89 (15) 80.65 (18) 81.84 (12) 82.29 (18) 

Sonar (60) 81.4 (7) 81.4 (7) 81.45 (13) 81.45 (13) 

Urban land cover (147) 71.48 (12) 75.24 (16) 76.14 (15) 76.14 (15) 

Table 4 shows a comparison of the results from the OFMB algorithm using 

different criterion functions. The performances were validated by KNN and NB 

classifiers. The majority of the best performances were from KNN with seven 

sample datasets, whereas NB provided the best results with five datasets. For 

the Online Shopper dataset, KNN produced the same accuracy as NB with more 

features in the subset.  

Table 4 Comparison of maximum classification accuracy (%) and resulting 

number of selected features in parentheses from the two different classifiers 

(KNN and NB) for the OFMB algorithm (the highest accuracy for each dataset is 

in bold). 

Dataset Name KNN NB 

Wine (13) 93.38 (7) 93.35 (5) 

Thoracic Surgery (17) 86.96 (10) 85.32 (5) 

Online Shopper (17) 90.67 (5) 90.67 (2) 

Lymphography (18) 90.81 (10) 88.05 (8) 

Image Segmentation (19) 81.43 (7) 82.86 (5) 

Crowdsourced (29) 90.42 (20) 83.4 (19) 

Breast Cancer (32) 95.44 (13) 96.14 (6) 

Ionosphere (34) 94.89 (11) 93.72 (11) 

Soybean (35) 90.23 (17) 91.73 (12) 

Spambase (57) 93.04 (19) 82.29 (18) 

Sonar (60) 81.76 (19) 81.45 (13) 

Urban land cover (147) 61.37 (6) 76.14 (15) 

Different criterion functions yielded different results, because each 

function has a unique character and we can see that KNN as the criterion 

function yielded better results than NB. Thus, KNN is a more favorable 
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classifier for getting the best solutions since it provides more opportunity 

to get the highest accuracy. 

The proposed algorithm based on sequential feature selection generated optimal 

feature subsets with higher accuracy with several different datasets. Our 

proposed algorithm can extract a more relevant and effective feature subset 

from the source dataset using multi-level backward tracking selection with an 

adaptive generalization level. The multi-level backwards tracking technique 

leads to a more thorough search on smaller feature subsets with higher 

accuracy, which cannot be discovered by other methods. 

5 Conclusion 

Feature selection is very important for classification performance in the data 

mining process. This research focused on the improvement of early sequential 

feature selections. Our proposed algorithm is called the One-level Forward 

Multi-level Backward Selection (OFMB) algorithm. We aimed to develop a 

feature selection method that surpasses previous works in terms of accuracy. 

We proposed a feature selection algorithm based on the sequential searching 

technique by improving the performance of SFFS. Incorporating a feature 

improvement step with addition of multi-level backtracking was done to 

discover relevant subsets that cannot be discovered by previous methods. The 

algorithm employs an adaptive generalization limit to indicate the level of 

backward searching. A higher limit leads to a better chance of finding a better 

subset. KNN and NB classifiers were applied in our experiments. We compared 

our method with SFS, SFFS and IFFS. The results based on twelve standard 

datasets showed that OFMB performed better than the other suboptimal 

sequential feature selection algorithms for most of the tested datasets. Further 

study can focus on the adjustment of the generalization limit and the application 

of OFMB with various criterion functions. 
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