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Abstract. Tunnel settlement has a significant impact on property security and 
personal safety. Accurate tunnel-settlement predictions can quickly reveal 
problems that may be addressed to prevent accidents. However, each acquisition 
point in the tunnel is only monitored once daily for around two months. This 
paper presents a new method for predicting tunnel settlement via transfer 
learning. First, a source model is constructed and trained by deep learning, then 
parameter transfer is used to transfer the knowledge gained from the source 
model to the target model, which has a small dataset. Based on this, the training 
complexity and training time of the target model can be reduced. The proposed 
method was tested to predict tunnel settlement in the tunnel of Shanghai metro 
line 13 at Jinshajiang Road and proven to be effective. Artificial neural network 
and support vector machines were also tested for comparison. The results 
showed that the transfer-learning method provided the most accurate tunnel-
settlement prediction. 
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1 Introduction 
In recent years, artificial intelligence, especially deep-learning technology, has 
achieved great success in many different fields, such as the internet industry, the 
financial sector and the education industry. Meanwhile, the interaction between 
deep learning and the manufacturing industry is also becoming more intense. 
Deep-learning models like Convolutional Neural Network (CNN), Recurrent 
Neural Network (RNN), Restricted Boltzmann Machine (RBM) and Auto 
Encoder (AE) have been successfully applied to prognostics and health 
management of mechanical equipment [1].  

These methods are used to handle various problems among all sorts of machine 
components. Li [2] used RBM as a deep statistical feature extraction tool for 
both gearbox and bearing systems; the fault classification performances in the 
experiments were 95.17% and 91.75%, respectively. This shows that deep 
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learning with statistical feature extraction has interesting improvement potential 
for diagnosing rotating machinery faults. Obst [3] presented a distributed 
recurrent neural network architecture that learned spatio-temporal correlations 
between different sensors and made use of the learned model to detect 
anomalous sensors by using distributed computation and only local 
communication between nodes. What is more, some companies that focus on 
combining deep learning and manufacturing have been established, as typified 
by Landing.ai, which is aimed at providing AI brains for manufacturing 
companies. 

As we all know, metro systems provide great convenience to people who need 
transportation. However, tunneling metro tunnels is not an easy task. Usually 
metro tunnels are tunneled using a shield machine, which is a kind of 
construction equipment dedicated to tunnel construction. A tunnel constructed 
by the shield method is called a shield tunnel. During the process of tunneling 
using the shield method there is an extremely important parameter, called 
surface settlement, which is used to measure the degree of ground subsidence. 
Large surface settlement affects the safety of the shield construction and the 
normal use of surrounding buildings, so monitoring and prediction of surface 
settlement values is essential. Many researches concerning surface settlement of 
tunnels have been done. Wei [4] put forward a prediction model of long-term 
uneven settlement in tunnels on the basis of ant colony algorithms. They tested 
the model by comparing the predicted data with the measured data and the 
results showed that the established prediction model proved to be accurate, easy 
to operate and adaptable.  

Fan [5] proposed an adaptive multiple kernel learning (AMKL) method to 
improve the prediction precision of support vector machine (SVM). They used a 
tree structure to screen the kernels. This process could be done with 
manipulation of growing and cutting branches for adding and multiplying 
kernels in each layer. At the same time they used grid traversal and particle 
swarm optimization to solve optimization problems of the kernel parameters, 
the weight coefficient and the model parameters. The result showed that AMKL 
could effectively improve accuracy. Goh [6] utilized a multivariate adaptive 
regression spline approach to establish relationships between the maximum 
surface settlement and the major influencing factors. Majedi et al. [7] expected 
the estimates of ground settlement to fall into experimental, analytical and 
numerical groups. In their study, an estimate of ground settlement caused by 
tunneling was first investigated through experimental and analytic procedures.  

However, there is a difficulty in predicting tunnel settlement that can never be 
ignored. Because there is a complex nonlinear relationship between tunnel 
settlement and many uncertain random factors, it is difficult to use a certain 
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relationship for the description. Fortunately, deep-learning technology has a 
strong non-linear fitting capability and thus offers new ideas when trying to 
predict tunnel settlement more accurately. This paper presents a new method to 
predict tunnel settlement via transfer learning. The target prediction model built 
by deep learning can be trained by knowledge transferred from the source 
model. The method was applied to predict tunnel settlement in the Shanghai 
metro line 13 tunnel at Jinshajiang Road. Comparing the predictions among 
transfer learning, ANN, and SVM, the transfer learning method was proven to 
be highly effective in accurately and timely predicting tunnel settlement. 

