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Abstract. Defect detection and characterization plays a vital role in predicting 
the life span of materials. Defect detection using appropriate inspection 
technologies at various phases has gained huge importance in metal production 
lines. It can be accomplished through wise application of non-destructive testing 
and evaluation (NDE). It is important to characterize defects at an early stage in 
order to be able to overcome them or take corrective measures. Pulse 
thermography is a modern NDE method that can be used for defect detection in 
metal objects. Only a limited amount of work has been done on automated 
detection and characterization of defects due to thermal diffusion. This paper 
proposes a system for automatic defect detection and characterization in metal 
objects using pulse thermography images as well as various image processing 
algorithms and mathematical tools. An experiment was carried out using a 
sequence of 250 pulse thermography images of an AISI 316 L stainless steel 
sheet with synthetic defects. The proposed system was able to detect and 
characterize defects sized 10 mm, 8 mm, 6 mm, 4 mm and 2 mm with an average 
accuracy of 96%, 95%, 84%, 77%, 54% respectively. The proposed technique 
helps in the effective and efficient characterization of defects in metal objects. 

Keywords: defect size; detection; pulse thermography; stainless steel; thermal 
diffusion. 

1 Introduction 
The metal production industry is the backbone of India’s economy. In order to 
produce more value-added products it is necessary to take product quality 
control into consideration. Predominant occurrence of defects in metal objects 
during manufacture leads to losses. To improve the metal production process it 
is necessary to use advanced technologies and practices, one of which is 
applying automated defect detection and characterization on metal objects. A 
defect is a flaw in a product or a part of a product that fails to meet the 
minimum applicable acceptance specifications, benchmarks and standards. 
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During manufacture – i.e. fabrication, assembly, and servicing – some materials 
may incur defects. Some of these may be inherent to the nature of the material. 
Defects can be classified into two types, i.e. surface defects and subsurface 
defects. Surface defects are defects that are visible in the upper layer of the 
object. Subsurface defects reside in the inside layer of the object. Cracks, spots, 
edges, pinholes and scratches are the most commonly occurring types of defects 
in metal objects. Defect detection on metal objects can be done using various 
NDE techniques. Magnetic particle testing (MPT), radiographic testing, 
ultrasonic testing, visual testing, thermographic testing, and eddy current testing 
are some examples of NDE techniques. Thermographic inspection is used for 
NDE of parts and materials by analyzing thermal patterns on the object’s 
surface [1,2].  

Thermography refers to all available techniques in thermographic inspection, 
irrespective of the phenomena used for monitoring the thermal change rate. 
Various thermographic inspection methods are available for defect detection, 
among others pulse phased thermography (PPT), thermal signal reconstruction, 
partial least square thermography, principal component thermography, higher 
order statistics. Infrared thermography (IRT) is one of the most popular and 
advanced NDE technologies. It has gained wide application due to its capability 
of covering a large area in a small amount of time. It delivers a complete non-
contact field image. IRT is considered safe because it does not involve harmful 
or hazardous radiation in contrast to radiography for instance.  

Due to the increased prominence of defect detection and characterization, some 
new techniques have been introduced, such as lock-in thermography (LT) and 
pulse thermography (PT).  

In LT, a modulated light source is used to continuously heat up the material, 
which will result in thermal waves on the surface of the material. This thermal 
wave pattern is continuously monitored via thermal imaging. For each pixel, a 
Fourier analysis is carried out in order to obtain amplitude and phase images.  

PT is an advanced NDE technique that can be used in defect detection. In PT, 
the surface of the specimen or testing material is excited by a short heat pulse 
and the temperature response of the material is monitored using infrared 
cameras. The temperature response pattern will differ in a defective area 
compared to a non-defective area and thus the thermal response provides 
information about material defects.  

Automation plays an important role in the modernization of production lines 
and it also enables to meet the standards of the global market [3]. This paper 
presents a novel automated system for defect detection and characterization of 
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metal objects using pulse thermography images and various image processing 
techniques. 

2 Related Work 
This section discusses image processing techniques for image preprocessing, 
defect detection and characterization. Image preprocessing is an important 
phase before performing any operations on the images because most of the 
images contain noise, blurring and imperfections related to brightness and the 
geomagnetic values of the pixels.  

