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Abstract. Dynamic device pairing is a context-based zero-interaction method to pair 

end devices in an IoT system based on received signal strength indicator (RSSI) 

values. However, if RSSI detection is done at a high level, the accuracy is 

compromised due to poor sampling rates. This paper proposes to use a hidden 

Markov model to increase the performance of dynamic device pairing detection. An 

IoT system was implemented consisting of an access point, an IoT end device, an 

IoT platform, and an IoT application. A comparison was made between two different 

methods to prove the concept. The results show that the accuracy of dynamic device 

pairing with HMM (83.93%) was better than without HMM compared (68.12%). 

Keywords: device pairing; dynamic device pairing; hidden Markov model; Internet of 

Things; received signal strength indicator. 

1 Introduction 

Internet of Things (IoT) architectures are complex, involving many layers, 

including an application layer, a platform layer, a gateway layer, and an end-device 

layer [1]. Because of dynamic field conditions each layer must be able to 

communicate in various kinds of scenarios, including communication among end 

devices, communication between end devices and gateways, or communication 

between end devices and applications [2]. Each of these scenarios needs to be 

preceded by device pairing [3]. 

Initially, device pairing was done manually but now context-based zero-interaction 

methods [4] are used, one of which is dynamic device pairing. Dynamic device 

pairing is a term that describes that the pairing of two entities in an IoT architecture 

is carried out automatically [5,6]. This can be done by analyzing the received signal 

strength indicator (RSSI) values of the IoT entities to be paired. The RSSI describes 

the quality of the link between two wirelessly connected devices [7]. It can be used 

to make device pairing decisions: if the RSSI is getting stronger, which means the 

device is approaching, then pair; if the RSSI is getting weaker, which means means 

the device is distancing, then do not pair. 
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Reading the RSSI for device pairing can be problematic. If the device configuration 

is done at a high level, RSSI sampling cannot be performed at a high rate. As a 

result, it becomes more difficult to see whether the device is approaching or 

distancing. To increase the accuracy of dynamic device pairing of IoT end devices, 

this study proposes to use a hidden Markov model (HMM). An HMM is a Markov 

chain with hidden states and observed states [8]. This model can be applied by 

setting the RSSI as the observable state and the approaching or distancing state as 

the hidden state. 

To prove the effectiveness of HMM implementation, this study investigated an IoT 

environment consisting of one smartphone, one access point, and one IoT end 

device. Four metrics were used to compare the performance of dynamic device 

pairing with HMM and without HMM: precision, recall, F1-score, and accuracy 

[9]. 

2 Literature Review 

IoT device pairing has shifted from manual to context-based zero-interaction 

techniques. There are several reasons for this, two of which are security and 

efficiency. In terms of security, in 2016 a study was done on device pairing for 

crowdsourcing [10]. This study proposed a secure pairing method called 

Trustworthy Device Pairing (TDP). In 2017 a study was done on IoT device pairing 

with a proximity method to avoid attacks such as eavesdropping [11]. This was 

done by measuring the received signal strength indicator (RSSI) or signal strength 

when distancing, approaching, and turning. 

Device pairing can be categorized as sensor-based and non-sensor-based. An 

example of sensor-based device pairing is the use of the inertial measurement unit 

(IMU) sensor on a smartphone combined with its camera [12]. Together, the two 

devices will detect motion; if the movements match, pairing will occur. In [12] 

images were used to detect movement, while [4] used sound. The assumption in the 

latter study was that two adjacent devices will have similar sound recording patterns 

when the sound source is the same (See Table 1). 

Because sensors cannot always be used in context-based pairing, one study used 

time for pairing [13]. The idea behind this was that if two devices are close together, 

they have more similar timing compared to devices that are far apart. In enterprise-

level IoT, context-based pairing as discussed above takes a lot of time. The concept 

of context-awareness uses the shared history of two devices to decide whether they 

can pair or not [5]. 
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Table 1 Comparison of related works on device pairing. 

Device Pairing Motivation Context Aware Method 

Trustworthy Device Pairing Security No Crowdsourcing 

Anti-eavesdropping Security Yes RSSI proximity 

IMU-camera combination Efficiency Yes Sensor-based 

Sound context Efficiency Yes Sensor-based 

Similar timing Efficiency Yes Time-based 

Proposed method 

(this research) 
Efficiency Yes 

RSSI proximity with 

HMM 

3 Methodology 

3.1 System Architecture 

To test the performance of the proposed method, a testing environment was created 

comprising a smartphone, a Wi-Fi access point (AP), and an IoT end device. Figure 

1 shows the topology of the IoT system.  

Smartphone

Access Point

Home Automation Device

a

b

 

Figure 1 The pairing architecture involving an IoT end device, a smartphone, and 

an AP. 