2 Transfer-Learning Method 
Usually deep learning requires a large amount of high-quality data, which are 
not always available, such as settlement values in the case under study. Under 
this circumstance, transfer learning may provide a solution. Transfer learning is 
a research problem in machine learning that focuses on storing knowledge 
gained while solving one problem and applying it to a different but related 
problem [8]. The differences between deep learning and transfer learning is that 
deep learning tries to learn each task from scratch, while transfer learning tries 
to transfer knowledge from a previous task to a target task when the latter has 
fewer training data. Combining deep-learning technology with transfer-learning 
technology can be useful even with small data volumes. For example, 
knowledge gained while learning to recognize cats could be applied when trying 
to recognize dogs. 

2.1 Transfer-Learning Theory 
First we give an explanation of the transfer-learning process in simple words. 
The core thought of transfer learning is to help improve the learning of the 
target task using knowledge gained in dealing with a related problem. As shown 
in Figure 1, there is a target dataset, including feature vectors and labels. The 
target task is to establish the mapping relation between the feature vectors and 
labels; this mapping relation is called the target model. Unfortunately, in some 
cases we do not have enough data to establish an accurate mapping relation, i.e. 
the target task cannot be executed successfully with only a small amount of 
target data. Thanks to a related problem that has a large amount of data, the 
target task can still be handled. Knowledge gained from the training process of 
the source model is transferred to deal with the target task. In this way we can 
get a satisfactory target model. 

According to Ref. [9], there are four kinds of transfer learning: instance transfer, 
feature-representation transfer, parameter transfer, and relational-knowledge 
transfer. Instance transfer is used to re-weight labeled data in the source domain 



 Tunnel Settlement Prediction by Transfer Learning 121 

for use in the target domain. Feature-representation transfer is used to find a 
‘good’ feature representation that reduces the difference between the source and 
the target domains and the error of classification and regression models. 
Parameter transfer is used to discover shared parameters or priors between the 
source domain and the target domain models, which can be beneficial for 
transfer learning. Relational-knowledge transfer is used to build a mapping of 
the relational knowledge between the source domain and the related target 
domain. 

 
Figure 1 Transfer learning. 

Our study was carried out using parameter transfer. Using parameter transfer, 
there is no need to train the model with a large amount of data because the 
parameters transferred from the source model allow for an accurate prediction 
model with a small training dataset. Additionally, parameter-transfer can be 
conveniently combined with deep learning to decrease the training complexity 
and shorten the training time of the deep neural network. 

2.2 The Reason for using Transfer Learning 
When monitoring tunnel settlement, data acquisition is the first step. Usually, a 
tunnel has many acquisition points and these acquisition points are measured 
once a day. The number of acquisition points grows during the tunneling 
process and each acquisition point is monitored for around two months until its 
settlement value point tends to be stable. What we wanted to achieve in this 
study was to predict tunnel settlement using data that have already been 
obtained. 

Deep-learning algorithms, especially RNNs, are good at dealing with time-
series data such as tunnel-settlement values because of its strong non-linear 
fitting capability. Modified RNNs such as long short-term memory (LSTM) and 
gated recurrent unit (GRU) have been proposed for application to time-series 
prediction [10,11]. Deep-learning algorithms require a large amount of data, but 
each acquisition point only generates about 60 data points, which is not enough 
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for training a deep neural network. Luckily we have plenty of acquisition points 
and they have the same task, so transfer learning can solve this problem 
effectively owing to the fact that the related problem has a large amount of data. 
On account of all acquisition points having the same task, it is preferred to 
transfer parameters rather than instances or features. Thus, parameter transfer is 
the better choice. 

3 Modeling Approach 
The modeling process of tunnel-settlement prediction using transfer learning is 
shown in Figure 2. In transfer learning there is a source task and a target task. 
The source task is used to aid in the learning of the target task [12]. The first 
step is collecting as many data as possible from the acquisition points to build 
the source dataset.  

Then an appropriate deep neural network is constructed as the prediction model. 
The model is trained using the source dataset until it meets the precision 
requirements and we can get the source model. After that, the parameters gained 
are transferred from the source task, including weights and bias, to the target 
task. These parameters are kept unchanged and the target model is trained using 
the target dataset until it meets the precision requirements.  

Finally, the target model can be used to predict tunnel settlement. Figure 2 
shows a detailed explanation of this process. 