Adatrao, et al. [4] presents an overview and analysis of two filters and some 
image segmentation techniques, specifically comparing median filtering and 
Wiener filtering. They investigated image segmentation methods such as 
Prewitt, Sobel, Roberts, LoG (Laplacian or Gaussian), basic global and Otsu’s 
global thresholding, and canny edge detection. Finally, they carried out a 
qualitative comparison of the results by visual inspection. Castanedo, et al. [5] 
discuss various techniques and methods, such as radial distortion correction, 
noise smoothing, pixel enhancement, pulse phased thermography (PPT) and 
principle component analysis (PCA), which they used to carry out data analysis. 
They also present various factors that cause quality degradation in an image, 
such as fixed pattern noise, vignetting, radial restoration and finding dead 
pixels. Pulse thermography images are affected by quality degradation with 
respect to time. Shepard, et al. [6] illustrated a novel thermal signal moderniza-
tion technique to classify longitudinal non-uniform and chronological noise 
constituents present in an image. This classification helps to reduce 
chronological and non-uniform image noise. A significant decrease in the data 
structure size allows simultaneous processing of multiple data sequences and 
analysis. The technique works well with small datasets but is only moderately 
applicable to larger datasets. Forstner [7] discusses image preprocessing for 
feature extraction in color, digital intensity and range images. He used a signal 
dependent noise variance function to remove noise from the image. 

Defects fall into various categories. After successful detection it is necessary to 
classify them based on several factors, for example type and size. Aarthi, et al. 
[8] implemented a novel method for a detailed analysis of surface defects using 
the wavelet transform. It uses a subband coding algorithm for feature extraction. 
Statistical analysis is carried out based on mean, standard deviation, variance 
and skewness of the acquired image. They conducted a comparative study on 
the Daubechies and Haar wavelets. The quality and reliability of the tests 
carried out using the wavelet transform were substantially affected by false 
signals and noise.  
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IRT is an advanced NDE technology that has gained renown due to its 
capability to cover a large area in a small amount of time. Milovanovi, et al. [9] 
present a review on active infrared thermography (IR) for defect detection. They 
give a brief summary of active IR, various post-processing methods and key 
equipment required for thermogram analysis. Their method worked well with 
the experimental dataset. Additional research could be done to prove the 
feasibility of the system in real-time defect detection. Zheng, et al. [10] imple-
mented an automatic defect detection application by using segmentation 
techniques on pulsed thermographic images. Defect detection was done in an 
experiment by making use of the Laplacian eigenmap algorithm and a carbon-
fiber-reinforced plastic (CFRP) sample. The results were used to prove the 
feasibility of the algorithm. The paper focused more on segmentation. Sun [11] 
demonstrated the use of four defect detection methods, i.e. the logarithmic peak 
second derivative method, the peak temperature constant method, the peak 
temperature contestant slope method and least square fitting. It was proved that 
the four methods provide good accuracy and converge to the theoretical solution 
under ideal conditions. The methods also detected defects accurately with a 
significant 3D conduction effect. Almond, et al. [12] implemented a Wiener-
Hopf technique for investigating thermal edge effects on minute imperfections. 
However, the smallest size of the defects it can successfully detect is not 
mentioned. The technique fails when the defect area is overlapped by 
intersecting edges. 

The method proposed by Saintey, et al. [13] utilizes a mathematical finite modi-
fication technique to minimize imperfect sizing issues. They also examined 
severity, size, penetration and material properties. This method evidences a 
strong dependency on the full width at half maximum (FWHM) measurements 
for severity, diameter, crack depth, diameter and the material’s thermal 
properties. The system can measure size only for these properties. Wysocka, et 
al. [14] implemented a method to measure the size and depth of synthetic 
defects with rectangular and square cross sections using pulsated IR 
thermography. The designed system gives numerical data of the metal surface 
defects based on transfer functions. The method worked well with the 
experimental synthetic defects, but could be further improved to cope with real-
time detection. The paper by Sharath, et al. [1] presents a methodical study to 
evaluate the accuracy of several PT techniques for defect depth and size 
investigation of a 316 L stainless steel sheet with synthetic defects. Good 
correlation was obtained between the experimental and the simulated results. 
For depth quantification, the logarithmic first derivative is applied. A software 
application called Thermo Calc 6L is used for theoretical modeling. The system 
is able to identify and characterize only a limited number of defects. 
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Some gaps and issues can be identified with the existing works. In the above 
papers the size of the defects that can be detected is restricted, i.e. most of the 
techniques fail if the size of the defect is too small and in most of the works size 
is not considered at all. Diffusion is one of the most important challenges to be 
considered in thermography. Over time, thermal power leads to diffusion. As a 
result defects are not properly visible and the shape of the defect is also 
affected. This needs to be addressed properly. Before proceeding to measure the 
size of the defect it is necessary to find its boundaries. In this scenario, the 
shape of the defect is gradually affected by diffusion: each shape of the defect 
will slightly vary over time, so it is difficult to accurately detect the edges of the 
defect. Hence, defect characterization is one of the key factors to be considered 
in this area of pulse thermography. 

