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Abstract. Intelligent transport systems (ITS) are a promising area of studies. One 

implementation of ITS are advanced driver assistance systems (ADAS), involving 

the problem of obstacle detection in traffic. This study evaluated the YOLOv4 

model as a state-of-the-art CNN-based one-stage detector to recognize traffic 

obstacles. A new dataset is proposed containing traffic obstacles on Indonesian 

roads for ADAS to detect traffic obstacles that are unique to Indonesia, such as 

pedicabs, street vendors, and bus shelters, and are not included in existing datasets. 

This study established a traffic obstacle dataset containing eleven object classes: 

cars, buses, trucks, bicycles, motorcycles, pedestrians, pedicabs, trees, bus 

shelters, traffic signs, and street vendors, with 26,016 labeled instances in 7,789 

images. A performance analysis of traffic obstacle detection on Indonesian roads 

using the dataset created in this study was conducted using the YOLOv4 method. 

Keywords: ADAS; convolutional neural network (CNN); Indonesian Traffic Obstacle 

Dataset; intelligent transport systems (ITS); YOLOv4. 

1 Introduction 

Nowadays, intelligence transport systems (ITS) such as advanced driver-

assistance systems (ADAS) for self-driving cars are widely used [1,2]. One of the 

challenges in ADAS implementation is obstacle detection, which should be done 

with high accuracy to ensure that the system works well. Prior research focused 

on obstacle detection in ADAS using a monocular camera and odometry [3], 

while other researchers used deep learning in obstacle detection, achieving high 

accuracy [4,5].  

In the last few years, multiple deep learning algorithms, i.e. convolutional neural 

networks (CNN), have been applied to ITS, especially in traffic obstacle detection 

systems. Object detection using deep learning has been done since 2013, when 
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Alex, et al. proposed using convolutional neural networks in object detection [6]. 

It was continued in 2015, when He, et al. [7] applied residual neural networks 

(Resnet) to improve using plain CNN. Meanwhile, the development of Fast 

RCNN [8], Faster RCNN [9], SSD [10], and YOLO [11] improved the 

performance of object detection methods, such as their accuracy and time of 

inference.  

The availability of datasets is one of the determining factors in object detection 

performance. Large-scale image datasets such as ImageNet [12], PASCAL-VOC 

[13], MS COCO [14], GTSRB [15], KITTI [16], SYNTHIA [17], and Urban 

Object Detection [18] have been used by researchers for several purposes, 

including ITS, showing satisfactory performance. However, there remain some 

problems concerning the collection of data for deep learning. Existing datasets 

were built with various approaches and specific needs; hence, when applied to 

special needs it is necessary to use a customized dataset. For example, an urban 

object detection dataset [18] was developed with images from European roads, 

focusing on traffic conditions and seven classes of obstacles, i.e. cars, motorbikes, 

persons, traffic lights, buses, bicycles, and traffic signs. In the Indonesian road 

environment there are obstacles that are not the same as in other countries, such 

as street vendors, pedicabs, bus shelters, unique streets, and others. Therefore, a 

dataset representing Indonesian roads is needed, containing different traffic 

conditions, signs, and obstacles. 

This study created a new traffic obstacle dataset consisting of objects and road 

obstacles in Indonesia to overcome deficiencies in existing datasets, especially 

concerning three new object classes: pedicabs, bus shelters, and street vendors. 

This dataset was used to evaluate the performance of a state-of-the-art deep 

learning method. More specifically the contributions of this study are as follows: 

1. A new Indonesian traffic obstacle dataset was created for further research on 

ADAS with 26,016 labeled instances in 7,789 images. It is divided into 

eleven classes: cars, buses, trucks, bicycles, motorcycles, pedestrians, 

pedicabs, trees, bus shelters, traffic signs, and street vendors. 

2. The proposed dataset was evaluated using YOLOv4 as a state-of-the-art of 

object detection technique based on a CNN one-stage detector.  