Here, a smartphone with an Android operating system was used. Android Studio 

was used to develop the Android application. Figure 2 shows a sequence that 

describes the flow of the pairing system and the monitoring data transactions in 

general. The sequence diagram in Figure 2 starts with pairing. Pairing is initiated 

by the smartphone. If the pairing is considered valid, the IoT end device will reply 

with an ACK. If the pairing is successful, the smartphone can start pairing the end 

device with the AP.  
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Successful pairings are marked with ACK. If the end-device pairing with the AP is 

successful, the end device can begin sending monitoring data to the IoT platform 

via the AP. The data that are sent are temperature and humidity monitoring data. 

The monitoring data are collected on the IoT platform. If a user application on the 

smartphone wants to access these data, the user application can subscribe and the 

monitoring data will flow to the user application. The novelty of this research is the 

method for pairing the smartphone to the IoT end device and the IoT end device to 

the AP. Pairing is done by applying dynamic device pairing using HMM to increase 

the accuracy of the pairing. 

 

Figure 2 IoT end-device pairing sequence diagram. 

3.2 Dynamic Device Pairing 

Figure 3 describes the dynamic device pairing process [5]. The first thing to check 

is the history of the applications that want to pair. If the application has paired them 

previously, the application may do dynamic device pairing; if the application has 

never paired them before, the application must pair conventionally, like the process 

depicted in Figure 2. Dynamic device pairing is done by looking at the RSSI pattern 

of the application. If the pattern confirms that the application is approaching, the 

application is allowed to pair and the pairing will be executed automatically. If the 

RSSI is getting weaker or if it is detected as being silent, conventional pairing is 
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executed. Here variations can be made, for example, if the RSSI is getting weaker 

over time, the pairing request can be rejected. 

 

Figure 3 Flow chart of the dynamic device pairing algorithm. 

 

3.3 Hidden Markov Model 

HMM is an extension of the Markov chain. Both are used to calculate the 

probability of a sequence of events. The main difference between a Markov chain 

and HMM is that a Markov chain is used for fully observable cases, while HMM is 

used for cases involving hidden sequences [10]. Hidden Markov models can be 

used for pattern recognition applications, such as speech [14], writing [15], and 

body gestures recognition [16]. HMM can be used to solve problems that include 
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learning. HMM can also improve the accuracy of RFID reading sequences for a 

supply chain [17], which is an application similar to this research. 

After the HMM has been successfully trained and modeled, the Viterbi algorithm 

is used to identify its hidden state [9]: 

 𝛿(𝑖) =  max
𝑞1,𝑞2,…𝑞𝑡−1

𝑃[𝑞1, 𝑞2, … , 𝑞𝑡−1, 𝑞𝑡=𝑖, 𝑜1, 𝑜2, … 𝑜𝑡|𝜆] (1) 

where δt(i) is the best series, q(i) is the hidden series, and o(i) is the observable 

series. The calculation follows several steps, namely initialization, recursion, 

termination, and path status. The following is the equation for initialization [9]: 

 δ1(i) = Πibi(o1), 1 ≤ i ≥ N 

 Aґ(1) = 0. (2) 

where Πi is equal to the initial probability, bi(o1) is equal to the first element of the 

observed state probability output, 1 ≤ i ≥ N is the range where i is the state and N is 

the number of states, Aґ (1) is set to 0 and is equal to the first transition probability 

value.  

In the recursive stage, a repetition process is carried out on the process itself using 

the following equation: 

 δt(i) = max [δt-1(i)aij]bj(ot) for 1 ≤ i ≤ N,  (3) 

where t-1(i) is the last time in the time series with state I; aij is the transition 

probability from i to j, and bj is the state that is equal to the density probability.  

In the termination stage the following equation is executed: 

 P* = max [δT(i)] for 1 ≤ i ≤ N.  (4) 

where P* is the decision stage carried out, which is determined from the maximum 

observation sequence value.  

The status path state determines the final output. 

Four metrics were used to measure the performance of the HMM method in 

increasing detection accuracy in dynamic device pairing, namely recall, accuracy, 

precision, and F-measure. The following are the equations for each metric [9]: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

  

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false 

negative. 

4 Result 

To test the success of HMM in increasing detection accuracy in dynamic device 

pairing, a test system was built, consisting of an AP, a smartphone, an IoT platform, 

and an IoT end device. The IoT end device consisted of a NodeMCU 

microcontroller that could send temperature and humidity data to the IoT platform 

[18]. For the smartphone an application was created using Android Studio. The 

system that implements the sequence in Figure 2 was successfully created. 

Furthermore, the algorithm for dynamic device pairing shown in Figure 3 was also 

successfully created. Next, HMM was implemented to improve detection accuracy 

in dynamic device pairing. 

To create the HMM model, a data set was created. A total number of 100 data were 

collected by making 100 smartphone movements on the IoT device. The data set 

was divided into 50 distancing movement data and 50 approaching movement data. 

For each move, the RSSI value before movement and after movement was recorded. 

Table 2 shows the data set specifications. The total amount of data was considered 

representative for testing. Additionally, it must be noted that the data set gathered 

did not contain unreliable data, omitted data, duplicated data, bad labels, or bad 

values. 