3 Proposed Methodology 
The aim of this study was the design and development of an automated system 
for metal defect detection and characterization using PT images and various 
image processing techniques. Here, image acquisition was done using an 
experimental pulse thermography setup. Each image in the image sequence is 
different with respect to time. In the present work the image dataset was 
obtained from the Indira Gandhi Center for Atomic Research (IGCAR).  

 

Figure 1 Block diagram of the proposed methodology. 

The proposed methodology is divided into a set of subsections, as shown in 
Figure 1. The first step is the acquisition of images from the object using the PT 
imaging setup. The captured image dataset is imported into a Matlab host from 
the IR camera. In the second step, a representative image is obtained from 
among 250 captured images. Noise present in the representative image is 
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removed by applying a 2-dimensional median filter. Further, a 2-dimensional 
Wiener filter is applied on the median result. Once the preprocessing is done, 
the preprocessed images are segmented using the moving window technique. 
Thresholding, morphological and binarization operations are applied on the 
defected region to perform sizing. Finally, defect size information on each 
defect is displayed to the user. The proposed system uses the below defect 
sizing algorithm. 

3.1 Algorithm for Defect Sizing 
Input: Pulse thermography images 

Output: Defect size 

1. Load image dataset consisting of a pulse thermographic image sequence of 
N images with respect to time t. 

T(A, B, t) 
where  A, B = size of the input images and t is time. 

2. Regression by applying the logarithemic polynomial with degree n. 

 ln(ΔT(A , B, t)) = Img0( A , B) + Img2( A, B) + … + Imgn( A , B) 

where Img0, Img1,……, Imgn is the sequence of images in the dataset. The 
polynomial co-efficients of (n + 1) images are obtained. A representative 
image from the (n + 1) polynomial co-efficient images is obtained by 
polynomial curve fitting. 

3. Preprocessing of the representative image is obtained using a 2-dimensional 
median filter and a 2-dimensional Wiener filter. 

4. Image segmentation and defect detection.  
5. Calculate defect size in mm. 

The information in the pulse thermography dataset is slightly different for each 
image since they are captured at different time stamps and the experimental 
sample will be affected by thermal diffusion. Selecting a suitable representative 
image from the dataset consisting of 250 images is considered a key objective, 
because processing the complete dataset for each defect is too time-consuming 
and is not an advisable method for pulse thermography images. A temperature 
vs time sequence analysis is carried out on the inspection sample. A 
representative image for further processing is identified. The algorithm 
processes the complete dataset and finds the most suitable image as the 
representative image based on polynomial curve fitting. The thermographic 
image sequence consisting of N images with respect to time t is loaded into the 
system. This can be represented in Eq. (1) as follows: 

  ΔT(A , B, t)  (1) 
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where A, B = the size of the input image and t is time. Regression is done by 
applying a logarithmic polynomial with degree n as given by Eq. (2): 

 ln(ΔT(A,B,t)) = Img0( A , B)+ Img2( A, B)+…+Imgn( A , B) (2) 

where Img0, Img1, … Imgn is the sequence of images in the dataset. The first-
order logarithmic deviation is given by Eq. (3): 

 δLog(ΔT(A,B,t)) / δLog(t) (3) 

The second-order logarithmic deviation is given by Eq. (4): 

 δ2 (Log(ΔT(A,B,t)) )/ δ(Log(t))2 (4) 

The polynomial co-efficients of (n + 1) images are obtained. A representative 
image from the (n + 1) polynomial co-efficient images is obtained by 
polynomial curve fitting. 