The rest of the study is organized as follows: related work is described in Section 

2; the creation of the dataset is explained in Section 3; a discussion of the 

experimental results for evaluation of the Indonesian Traffic Obstacle Dataset is 

presented in Section 4; Section 5 presents the conclusions and further study.  

2 Related Works 

Datasets are important in setting goals for models or methods in deep learning 

research to allow making performance comparisons. Datasets can be used to train 
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and evaluate algorithms for more specific research, hence, they have to deal with 

several challenges. Many datasets have been built, such as ImageNet [12], 

PASCAL-VOC [13], COCO [14], GTSRB [15], KITTI [16], SYNTHIA [17], 

Urban Object Detection [18]. The datasets were developed and evaluated in the 

context of existing problems. ImageNet [12], PASCAL-VOC [13], and COCO 

[14] are large-scale datasets developed for various purposes. These datasets 

contain images with common objects such as animals, vehicles, plants, buildings, 

furniture, etc. in indoor or outdoor environments. Before the training process 

from the image dataset occurs, there are various pre-processing steps that should 

be conducted, such as morphological data filtering [19] and perceptual image 

adaptation [20]. 

Datasets such as GTSRB [15], KITTI [16], SYNTHIA [17], and Urban Object 

Detection [18] have been developed specifically for intelligent transport systems 

containing transportation-related objects such as vehicles, pedestrians, cyclists, 

traffic signs, traffic lights, and miscellaneous objects (e.g. trailers, Segways). The 

determination of objects contained in the dataset is based on the context of the 

problem to be solved and the research location. For example, the GTSRB dataset 

[15] contains 50,000 traffic sign images taken on different road types in Germany.  

The Urban Object Detection Dataset [18] has seven traffic classes (cars, 

motorbikes, persons, traffic lights, buses, bicycles, and traffic signals), which 

were extracted from several different public datasets: PASCAL-VOC [13] 

provided 22%, Udacity [21] provided 65% and it was added with images captured 

in urban environments and on roads in Alicante, Spain. Another example is the 

Traffic Dataset from Linköping University (Sweden) [22]. The size and quality 

of the images in the different datasets is not the same. Therefore, it is necessary 

to balance data augmentation and size reduction, taking into account rotation or 

orientation problems, level of blur, image size (zoom in and zoom out), object 

transformation or position, and other factors.  

Deep learning methods based on a convolutional neural network (CNN) with a 

two-stage detector approach, e.g. SPPNet [23], Pyramid Network [24], RCNN: 

Fast RCNN [8], Faster RCNN [25], or a one-stage detector approach, e.g. YOLO 

[11], YOLOv2 [26], YOLOv3 [27], YOLOv4 [28], SSD [10], RetinaNet [29], 

have begun to be widely applied in the world of computer vision. CNN-based 

deep learning methods are used explicitly for object detection and classification 

systems, including for intelligent transport systems, such as autonomous driving 

or self-driving cars [30], traffic monitoring [31,32], and advanced driver 

assistance systems [33,34].  

One of the deep-learning functions in ITS is to detect objects in the traffic 

environment, such as obstacles, vehicles, pedestrians, traffic signs, and also to 

allow trajectory estimation of moving objects [35]. YOLOv4 is one of the state-
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of-the-art applications of CNN based a one-stage detector released in 2020. 

YOLOv4 improved FPS and average precision (AP) by 12% and 10% compared 

to its predecessor, YOLOv3 [28]. YOLOv4 showed 65.7% AP50 performance in 

training, using the MS COCO dataset, and it is capable of running at speed on a 

real-time system of ∼65 FPS in a Tesla V100. 

3 Constructing Indonesian Traffic Obstacle Dataset 

The Indonesian Traffic Obstacle Dataset consists of eleven object classes: cars, 

buses, trucks, bicycles, motorcycles, pedestrians, pedicabs, trees, bus shelters, 

traffic signs, and street vendors with a total of 26,016 instances obtained from the 

labeling of 7,789 images.  

