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Abstract. In this paper, an algorithm for predicting accessibility performance on 
an LTE/SAE network based on relevant historical key performance indicator 
(KPI) data is proposed. Since there are three KPIs related to accessibility, each 
representing different segments, a method to map these three KPI values onto the 
status of accessibility performance is proposed. The network conditions are 
categorized as high, acceptable or low for each time interval of observation. The 
first state shows that the system is running optimally, while the second state 
shows that the system has deteriorated and needs full attention, and the third 
state indicates that the system has gone into degraded conditions that cannot be 
tolerated. After the state sequence has been obtained, a transition probability 
matrix can be derived, which can be used to predict future conditions using a 
DTMC model. The results obtained are system predictions in terms of 
probability values for each state for a specific future time. These prediction 
values are required for proactive health monitoring and fault management. 
Accessibility degradation prediction is then conducted by using measurement 
data derived from an eNodeB in the LTE network for a period of one month. 

Keywords: accessibility; degradation prediction; DTMC; KPI; LTE/SAE network; self-
healing; SON.  

1 Introduction 
Over the past decades, enormous progress has been achieved in serving the 
rapidly increased traffic volume and high bandwidth demand in mobile 
networks for improving network performance. This is reflected in the evolution 
of the mobile network standard from 1G to the current generation of LTE/4G 
and 5G, which will soon become available. The subsequent generations will 
fulfill new demands, have new features and will be faster than the previous 
generations. Nevertheless, this evolution must also provide easy network 
operation and maintenance, because the future generation of mobile networks 
will be increasingly complex, in terms of troubleshooting, configuration and 
network optimization, considering that more devices are connected, including 
applications for machine-to-machine communications. Therefore, the concept of 
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self-organizing networks (SONs) has been introduced [1] and was developed as 
a requirement that was integrated in the 3G standard and was appended by 
telecommunications standard development organization 3GPP [2]. SONs are 
designed to automate the functions of network management as much as possible 
through mechanisms of self-configuration, self-healing and self-optimization. 
The ability of the system to be able to adjust to the condition of the network, 
depending on whether it is in a normal state or in a degraded state, is crucial for 
the SON process to work. For this purpose, a number of monitoring results are 
gathered from various network elements (NEs), whether in the form of log 
events, counters, or the key performance index (KPI). The KPI is a performance 
indicator that is calculated based on the results of monitoring a number of 
network elements.  

A set of relevant KPIs deals with accessibility issues. This type of KPI provides 
a measure of how successful users are in accessing the network. These KPIs are 
expressed in a percentage that indicates the ratio between the number of 
successful accesses compared to the total access attempts by users on various 
segments of the network. 

In this research, long-term accessibility performance based on discrete-time 
Markov chains (DTMCs) and three accessibility KPIs was predicted. The three 
KPIs used were S1_Connection_Signaling_Success_Rate, ERAB_setup 
_success_rate and RRC_setup_success_rate. Based on the value of each KPI, a 
rule is proposed to determine the accessibility condition of the system, whether 
it is in a high, acceptable or low (degraded) state. Given a set of accessibility 
performance indicators based on historical data, the probability that the system 
will enter a degraded condition at a certain future time can be determined. 
Likewise, the long-term probability of the accessibility performance can be 
calculated for each possible state. The prediction values can be utilized for 
proactive health monitoring and fault management.  

Detection and diagnosis of degradation conditions in a mobile network are the 
main components in the conventional processes of fault management and 
troubleshooting (Figure 1). However, this alone is not enough for future 
generations of mobile networks. Foresight about future network conditions is 
also needed to be able to deal with increasingly complex networks [3]. 
Therefore, detection also has to be more proactive, where possible future 
problems can be estimated from available historical data with probabilistic 
estimation analysis. By having a prediction of future network conditions, 
maintenance and preventive actions can be scheduled and used as the basis for 
root cause analysis [3,4]. 
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Figure 1 Block diagram of proactive fault management [3]. 

The KPI data used in this study were calculated from the results of an eNodeB 
measurement that employed 3 cells/sectors in an LTE/SAE network for a period 
of 1 month on an hourly basis. The hourly accessibility data collected over one 
month provided time series data for each KPI. From these three time series data, 
the state of the system was determined for each hour interval, whether the 
system is in a high (H), acceptable (A) or low (L) state. 