Preprocessing is done to improve the image by reducing distortion and 
imperfections, which is necessary for the further processing because in the 
proposed system the images are affected by noise and blurriness. A 2-
dimensional median filter is applied at the first level. This helps smoothing 
noise. A Wiener filter is then applied to the resultant median image with a 
window length of 4*4. This reduces the mean square error and helps smoothing 
noise. It can be articulated in Eq. (5) as follows: 

 W(x1,x2) = H*(x1,x2) Sxx (x1,x2)/|H (x1,x2)|2 Sxx(x1,x2) + Snn(x1,x2)      (5) 

where Sxx (x1,x2) and Snn(x1,x2) are the actual spectra and noise spectra 
respectively. The blurring filter can be represented by H (x1, x2). There are two 
separate parts in the Wiener filter, a noise smoothing part and the inverse 
filtering part. The main focus is the noise filtering part. 

After pre-processing, the moving window concept is used to segment the image. 
In the moving window technique, a box or ‘slide’ is placed around the region of 
interest and classified based on whether the image contains an object or not. A 
moving window of 42 pixels for both the column and the row of the image is 
created. The region within the window is assigned a value 1 (one) and the rest 
of the region is assigned a value 0 (zero). The moving window technique used 
in the proposed system is expressed in the following algorithm: 

3.2 Algorithm for Moving Window 
1. Initialize window size P*Q, where P is the length and Q is the width, both 

fixed to 42 pixels in the present work. 
Image M = i………n                       
where M (i) is a particular image in the dataset. 
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2. The window can be defined with two parameters: start and end.  
3. Window (k) = [start, end]             

where start indicates the starting pixel of the image; the region except 42 
pixels from the start will be masked. End is the ending pixel. 

4. While (obj < 5 || obj > 5)          
{ 
++ M; 
} 

if the object detected in the image is smaller or larger than 5 defects, then 
move to the next image. 

5. Once the defects have been detected successfully in the first window move 
to the next window. 

start = end  
end = end + 1 

Once the defective artifacts have been detected successfully, thresholding is 
applied with a threshold value of 0.68. As a result, the region of interest will 
become white and rest of the window black. Morphological operations are 
applied to the resultant image to increase the efficiency of thresholding. The 
structuring element is taken as a square with dimensions 4*4. Binarization is 
done in the next step, because after thresholding and morphological operations 
some zero pixels (black spots) may still exist in the defective artifacts. Since the 
image is already in grayscale, binarization applies global thresholding. The 
pixel value of thresholding changes for every strip. The morphological 
operation dilation is applied with as structural element a square with dimensions 
5*5. When the holes or black pixels in the defective artifacts have been 
converted to white pixels, each independent connected component is identified 
(in the experimental dataset this was 5) and the number of connected 
components in each independent component is identified. The maximum 
number of unconnected components in the image is considered the total number 
of defects.  

Once, the region has been found, sizing of the defect is carried out. The size is 
primarily obtained by examining the white pixels present within each defect. 
Since the only way to measure the size of an image is by using pixels, it is 
necessary to convert the pixels to mm. The initial size will be in the form of a 
number of pixels, which is later converted to mm using a correction factor. To 
convert from pixels to mm, consider the following logic. Let’s consider A as a 
quantity (here A refers to pixels) and X is the required dimension (refers to 
mm). Consider that A is directly proportional to X as in Eq. (6): 

 A = X  (6)  
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Let’s consider K as the correction factor. By using Eq. (9), the defect area is 
calculated and it is derived as follows: 

 A = K * X                                                                                              (7) 

 X = A/K                                                            (8) 

 A* (1/K) = X                                    (9) 

4 Results and Discussions 
This section explains the details about experimental PT setup, the dataset used 
in the present work, the graphical user interface and the results of the proposed 
system. A performance analysis of the system is also discussed in this section.  