Table 2 Dataset specification. 

 Class Name Amount Feature 1 Name Feature 2 Name 

Class 1 Approaching 50 Initial RSSI Final RSSI 

Class 2 Distancing 50   

Total number of data 100   

The data set then went through a training process to form the HMM model. The 

HMM model produced by training can be seen in Figure 4. Figure 4 describes the 

probability of displacement between movements that occurred in the system based 

on the collected test data. 

For testing, two types of motion were used. These movements were labeled as 

approaching or distancing. The approaching and distancing movements were 
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carried out over a distance of 30 cm with a constant speed of motion, namely 0.1 

meter per second in 3 seconds. 

Approaching

Start

RSSI/
Result 1

RSSI/
Result 2

0.5

Distancing

0.5

0.5

0.5

0.41

0.08

0.09

0.42

 

Figure 4 The HMM model. 

Figure 4 is the HMM state used with the initial probability value, the probability 

between movements, and the probability of movement towards RSSI. Two 

movements were used so there were two RSSI results. The initial probability was 

obtained from the value of each movement when it started. The probability between 

movements was obtained from the value of the displacement caused by the 

smartphone’s movement. 

Next, a comparison of the two methods was made. The first method was used to 

identify movements based on the algorithm in the flowchart in Figure 2 and the 

second method was used to identify movements with the HMM model that had been 

created. Both tests used the created data set. The data were classified into TP, TN, 

FP, or FN. Table 2 provides an explanation of each category. 

Table 3 Dataset specification. 

Category Explanation 

TP Actually approaching and predicted as approaching 

TN Actually distancing and predicted as distancing 

FP Actually distancing but predicted as approaching 

FN Actually approaching but predicted as distancing 

The results of the categorization of the two methods are presented in separate 

confusion matrices [19]. The confusion matrix without HMM can be seen in Table 

3 and the confusion matrix with HMM can be seen in Table 4. In Table 4, pairing 

without HMM produced 47 TPs, 28 TNs, 22 FPs, and 3 FNs. The total number of 

predicted positives was 69 and the total number of predicted negatives was 31. 
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Table 4 Confusion matrix without HMM. 

  
Predicted 

P N 

Actual 
P 47 3 

N 22 28 

In Table 5, pairing with HMM produced 47 TPs, 41 TNs, 9 FPs, and 3 FNs. The 

total number of predicted positives was 66 and the total number of predicted 

negatives was 44. 

Table 5 Confusion matrix with HMM. 

  
Predicted 

P N 

Actual 
P 47 3 

N 9 41 

From the results in the confusion matrices in Tables 4 and 5, the performance of 

each method was calculated using the metrics mentioned in Equations (5) to (8). 

The results are compared in the bar chart in Figure 5.  

 

Figure 5 Performance comparison between dynamic device pairing without HMM 

and with HMM. 

The dynamic device pairing with HMM performed better in terms of accuracy, 

precision, recall, and F-measure. Accuracy for dynamic device pairing without 

HMM was 75%, while with HMM it was 88%. Precision for dynamic device pairing 

without HMM was 68.12%, while with HMM it was 83.93%. Recall for dynamic 
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device pairing without HMM was 94%, while with HMM it was 94%. F-measure 

for dynamic device pairing without HMM was 78.9%, while with HMM it was 

88.68%. 

According to our analysis, HMM did not improve recall performance but did 

significantly improve precision. Increasing precision is equivalent to decreasing the 

FP value. When the FP rate, also called the false alarm rate, is high it indicates that 

the predictor is too sensitive in detecting positive values. Thus, HMM was able to 

reduce this sensitivity. 

The increase in accuracy, precision and F-measure when using HMM is because 

HMM is successful in predicting the probability of moving from one state to another 

until it reaches the goal state. The displacement probabilities can be determined by 

looking at the observation variables, namely approaching and distancing. For the 

hidden variable, the RSSI results also have an effect on the calculated displacement 

between states. For example, HMM can be used if someone wants to know the value 

of the probability of displacement from the approaching observation variable 

toward hidden variable RSSI 1. Thus, HMM can improve the prediction accuracy 

of the system proposed in the study. This makes HMM usable for a broader range 

of IoT systems. With HMM, the accuracy of dynamic device pairing can be 

improved. The motivation for implementing dynamic device pairing using HMM 

is to improve the performance of enterprise-scale IoT, for example in smart 

classrooms, smart lighting, smart buildings, and other applications. Considering the 

improved dynamic device pairing performance of the HMM method, in a future 

research this system will be tested on an enterprise-scale IoT system. 

5 Conclusion 

A hidden Markov model was successfully applied to the dynamic device pairing of 

an IoT end device based on changes in RSSI. The tests showed that dynamic device 

pairing with HMM could improve performance compared to dynamic device 

pairing without HMM. The accuracy of dynamic device pairing without HMM was 

68.12%, while it was 83.93% with HMM. In a future work, this method will be 

tested on an enterprise-level IoT system. 
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