The observations resulted in 739 sequences of hourly cell accessibility data in 
the form of a series of states H, A or L for each of the cells observed. This 
sequence of states also describes the transition from one state to another for 
every one-hour step. From these sequences a transition probability matrix was 
made. In a Discrete Time Markov Chain (DTMC) model, the transition 
probability among all possible states is the basis for calculating the probability 
that the system will be in a particular condition for a given specific period of 
time ahead. The model can also predict the probability of long-run accessibility 
conditions of the system or steady state probability of the system. 

2 Related Research Work 
From the literature survey, SON research can be categorized into the following 
three state-of-the-art areas, namely self-configuration, self-optimization, and 
self-healing. This last category is the automated mechanism of detection, 
diagnosis and compensation of fault. Accessibility degradation prediction, 
which was the focus of this research, can be categorized under self-healing 
problems, especially detection issues. Several methods related to degradation 
detection have been proposed, including [5] and [6], which propose methods for 
implementation on cellular networks. In the first paper, a proactive approach of 
detecting degradation in cells is presented that utilizes the correlation between 
two cells as a means of identifying degraded cells and to reduce the possibility 
of false alarms. In the second paper [6], a method to detect deterioration in cells 
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through the analysis of the time evolution of several metrics is introduced. 
Other degradation detections applied to radio channel degradation and diagnosis 
based on statistical analysis are proposed in [7].  

Furthermore, some papers have proposed methods for fault detection and 
diagnostics instead of degradation detection. For example [8], which discusses 
an algorithm for cell outage detection using neighbor cell list reports, while a 
sleeping-cell detection algorithm is proposed in [9] using N-gram analysis in 
LTE networks. Also, some papers discuss anomaly detection as a stage in the 
process of fault detection and diagnosis. Reference [10] proposes probabilistic 
anomaly detection based on system calls analysis, while [11] introduces 
sophisticated profiling and capabilities to detect anomalies and a diagnosis 
framework for mobile network operators from a live 3G network. Another 
approach is reported in [12], which proposes an adaptive ensemble method 
framework for modeling cell behavior to detect cell anomalies in terms of 
partial and complete degradation in cell-service performance. Reference [13] 
introduced a data mining framework for anomaly detection algorithms for 
sleeping-cell detection caused by RACH failure in LTE networks.  

In contrast to degradation detection, anomaly detection and diagnostics, little 
research has been done that discusses degradation or fault prediction on cellular 
networks, more specifically on LTE networks. This is also in contrast with 
software fault prediction, a field that is very bountiful and mature. However, by 
having a prediction of future network conditions, maintenance and preventive 
actions can be scheduled and used as the basis for root cause analysis. Fault 
detection and prediction are proposed in [14], which introduced a stochastic 
model to predict user throughput in mobile networks by taking into account the 
uncertainty of such random phenomena (e.g. fast fading) or inexact information 
(e.g. user location). Meanwhile, [15] predicts outages in mobile networks based 
on recorded data logs. Another approach to accessibility degradation prediction 
uses the value of one of the accessibility KPIs instead of three KPIs, as 
proposed in this paper, utilizing the Markov model that has been reported in 
[16]. 

3 Theoretical Background 

3.1  LTE Architecture 
The common architecture of a mobile radio telecommunications network such 
as 3G consists of three main parts, namely user equipment (UE), radio network 
subsystem (RNS), and core network (CN). The UE relates to devices on the user 
side such as mobile phones or other mobile devices. RNS consists of two main 
components, namely Node B and RNC. Node B relates to the interface between 
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the UE and the network side or the network provider and is controlled by a 
radio network controller (RNC). Meanwhile, CN deals with centralized 
processing and system management. However, 4G/LTE, the next generation 
after 3G, has a flattened architecture. The simplified network architecture of 
LTE consists of the following three main network components: user equipment 
(UE), the evolved UMTS terrestrial radio access network (E-UTRAN) and the 
evolved packet core (EPC). E-UTRAN contains only one network element, 
namely the Evolved Node B (eNodeB), which has its own control functionality. 
EPC, which is the CN of an LTE/SAE network, has the main function of 
routing/forwarding, user authentication and mobility management, which are 
done by MME, S-GW/P-GW and HSS respectively. The simplified architecture 
of LTE/SAE is shown in Figure 2. 

 
 

Figure 2 LTE/SAE network architecture. 