4.1 Experimental Setup 
The sample used in the experiment was an AISI 316L stainless steel plate. The 
dimensions of the plate were 150*100*3.54 mm. Square-shaped defects were 
created manually in one side of the plate, as shown in Figure 2. Each defect 
varied in depth and size. In this sample, defects with a depth of 0.4, 1.13, 1.78, 
2.48, 3.17, 3.36 mm respectively were drilled. The size of each square defect 
was 10, 8, 6, 4, 2 mm respectively. The defects were drilled using an electrical 
discharge machine (EDM). In the following, all sizes will be in mm (see Figure 
2).  

To capture an image of the AISI 316L stainless steel plate, a CEDIP Silver-420 
infrared camera was used. The AISI 316L stainless steel plate is shown in 
Figure 4. The camera had a focal plane array with 320 × 250 pixels and an 
Indium Antimonide (InSb) detector with a Stirling cooling system with a 
maximum achievable temperature resolution of 25 mK. It detects infrared 
radiation in the 3-5 µm region and has a maximum frame rate of 176 Hz. For 
the PT experiment, 2 xenon flash lamps with a power of 1600 W each were 
used. The flash duration was less than 2 ms. The experiment was carried out in 
reflection mode.  

Stainless steel has a lower emissivity (~0.7), which reduces the emission 
capacity of the material. To improve the emissivity, a uniform thin coat of black 
paint was applied to one surface. The camera was kept at a distance of 35 cm 
from the object while the distance between the lamp and the object was 30 cm. 
A short pulse of duration 2 ms at 1600 W was injected into the surface of the 
sample, while the images were acquired at a frame rate of 100 Hz for 2 seconds. 
A CEDIP silver infrared camera with flash lamp ALTAIR software was used 
for acquiring the image, as shown in Figure 3. Figure 4 illustrates the 
experimental setup. The proposed system is represented by the user interface 
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shown in Figure 5. It has a number of buttons, i.e. Load Dataset, Representative 
Image, Detect Defect and Sizing. Each button performs the corresponding 
function. Upon clicking the Load Dataset button a pop-up window appears to 
select a dataset. The dataset is converted to .mat format and uploaded. The 
Represtative Image button initializes the variables, processes the complete 
dataset, analyzes the diffusion pattern segmentation, and executes defect 
detection and sizing. 

 

Figure 2 AISI 316 L SS plate front surface with defects. 

 

Figure 3 CEDIP silver infrared camera with flash lamps. 

 
Figure 4 Experimental setup. 
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Figure 5 Graphical user interface. 

4.2 Dataset 
The dataset used for the implementation was constructed based on real sample 
images obtained from the pulse thermography experimental setup. In the 
proposed system an image sequence of 250 images is used. All images in the 
sequence are different from each other because they are taken at a set time 
interval while the sample is being affected by thermal diffusion.  

Size of complete image sequence 3.23 MB, size of individual image 13.7 KB, 
dimensions: 320*256 320 pixels, width and 256 pixels height 96, dpi horizontal 
resolution and 96 dpi vertical resolution. 

4.3 Performance Analysis 
A performance analysis was conducted as a quantitative approach for evaluating 
the proposed system. The performance of the proposed model was analyzed 
based on the filtering results, the total number of defects found with depths of 
0.4, 1.13, 1.78, 2.48, respectively, and the total time taken by the system. 

4.3.1 Defect Detection 
In this phase, the performance of the system is analyzed using the relative error 
as given in Eq. (10). Table 1 gives the relative error of the 5 defects in the metal 
sheet with 4 different depths. Columns 2 and 5 contain the original defect sizes 
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of the defects. Columns 3 and 6 show the defect sizes obtained from the 
proposed system. The relative error percentage is shown in the 4th and 7th 
columns. The relative error is calculated for all defects using Eq. (10): 

 Relative error = A-D                                  (10) 

where A is the area obtained from the proposed system and D is the 
experimental area value. The relative error percentage is given by: 

      Relative error % = ((A-D) / A) * 100                         (11) 

Table 1 shows the defect sizes obtained by the proposed method and the results 
obtained using the FWHM method [10] for similar experimental data and defect 
sizes. The proposed method shows an exponential increase in defect size 
compared to the method proposed by Almond et al. 

Table 1 Results obtained using proposed method and FWHM. 