Figure 1 shows the distribution of the number of image instances for each class 

in the Indonesian Traffic Obstacle Dataset, where each class contains 1,206 to 

4,349 instances.  

 

Figure 1 The Indonesian Traffic Obstacle Dataset contains eleven object classes: cars, 

buses, trucks, bicycles, motorcycles, pedestrians, pedicabs, trees, bus shelters, traffic signs, 

and street vendors. 

The difference between the Indonesian Traffic Obstacle Dataset and other 

datasets lies in three additional object classes: pedicabs, bus shelters, and vendors, 

i.e. traffic obstacles in road conditions unique to Indonesia. Details regarding the 

object classes in existing datasets related to traffic obstacles only are shown in 

Table 1.  
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Table 1 Traffic obstacles around highways in existing datasets. 

Datasets 

Objects Related to Self-driving Car Obstacles 

Pedestrians

/persons 

Bicycles/ 

cyclists 

Motor-

cycles / 

riders 

Cars Buses Trucks Trees 
Traffic 

signs 
Pedicabs 

Bus 

shelters 

Street 

vendors 

ImageNet [12]         - - - 

PASCAL-VOC 

[13] 
     - - - - - - 

MS COCO [14]       -  - - - 

KITTI [16]        - - - - 

SYNTHIA [17]      -   - - -

Urban Object 

Detection [18] 
     - -  - - -

Indonesian 

Traffic Obstacle 

Dataset  

(this work) 

          

Creating the Indonesian Traffic Obstacle dataset for ITS was started by collecting 

images as the first step. The researchers collected images from various streets, 

highways, and public areas in Indonesia. The images were taken from the front 

and rear of a car’s left and right viewpoints. Examples of images can be seen in 

Figure 2.  

 

Figure 2 Object labeling of an image by an annotator. 
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The Indonesian Traffic Obstacle Dataset contains eleven classes: pedestrians, 

traffic signs, street vendors, vehicles (cars, trucks, buses, motorcycles), and other 

objects (bicycles, pedicabs, trees, bus shelters). As the second step, the images 

were pre-processed by doing alpha channel cleaning, making them the same size 

and cleaning them from blur and image damage using CAD tools. The images 

were then annotated using the RectLabel software, a powerful labeling software 

application for RCNN or YOLO. Every object inside the image was given a label 

by annotators [12]. As the third step, the researchers measured the quality of the 

annotations by applying a metric to evaluate the data’s inter-annotator consistency 

[36]. The threshold metrics used were: accuracy, F1-score, and Cohen’s kappa 

coefficient (or kappa in short). F1-score and accuracy disregarded chance 

agreements that are likely occur when people annotate instances. 

We used kappa as a performance metric because of the expected chance 

agreement. Kappa is accepted as the de facto standard for the measurement of 

inter annotator agreement (IAA) [37] as the most well-known degree of rater 

agreement [38]. Cohen’s kappa is defined as: 

 𝐾𝑎𝑝𝑝𝑎 =  
𝑃(𝐴)−𝑃(𝐸)

1− 𝑃(𝐸)
 (1) 

P(E) is the hypothetical probability of agreement by chance (with data labels 

randomly assigned) and P(A) is the observed relative agreement between two 

annotators. A kappa score of 0.81 to 1 indicates almost perfect agreement [19]. 

The researchers used a kappa score for each type of obstacle. As the final result, 

an overall kappa score of 0.853 was obtained, which is higher than the threshold. 

This means that the agreement between the annotators was valid and reflected 

almost perfect agreement. The result of the measurements can be seen in Table 

2. 

Table 2 Dataset evaluation using Kappa score. 