We should keep in mind, however, that the architecture above only describes 
the main network elements that exist in a 4G network system. In the realization 
of network implementation, the service provider must deploy many network 
elements, especially eNodeBs, which can reach thousands in number. The 
health of the individual network elements and the system as a whole must 
always be maintained to provide adequate service level agreement (SLA) for 
customers.  

3.2 Accessibility Key Performance Indicators (KPIs) 
The huge number of NEs produces enormous amounts of raw data on a daily, 
hourly and even minutely basis. These raw data can be grouped into a number 
of key performance indicators (KPIs). The results can then be used to determine 
if the condition and network performance indicators are within a desired target 
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or they can be used for further troubleshooting analysis. If a large amount of 
data have to be analyzed, it will be too laborious to process them manually to 
determine the condition of the system accurately, let alone predict future states 
of the system.  

The key performance indicators can be categorized into RF (radio frequency) 
KPI, Service KPI and Operation KPI. Each KPI category has its own objectives 
for different purposes of use. RF KPI is required during the phases of network 
planning, network rollout and initial optimization to measure actual values 
against planned values. On the other hand, Service KPI is used to evaluate the 
quality of service expected to be seen by the users for different services and is 
utilized during the phases of optimization and commercial introduction, and for 
debugging specific problems. Lastly, Operation KPI is continuously collected 
and analyzed to set the network performance and behavior for further 
optimization processes during all network optimization stages [17].  

The 3GPP standard categorizes the Service and Operation KPIs related into 5 
requirements [18]: accessibility, retainability, integrity, availability and 
mobility. Applicable individual KPIs for each group are shown in Figure 3, 
while a strict definition of each KPI can be found in [19]. 

 
 

Figure 3 3GPP EUTRAN KPI categorization. 

PIs relating to operations, maintenance and services are collected from the 
appropriate performance counters of the entire network. A set of KPIs is 
essential to measure user accessibility performance, which indicates how easy 
or difficult it is for users to access the network to meet the desired service. As 
shown in Figure 3, the Accessibility KPI can be divided into three parts: 
RRC_Setup_Success_Rate, S1_Connection_Signalling_Success_Rate and 
ERAB_Setup_Success_Rate. For convenience each is abbreviated as RRCSR, 
S1ConnSigSR and ERABSetupSR. 
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RRCSR denotes the ratio between the two types of RRC connections that occur 
between the EU and the eNodeB, where the dividend is the number of 
successful connections and the divisor is the total number of connection 
attempts, which can be written as in following Eq. (1): 

 RRCSR = RRC Connection Success
RRC Connection Attempt

× 100%                    (1) 

As shown in Figure 4, the RRC connection setup includes the process of 
sending Random_Access_Preamble, RRC_Connection_Request and 
RRC_Connection_Setup_Complete from the EU and the 
Random_Access_Recponse and RRC_Connection_Setup responses from 
eNodeB. The RRC Connection success counter is triggered when 
RRC_Connection_Request has successfully been received, while the RRC 
Connection Attempt counter increases when RRC_Connection_Setup has 
successfully been received [20]. 

 
Figure 4 RRC connection setup success rate. 

The second KPI, S1ConnSigSR, measures the success ratio of sending 
Initial_UE_Message messages and their response between eNodeB and MME, 
as shown in Figure 5, which can be written as in following Eq. (3): 

 S1 ConnSigSR = S1 SIGConnectionEstablish Connection Success
S1 SIGConnectionEstablish Connection Attempt

× 100%      (2) 

The third KPI, ERABSetupSR measures the probability success rate of overall 
service access for all types of traffic in a cell or network. This KPI is 
determined based on an ERAB connection setup counter and successful ERAB 
setup as shown in Figure 6, which can be formulated as in following Eq. (3): 

 ERAB SetupSR = ERAB Setup Success
ERAB Setup Attempt

× 100%                      (3) 
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Figure 5 S1 Connection setup success rate. 

 
Figure 6 ERAB setup success rate. 