 
Figure 2 Modeling process. 
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3.1 Data Acquisition 
The number of acquisition points becomes increasingly bigger as the tunneling 
process proceeds, but the measurement of each single acquisition point will be 
stopped when the settlement value tends to be stable, which takes about two 
months. It is necessary to collect source data from as many acquisition points as 
possible. It is equally important to collect source data from the beginning to the 
stable state of each single acquisition point in order to ensure their integrity and 
comprehensiveness. Only in this way can we get a high-quality source dataset. 

3.2 Model Construction 
When using deep learning to predict tunnel settlement it is fundamental to build 
an appropriate deep neural network. A deep neural network is an artificial 
neural network (ANN) with multiple hidden layers between the input and the 
output layer that can model complex non-linear relationships. For constructing a 
deep neural network, a number of elements have to be determined: basic 
architecture of the network, number of hidden layers, number of neuron cells in 
each layer, and activation functions between different layers. 

Tunnel-settlement values are time-series data, so using RNN as the basic 
architecture of the deep neural network is a good choice. RNN is characterized 
by the presence of cycles in a graph of interconnections; it models temporal 
dependencies of unspecified duration between the inputs and the associated 
desired outputs by using an internal memory that captures what has already 
been calculated. The memory is coded by recurrent connections and the outputs 
of the neurons themselves. 

3.3 Training the Source Model 
Using the source dataset to train the source model is the goal in this step. The 
source model is built based on the deep neural network architecture, so the 
model is trained using the training methods for deep learning. First, add the 
initialization parameters to the model and then do forward propagation to 
calculate the output. For comparing this output with labeled data, a loss function 
has to be determined. A loss function is a function that maps an event or values 
of one or more variables onto a real number, intuitively representing some 
‘cost’ associated with the event. The training process will not stop until the 
‘cost’ is below a predefined threshold value. 

The most commonly used loss function is mean squared error. After getting the 
‘cost’, do backward propagation to update the parameters. During backward 
propagation an optimizer is necessary, which aims to find the best available 
values of some objective function, given a defined domain. Frequently used 

https://en.wikipedia.org/wiki/Real_number
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optimizers are stochastic gradient descent optimizer, RMSprop optimizer, and 
Adam optimizer. After updating the parameters, repeat forward propagation, 
loss calculation, backward propagation, and parameter updating until the model 
meets the precision requirements or reaches the maximum number of iterations. 
This training process can be accomplished more efficiently by means of deep-
learning libraries like Tensorflow or Keras. 

3.4 Knowledge Transfer 

Knowledge transfer is vital to train the target model. Parameter transfer plays 
the role of a porter who transfers the parameters containing weights and bias 
from the source model to the target model in order to fulfill the target task. As 
shown in Figure 3, a weight matrix and a bias matrix of the source model are 
available after training. Each layer except the output layer has its own weight 
and bias, for example, the first layer’s weights and bias are w1 and b1, 
respectively. Because the source model and the target model share the same 
model construct, the weight and bias values from some layers of the source 
model can be transferred directly to the corresponding layers of the target 
model. Thus, the first layer’s weights and bias of the target model are also w1 
and b1, and the same applies for the other layers. 

 
Figure 3 Parameter transfer. 

3.5 Training the Target Model 
Via parameter transfer, the target model has been given the weights and bias of 
a small number of layers, so the training complexity and training time can be 
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reduced significantly. The parameters transferred from the source model are 
constants through the whole training process, which is to say that only a few 
layers need to be trained. The training method is the same as the method for 
training the source model, which consists of four steps: forward propagation, 
loss calculation, backward propagation, and parameter updating, and repeating 
until the target model meets the precision requirements or reaches the maximum 
number of iterations. 

By parameter transfer, the target model can be trained using a small amount of 
data owing to the related problem, which shares the same task and the same 
model construct. Once the remaining parameters have been determined, the 
target model can be used to predict values of tunnel settlement. 

4 Case Implementation 
In this study, tunnel-settlement data were measured at the Shanghai metro line 
13 tunnel at Jinshajiang Road. Shanghai is located in China’s soft soil region, 
which features high moisture content, large voids, and high compressibility; 
settlement and deformation phenomena are highly likely in its tunnels [13]. The 
source dataset consisted of settlement data from 2000 acquisition points, which 
were collected once daily for 50 consecutive days. As an example, Table 1 
shows the settlement data from one acquisition point. Our goal was to predict 
another set of acquisition point data, which were only measured for 20 
consecutive days (Table 2) using the knowledge from the source model. 