Object type 
Both 

relevant 

Both not 

relevant 

Relevant – not 

relevant 

Not relevant – 

relevant 
Kappa 

Car 3777 53 11 15 0.799 

Motorcycle 4259 59 23 8 0.788 

Tree 2247 36 9 1 0.875 

Street 

Vendor 

1353 16 4 0 0.887 

Pedestrian 2919 31 10 10 0.752 

Truck 1493 19 3 0 0.925 

Bus 1456 28 2 1 0.948 

Traffic sign 1862 28 2 4 0.901 

Bicycle 3033 46 15 9 0.789 

Pedicab 1180 23 3 0 0.937 

Shelter bus 1927 27 8 6 0.791 

Overall Kappa Score 0.853 
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Below is an example for calculating the kappa score (for the car class): 

 𝐾𝑎𝑝𝑝𝑎 =  
𝑃(𝐴)−𝑃(𝐸)

𝑃(𝐸)−1
  

 𝑝𝐴 =  
3777+53

3856
= 0.99  (2) 

 𝑃(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) =
(3777+11)

3856
𝑥

(3777+15)

3856
= 0.96606 (3) 

𝑃(𝑛𝑜𝑡) =
(11+53)

3856
𝑥

(15+53)

3856
= 0,000293  (4) 

𝑃(𝑒) =  𝑃(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡) +  𝑃(𝑛𝑜𝑡) =  0.966606 + 0.000293 = 0.966353   (5) 

 𝐾𝑎𝑝𝑝𝑎 =
𝑃(𝑎)− 𝑃(𝑒)

1− 𝑃(𝑒)
=  

0,993257−0,966353

1−0,966353
= 0.7996034   (6) 

4 Experiments and Results 

This study aimed to design a reliable advanced driver assistance system (ADAS) 

that can recognize objects around vehicles on roads in Indonesia to warn drivers. 

For this purpose, the researchers used the YOLOv4 model [28] as a state-of-the-

art CNN-based one-stage detector to recognize eleven object classes: cars, buses, 

trucks, bicycles, motorcycles, pedestrians, pedicabs, trees, bus shelters, traffic 

signs, and street vendors. This study focused on the best performing model, 

YOLOv4, using the CSP-DarkNet53 framework.  

In object or obstacle detection, high precision is not the only requirement. We 

need a model that can run on edge devices easily and processing input video in 

real-time with low-cost devices is also important. Thus, YOLOv4 was recently 

introduced for optimal speed (FPS) and accuracy (average precision) in object 

detection. It claims to have cutting-edge precision while keeping up high 

processing frame rates. Figure 3 shows the object detector architecture of 

YOLOv4. 

 

Figure 3 YOLOv4 object detector architecture, modified from [28]. 

This architecture contains CSP-DarkNet53 on the backbone, SPP and PAN on the 

neck, and YOLOv3 on the head:, which means that it performs dense prediction 
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as in one-stage detectors. Cross-Part-Partial Connection (CSPNet) with 

DarkNet53, which is called the CSP-Darknet53 model, has higher precision in 

object detection compared to ResNet. It can partition the setting of any significant 

feature while maintaining the network operating speed. 

The CNN assets built were tested with several parameters over 8000 iterations, 

64 batches, and 16 subdivisions. In this study, 256 neurons were used in dense 

layers consisting of five convolutional layers, followed by max-pooling layers, 

and three fully-connected layers with 8-way softmax and 2000 epochs. In order 

to reduce overfitting on fully connected layers, the researchers used the dropout 

regularization method. To make the testing faster, non-saturating neurons were 

used with very efficient implementation of GPU convolution operations. This 

architecture was used based on the maximum values of precision, recall, F1-

score, and mAP. The data training process was divided into three parts: 70% for 

training, 15% for testing, and 15% for validation. To find out the results of the 

YOLOv4 testing model with the Indonesian Traffic Obstacle Dataset (ITOD), the 

researchers used four measurement parameters, namely precision, recall, F1-

score, IoU (intersection over union), and mean average precision (mAp). The 

results are presented in Table 3. 