3.3 Markov Chain Analysis 

A stochastic process }:{ TtXt ∈  constitutes a Markov process if for all 

1100 +<<<<= nn tttt   and all Ssi ∈ , the conditional probability distribution 

CDF of 
1+ntX  depends only on the previous value, 

nt
X , and not on the earlier 

values, 
110

,,
−nttt XXX  [21]. By implementing the time parameters and the 

state space, both having discrete values in the general definition above, a special 
form of Markov process is obtained, known as discrete-time Markov chain 
(DTMC). Meanwhile, if the time parameters are continuous instead of discrete, 
a continuous-time Markov chain (CTMC) can be acquired. The formal 
definition of a DTMC, which is the model that was used in this study, can be 



 Accessibility Degradation Prediction on LTE/SAE Network 9 

formulated as follows [21]: a given stochastic process },,,,{ 110  +nXXX  at 
consecutive points of observation 0, 1, ….., n+1 constitutes a DTMC if the 
following relation in the conditional pmf, i.e. the Markov property (Eq. (4), 
holds for all 0Ν∈n  and all : 
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Given initial state so and its initial probability, the probability of being present 
in state sn after n steps can be calculated given step transition probability Pij in 
Eq. (5). This probability is a conditional pmf for transitions from state si at time 
step n to state sj at time step (n + 1) for all i and j. 

 )|( 1 injnij sXsXPP === +               (5) 

Transition probability in a DTMC model can be written in matrix form as in 
following Eq. (6): 

 

 
                                                        (6) 

State probability πi(n) is a measure of the probability at n steps ahead that the 
system will be in state i. It can be written as in following Eq. (7):  

 )()( iXPn ni ==π                                                                  (7) 

For a homogeneous DTMC can be written as in Eqs. (8) and (9): 
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If a Markov chain is ergodic, then stationary probabilities {πj, j ϵ S}, where 
𝜋𝑗 ≃ lim𝑛→∞𝑃ij

𝑛, can be formulated as in following Eqs. (10) and (11): 
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and 

 1,0
0

=≥ ∑
∞

=j
jj ππ                                                         (11) 

where πj is the limiting probability distribution of state j or stationary or the 
steady-state distribution of the Markov chain that denotes the long-run 
proportion of time that the chain spends in state j. In an irreducible and 
aperiodic homogeneous Markov chain, limiting state probabilities πj always 
exist, independent of the initial state probability distribution πj(0) as in 
following Eq. (12). 

𝜋𝑗 = lim𝑛→∞𝜋𝑗
(𝑛)                                                                             (12) 

 
Several studies have implemented DTMC models in the context of LTE 
networks [11,12,22]. In the first study, a spatio-temporal representation of LTE 
uplinks using 2-D DTMC is proposed [11]. The second study developed a 
mathematical framework to model the scalability of a random access channel 
(RACH) for IoT traffic [12]. The last research proposed a mechanism for 
monitoring state of cloud resources [22]. 

4 Accessibility State Identification 
As mentioned above, indicators of accessibility performance on LTE networks 
are represented by three KPIs, namely RRCSR, ERABSR and S1SigConnSR. Each 
KPI provides a value for each measurement time, generating a large database of 
time series data. This historical database is then used for the diagnostic process 
to assess the performance of the LTE network by calculating its representative 
value. The representative value can be calculated conservatively using a simple 
method, for example by calculating the average value of KPI over a particular 
time period, for example one day [23].  

The system is said to experience degradation if the value of this representative 
value is below a certain threshold. To assess system performance, the system’s 
condition is categorized into three states, namely high, acceptable or low 
(degrading). In the first state, the system works normally and optimally, in the 
second state the system’s performance is still acceptable but not optimal. The 
last state indicates that the system is experiencing problems and degradation 
occurs. For example, in a conventional system based on a single KPI, at a value 
below 98% the system is categorized as being in the low state, between 98% to 
99.5% it is in the acceptable state and above 99.5% it is in the high state. 
Furthermore, because there are three KPIs related to accessibility, where each 
shows the performance of different segments, it is necessary to find an 
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aggregate value that represents the condition of the overall accessibility of the 
system. This aggregate value also transforms the time series data to a value, for 
example a mean, that is independent of time. The calculation of aggregate 
values in this study adopted the approach from [23]. 

Getting the aggregated value from the three KPIs is done as follows: suppose A 
= {ARRC, AERAB, AS1} is the set of Accessibility KPI and S = {H, A, L} is the set 
of 3 possible states i.e. high, acceptable and low. Next to classifying the system 
into one of the three conditions, the upper and lower thresholds are specified for 
the middle range (acceptable state), expressed in set B = {bau,bal}, where  bau is 
the upper threshold for the acceptable state and bal is the lower threshold. 
Furthermore, to transform from A to S, the function A  S is used. Given a 
value of vector a from set A for a specific time, this function is defined as 
follows: 


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Visually, the rule to allocate the measurement result of the three accessibility 
KPIs into a series of states is shown in Figure 7.             