Proposed Method FWHM 

Defects 
depth 

Original 
defect 
size 

Size 
obtained 

from 
proposed 
method 

Relative 
error 

% 

Defects 
depth 

Original 
defect 
size 

Size 
obtained 

from 
proposed 
method 

Relative 
error 

% 

Defects 
with 
depth 

0.4 mm 

10 10.50682 5.06817 
Defects 

with 
depth 

0.4 mm 

9.99 9.3 10 
8 7.02041 12.24487 

NA NA NA 
6 4.62871 22.85482 
4 2.61778 34.5555 
2 1.42788 28.606 

Defects 
with 
depth 
1.13 
mm 

10 10.16175 1.61745 Defects 
with 
depth 
1.13 
mm 

9.94 9.93 0.1 
8 8.03183 0.39782 

NA NA NA 
6 4.43833 26.02788 
4 2.64158 33.96055 
2 0.76154 61.9232 

Defects 
with 
depth 
1.78 
mm 

10 10.19744 1.97443 Defects 
with 
depth 
1.78 
mm 

9.9 10.37 4.7 
8 8.35309 4.41373 

NA NA NA 
6 5.71152 4.808 
4 3.17703 20.57417 
2 NA NA 

Defects 
with 
depth 
2.48 
mm 

10 9.65008 3.49911 Defects 
with 
depth 
2.48 
mm 

NA NA NA 
8 7.99613 0.0484 
6 6.61584 10.26406 
4 3.96236 0.94082 
2 NA NA 
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4.3.2 Number of Defects 
Similar data investigations have been done with prominent thermographic NDE 
methods, i.e. HOS [11], PCT [13,14] and PPT [14]. Figures 6 shows the results 
obtained by the proposed method. The proposed method was able to obtain a 
huge improvement in defect detection. The performance was also measured 
based on the number of defects detected in each strip. Here, the defect in each 
strip was different from the other ones with respect to their depth. Table 2 
illustrates this for the first 4 strips.  

  

Defects obtained in first window of the image Defects obtained in the second window of the 
image 

  

Defects obtained in the third window of the 
image 

Defects obtained in the fourth window of the 
image 

Figure 6 Results obtained by the proposed method. Defect depths of 0.4, 1.13, 
1.78 and 2.48 mm respectively were detected. 
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Table 2 Number of defects detected. 

Strip Number Experimental 
number of defects 

Defect count obtained by 
the proposed system 

Defects with depth 3.36 mm 5 5 
Defects with depth 3.17 mm 5 5 
Defects with depth 2.48 mm 5 4 

4.3.3 Efficiency of the System 
The total time taken for defect characterization was calculated by summing the 
image loading time, the time required for identifying a representative image, 
segmentation and defect detection time, and area calculation time. The total 
time taken by the proposed system for defect sizing was about 7 to 8 minutes. 
Figure 7 illustrates the defect distribution pattern in the sample after processing 
the 250 images in the dataset. 

 

Figure 7 Defect distribution pattern. 

5 Conclusion and Future Work 
This paper proposed a system for automatic defect detection and 
characterization in an AISI 316 L stainless steel sheet using pulse thermography 
images and various image processing algorithms and mathematical tools. The 
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proposed method was applied to 250 images of the sample taken at different 
time stamps. The method uses a 2-dimensional median filter and a Wiener filter 
for noise and distortion removal. The moving window concept is used for image 
segmentation and defect detection. Morphological operations are applied for 
area detection. The area is calculated by converting pixels into mm using a 
correction factor. The proposed method can detect defects in a structural 
material and measures their sizes. The process is automatic and hence can help 
in effective and efficient characterization of defects in the production of metal 
objects. Automated defect detection and characterization is an important step to 
increase production in metal fabrication industries.  

Improvements of the defect detection and sizing system to be incorporated in a 
future work are the following: 

1. Finding a suitable representative image causes a large amount of delay in 
the proposed system. Hence, it is necessary to find a technique to overcome 
this problem. 

2. The proposed method has successfully detected defects with depth 3.36, 
3.17, 2.48, 1.78 respectively in the experimental sample, which is actually a 
good improvement compared to previous works. This can be further 
improved to find all defects. 

3. When the moving window overlaps a defect, the area calculation will give 
improper results. The method needs to be improved to overcome this 
drawback. 
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