Table 1 Tunnel settlement data from one acquisition point. 

No. Measured 
value (mm) No. Measured 

value (mm) No. Measured 
value (mm) No. Measured 

value (mm) 
1 0.70 14 35.56 27 48.87 39 60.34 
2 1.07 15 37.38 28 50.02 40 61.78 
3 1.18 16 38.47 29 51.48 41 62.60 
4 6.78 17 39.52 30 53.02 42 63.05 
5 13.68 18 41.59 31 54.89 43 63.45 
6 16.74 19 42.33 32 56.87 44 65.87 
7 20.58 20 42.69 33 57.27 45 66.19 
8 23.11 21 42.77 34 58.34 46 66.90 
9 25.89 22 44.69 35 59.09 47 67.63 
10 28.45 23 44.90 36 59.20 48 68.97 
11 30.20 24 45.80 37 59.82 49 70.41 
12 31.82 25 46.65 38 59.97 50 70.43 
13 33.87 26 47.97     
 

 



126 Qicai Zhou, et al. 

Table 2 Tunnel settlement data from the target task. 

No. Measured 
value (mm) No. Measured 

value (mm) No. Measured 
value (mm) No. Measured 

value (mm) 
1 37.9 6 43.7 11 48.8 16 55.7 
2 38.7 7 43.4 12 49.6 17 56.6 
3 40.3 8 46.0 13 50.0 18 57.9 
4 41.8 9 46.3 14 52.5 19 58.8 
5 43.0 10 47.9 15 54.6 20 59.9 

As shown in Figure 4, we next distilled each six consecutive data points as a 
single instance of the sample dataset. After securing each single instance, we 
removed the first data point and added a data point after the sixth data point to 
form a new single instance, and so on. This ensured that at least five data points 
of the previous single instance were the same as the first five data points of the 
last single instance. 

 
Figure 4 Dataset partition. 

We established the prediction model based on the RNN architecture and 
replaced the simple unit of RNN by GRU in order to enhance the accuracy of 
the prediction. GRU has two gates: reset gate r and update gate z. The function 
of the reset gate is to determine how to combine the new input with the previous 
memory. The update gate functions to determine how much of the previous 
memory has to be retained. Each hidden unit has separate reset gates and update 
gates and can learn to capture dependencies over different time scales. These 
characteristics allow GRU to make each recurrent unit adaptively capture 
dependencies of different time scales. 

GRU’s structure is shown in Figure 5, where 𝑥𝑡 represents the input matrix at 
time t, 𝑟𝑡 represents the reset gate at time t, 𝑧𝑡 represents the update gate at time 
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t, ℎ𝑡�  represents the candidate activation at time t, and ℎ𝑡 represents the actual 
activation at time t. These parameters can be calculated by 

 𝑧𝑡 = ∅(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) (1) 

 𝑟𝑡 = ∅(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) (2) 

 ℎ𝑡� = ∅[𝑊𝑥𝑡 + 𝑈(𝑟𝑡 ⊙ ℎ𝑡−1)] (3) 

 ℎ𝑡 = 𝑧𝑡ℎ𝑡−1 + (1 − 𝑧𝑡)ℎ𝑡�  (4) 

where W and U are the weight matrices, and ∅(∗)  refers to the activation 
function. 

 
Figure 5 Gated recurrent unit. 

We built a network for tunnel-settlement prediction with one input layer, two 
hidden layers, and one output layer. As Figure 6 shows, the first hidden layer is 
a GRU layer of ten neurons with a rectified linear unit (ReLU) activation 
function and the second hidden layer is also a GRU layer of five neurons with a 
ReLU activation function. The output layer is a fully connected layer of one 
neuron. The input layer feeds into the first GRU layer, which in turn feeds into 
the second GRU layer and then feeds into the output layer, which finally 
outputs the prediction of the next time step. The sample data set is input into the 
input layer. Then nonlinearity is applied and high-dimensional features are 
extracted by the hidden layers. Through this model, any settlement value can be 
predicted by the previous five. 

The proposed tunnel-settlement prediction model was established in the Keras 
library for Python. Keras is a high-level neural network API capable of running 
on top of TensorFlow, CNTK or Theano; it enables fast experimentation and is 
minimal, modular, and extensible. A loss function and optimizer are necessary 
for training a model. We used mean squared error as the loss function and 
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Adam as the optimizer. Meanwhile we set the batch size equal to 64 and used 
100 epochs after testing several parameters. After the training step, we got the 
parameters of the source model, including a weight matrix and a bias matrix, 
and these parameters were the knowledge that would be transferred to the target 
model. 