 
Figure 7 State determination for each time interval. 
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5 Accessibility Analysis 
The method for identifying the system’s state using the three accessibility KPIs 
as described in Chapter 4 above can be applied to the measurement data. The 
KPI data used were derived from the results of monitoring three cells on an 
eNodeB for 30 days, resulting in 739 hours of observation for each cell. The 
total hours of observation were obtained from 24-hour monitoring from 00:00 to 
23:00 every day for 30 days between March and April 2017. Furthermore, the 
system conditions were categorized hourly into one possible state, i.e. high, 
acceptable or low. From the total of 739 hours of monitoring, the time point 
where the system was in low state can be seen, as shown in Figures 8 to 10, 
where degraded conditions for cells 1, 2 and 3 occurred for 13, 15 and 26 hours 
respectively. 

 
Figure 8 State mapping of Cell 1 for 30 days on an hourly basis. 

 
Figure 9 State mapping of Cell 2 for 30 days on an hourly basis. 
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Figure 10 State mapping of Cell 3 for 30 days on an hourly basis. 

The data that obtained so far were measurement data, but it is also desirable to 
know future conditions of the network derived from available historical data. To 
be able to calculate the probability of state and the limiting probability of state 
to predict the future health of the network, it is necessary to calculate the 
transition probability matrix of each state first. The former probability measures 
the possibility of a certain state at a given time while the latter probability states 
the proportion of long-term time the system will be in a certain condition. The 
KPI obtained from the observations are subsequently transformed by applying 
Eq.(13) using bau and bal values of 98.0% and 95.5%, respectively, which yields 
the state sequence as shown visually in Figure 7. The number of state sequences 
generated for the one-month hourly measurements was 739 state sequences for 
each cell. From these state sequences the transition probability matrix could be 
derived and calculated for each cell, of which the results are depicted in Figure 
11. 

The contents of the probability transition matrix in the first row and the third 
column of Cell 1 show that the transition probability value, i.e. the probability 
of state transition in Cell 1 from being currently in state H (high) and in the next 
period (next hour) moving to state A (acceptable), is 0.072. The meaning of the 
other matrix contents for all locations can be interpreted in the same way. For a 
clearer visualization of the transition from one state to another, the transition 
probability matrix can be expressed in the form of a state diagram as shown in 
Figure 11. 

By knowing the transition probability matrix, the accessibility state of the 
system for a certain future time can be predicted. Hence, πi(n), i.e. the 
probability that the system will be in i state for the next n period ahead, can be 
calculated. Using Eq. (8), it can be shown that πi(n) depends on the initial 
condition at n = 0. Tables 1-3 show the state probability of being in state 1, 2 or 
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3 (corresponding to H, A and L) for the next 1 to 4 periods ahead for each cell 
for three different initial conditions. As can be seen from these results, for an 
increasingly large n period, πi(n) will converge to a value and no longer depend 
on the initial condition. In other words, for large values of n and n approaching 
infinity, πi(n) is the value of the limiting state probability, which can be 
obtained using Eq. (10), of which the results are shown in Tables 1-3 for Cell 1 
to Cell 3 respectively. 

(a) Cell 1 
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(c) Cell 3 
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Figure 11 Transition probability matrix and state transition diagram: (a) Cell 1, 
(b) Cell 2, (c) Cell 3. 
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Table 1 Probability of state for cell 1 with initial state at 1, 2 and 3. 

n 0 1 2 3 4 ……. ∞ 
π 1(n) 1 0.920420 0.908696 0.905718 0.904376  0.912329 
π 2(n) 0 0.072072 0.079774 0.080365 0.072493  0.080822 
π 3(n) 0 0.007508 0.011530 0.013917 0.015364  0.006849 
π 1(n) 0 0.813559 0.900497 0.907168 0.905988  0.912329 
π 2(n) 1 0.186441 0.093395 0.082313 0.080728  0.080822 
π 3(n) 0 0.000000 0.006108 0.010519 0.013284  0.006849 
π 1(n) 0 0.384615 0.590694 0.713003 0.787124  0.912329 
π 2(n) 0 0.000000 0.027720 0.047741 0.060288  0.080822 
π 3(n) 1 0.615385 0.381586 0.239257 0.152588  0.006849 