Table 3 Average evaluation if YOLOv4 on ITOD. 

Average YOLO v4 

Precision 76% 

Recall 82% 

F1-score 79% 

IoU (threshold = 0.5 ) 63.47% 

mAP@0.50 81.41% 

Table 3 above indicates that our datasets produced outstanding performance using 

deep learning for a CNN-based stage detector. The mAP50 was 81.41%, which is 

higher than the YOLOv4 baseline [27], whereas the MS COCO dataset achieved 

an AP50 of 65.7%. The distribution of AP per class is depicted in Table 4.  

Table 4 shows the AP in detail for each class, indicating very robust classification 

for obstacle detection. The bus shelter, pedestrian, bicycle, and car classes had an 

AP of more than 85%, while the class with the lowest accuracy was the tree class, 

with an AP of 61.12%. After observing the classes, the researchers noticed that 

the mAP for the four classes of bus shelters, bicycles, pedestrians, and cars was 

better than that for the other classes because of better image quality, more varied 

poses or shooting angles, even object size, and better partiality factor. For the tree 

class, one problem encountered was that the dataset has a very large size, resulting 

in low accuracy. Tree images have a relatively large size and can even be 

exhaustive; hence the number of instances of this class has no significant positive 

effect on the accuracy. 
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Table 4 Accuracy achieved by YOLOv4 for 11 classes. 

Class AP % 

Cars 85.1 

Motorcycles 79.58 

Trees 61.12 

Street vendors 94.6 

Pedestrians 87.89 

Trucks 74.58 

Buses 89.64 

Traffic signs 76.28 

Bicycles 94.78 

Pedicabs 71.91 

Bus shelters  93.72 

Finally, to ensure that the YOLOv4 model built with the Indonesian Traffic 

Obstacle Dataset (ITOD) could be implemented in real-time for ADAS, this study 

conducted model testing with an on-road video captured in Bandar Lampung city, 

lasting for 39 minutes and 19 seconds. The instances of a low AP often tended to 

be related to hidden objects. Figure 4 shows the results of YOLOv4 model testing 

to detect obstacles on the road. Moreover, Figure 5 shows the false positives and 

false negatives from the YOLOv4 model for detection of the tree class in real-

time video.  

After observing the testing result, our YOLOV4 models based on CSP-

DarkNet53 using the Indonesian Traffic Obstacle Datasets (ITOD) met the 

requirements of providing information on obstacles or objects around the vehicle 

for ADAS. 

 

Figure 4 Accurate detection and recognition of all obstacles in a frame. 
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Figure 5 Detection results of tree class. Left: false negative; right: false positive. 

5 Conclusion and Recommendation for Future Study 

In this study, the researchers created the new Indonesian Traffic Obstacle Dataset 

(ITOD) for Intelligence Transport System (ITS), specifically for ADAS. The 

dataset consists of eleven classes, i.e. cars, buses, trucks, bicycles, motorcycles, 

pedestrians, pedicabs, trees, bus shelters, traffic signs, and street vendors. The 

dataset validity was measured using the kappa score with a result of 0.853, which 

is higher than the threshold. This study found that the dataset is valid and can be 

used in YOLO and PASCAL VOC format, which consist of more than one 

thousand objects per class.  

The researchers tested a state-of-the-art CNN-based one-stage detector, namely 

YOLOv4, over DSP-DarknNet53 using ITOD, to determine this model’s 

performance in detecting traffic obstacles on Indonesian roads. YOLOv4 

achieved a sufficiently high mAP, estimated at 81.41; hence, this model can be 

utilized in real-time ADAS. Future study is recommended to enrich the dataset by 

adding obstacle images taken during rainy weather, the morning, evening and 

night time. The researchers plan to split the traffic signs dataset into separate 

datasets and will use the same process in this study and expand the dataset. 
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