 
Figure 6 Deep neural network for tunnel settlement prediction. 

We collected tunnel-settlement values of the target acquisition points for 20 
consecutive days. In this case, we took the first 16 settlement values as known 
and the latter 4 settlement values as to be predicted. Because there is a high 
similarity in the settlement at these acquisition points, the source model and the 
target model can share the same task. Thus, the knowledge learned from the 
source task can be applied to the target task [14]. Considering the small target 
dataset, we assigned the parameters transferred from the source model to the 
input layer and the first hidden layer of the target model during the training 
process of the target model. Hence, we only had to train the second hidden 
layer. For the second hidden layer and output layer, the weights were initialized 
by Glorot initialization and the bias was initialized by all-zero initialization. The 
number of layers that did not use knowledge from the source model was 
determined by the control variable method. Similarly, we used Keras to 
establish the prediction model and used mean squared error as the loss function 
and Adam as the optimizer. This time we set the batch size to 1 and used 100 
epochs to train the target model. We then applied the trained model to predict 
the last 4 settlement values of the target acquisition point. 

5 Results and Discussion 
As described above, we obtained the predicted values from the target model, 
which had been trained through parameter transfer. We also tested Artificial 
Neural Network and Support Vector Machine to predict tunnel settlement based 
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on the same target dataset for comparison against the proposed method. ANN is 
a computing system that can learn tasks by considering examples, generally 
without task-specific programming. SVM is a supervised learning model with 
associated learning that analyzes data for classification and regression analysis. 
Table 3 shows the tunnel-settlement measurements and predictions obtained by 
the three methods as well as their corresponding errors. 

Table 3 Prediction results of tunnel settlement. 

No. 

Measured 
value 
(mm) 

Transfer learning ANN SVM 

Predictions 
(mm) 

Relative 
error 
(%) 

Predictions 
(mm) 

Relative 
error 
(%) 

Predictions 
(mm) 

Relative 
error (%) 

17 56.6 56.835 0.415 56.218 0.675 57.453 1.507 
18 57.9 57.734 0.287 57.667 0.402 56.115 3.083 
19 58.8 59.023 0.379 59.339 0.917 59.706 1.541 
20 59.9 59.925 0.042 60.450 0.918 59.371 0.883 

Table 2 shows information that can be used to judge the performance of the 
three methods. The maximum relative error of the 4 predicted values by using 
parameter-transfer was 0.415% and the minimum relative error was 0.042%. 
The maximum and minimum relative errors by using ANN were 0.918% and 
0.402%. The effects of SVM were the worst among all three methods, with 
maximum and minimum relative errors of 3.083% and 0.883%, respectively. 
The average relative errors of parameter-transfer, ANN, and SVM were 
0.281%, 0.728%, and 1.753%, respectively. Obviously, the parameter-transfer 
method yielded the lowest average predictive error of all the methods tested. 
The data were plotted as shown in Figure 7 and the relative error of the three 
methods was plotted as shown in Figure 8 to display these differences clearly 
and intuitively.  

  
Figure 7 Comparison of tunnel settlement prediction results. 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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The measured values are marked in blue, the transfer-learning predictions in 
red, the ANN predictions in green, and the SVM predictions in purple. The red 
curve and the blue curve almost coincide with each other, which illustrates the 
accuracy of the transfer-learning predictions. The green curve performance after 
the red curve means that the ANN predictions are not bad. The fluctuating range 
of the purple curve is higher, which indicates that the SVM predictions are 
relatively inaccurate. 

In the bar graph below, the relative error of the transfer-learning model is shown 
in blue, that of ANN is in red, and that of SVM is in green. The parameter-
transfer method got the best results as the total relative errors of parameter-
transfer, ANN, and SVM were 1.123%, 2.912%, and 7.014%, respectively. 

 
Figure 8 Comparison of relative error among the three methods. 

6 Conclusion 
This paper presented a tunnel-settlement prediction method based on transfer 
learning. The use of a deep neural network trained via parameter transfer was 
found to provide highly accurate settlement predictions; the parameter-transfer 
method transfers knowledge gained from the source model to the task model in 
order to decrease the training complexity and reduce the training time. The 
target dataset was used to train the target model, which could then output 
predictions. We tested ANN and SVM for comparison and found that the 
transfer-learning method provided the most accurate tunnel-settlement 
predictions, with an average relative error of only 0.281%. 
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