Table 2 Probability of state for cell 1 with initial state at 1, 2 and 3. 

n 0 1 2 3 4 ……. ∞ 
π 1(n) 1 0.874214 0.864647 0.862804 0.862178  0.870041 
π 2(n) 0 0.113208 0.118023 0.118032 0.102073  0.119015 
π 3(n) 0 0.012579 0.017329 0.019164 0.019875  0.010944 
π 1(n) 0 0.827586 0.862792 0.862856 0.862235  0.870041 
π 2(n) 1 0.160920 0.120350 0.118165 0.117962  0.119015 
π 3(n) 0 0.011494 0.016857 0.018979 0.019803  0.010944 
π 1(n) 0 0.533333 0.734753 0.812566 0.842712  0.870041 
π 2(n) 0 0.066667 0.097772 0.110078 0.114859  0.119015 
π 3(n) 1 0.400000 0.167475 0.077356 0.042429  0.010944 

Table 3 Probability of state for cell 1 with initial state at 1, 2 and 3. 

n 0 1 2 3 4 ……. ∞ 
π 1(n) 1 0.745020 0.694444 0.683648 0.681124  0.693567 
π 2(n) 0 0.235060 0.275984 0.283082 0.192340  0.292617 
π 3(n) 0 0.019920 0.029572 0.033269 0.034571  0.013816 
π 1(n) 0 0.557143 0.657348 0.675779 0.679297  0.693567 
π 2(n) 1 0.409524 0.306364 0.288354 0.285213  0.292617 
π 3(n) 0 0.033333 0.036288 0.035868 0.035489  0.013816 
π 1(n) 0 0.423077 0.590222 0.649807 0.670118  0.693567 
π 2(n) 0 0.230769 0.273836 0.282251 0.284011  0.292617 
π 3(n) 1 0.346154 0.135943 0.067942 0.045871  0.013816 
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Furthermore, the limiting state probability or steady state probability indicating 
the long-run performance of the system can be calculated using Eq. (10), of 
which the results are shown in Table 4. 

Table 4 Limiting/steady state probability. 

 π1 π2 π3 
Cell 1 91.23 8.08 0.70 
Cell 2 87.00 11.90 1.09 
Cell 3 69.34 29.26 1.38 

6 Result and Discussion 
From historical time series data of three KPIs derived from one-month 
measurement, the probability that a system exists in a certain state (high, 
acceptable, low) in term of accessibility can be calculated. The first condition 
shows the system running normally and optimally, while the second condition 
shows that although it is not categorized as being in degraded condition, it 
needs full attention. Meanwhile, the third condition shows that the system has 
gone into an intolerable degraded state. The probability values for each possible 
future state can be used as input for root cause analysis as well as for preparing 
preventive actions. From the analysis of the three cells under study, it appeared 
that there was degradation in terms of accessibility of Cell 3. From Table 4 it 
can be seen that in the long run only 69.34% of the system was in high state 
compared to Cell 1, which had a high percentage of 91.23%, and Cell 2, which 
had a high percentage of 87.00%. As for degraded conditions, Cell 3 had a 
relatively high low percentage of about 1.38% compared to 0.70% and 1.09% 
for Cell 1 and Cell 2. In general, it can be concluded that Cell 3 had poor 
performance compared to the other 2 cells. Therefore, special attention must be 
given to Cell 3 as well as anticipation of performance improvement. 

7 Conclusion 
In this research, a method to predict the accessibility performance of an 
LTE/SAE network was developed. This method is based on historical values of 
the three accessibility KPIs, namely RRCSR, ERABSR and S1SigConnSR, which 
are aggregated and mapped onto the conditions of network accessibility. DTMC 
is used to predict future accessibility states. The proposed method can predict 
accessibility conditions for a certain future time or assess overall network health 
on a long-term basis. The results obtained can be used as part of the self-healing 
process of an LTE network. The method developed was tested by monitoring of 
a real LTE/SAE network for one month. The analysis results showed one out of 
three cells experienced degradation. In this paper, the proposal is limited to how 
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to transform from large time-dependent databases that are recorded from the 
measurement of three accessibility KPIs to a representative value in the form of 
probabilities. Further development is required for further utilization as input for 
root cause analysis, degradation detection, anomaly detection and scheduling 
preventive measures. 
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