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Abstract. Passive biometric identification enables wildlife monitoring with 
minimal disturbance. Using a motion-activated camera placed at an elevated 
position and facing downwards, images of sea turtle carapaces were collected, 
each belonging to one of sixteen Chelonia mydas juveniles. Then, co-variant and 
robust image descriptors from these images were learned, enabling indexing and 
retrieval. In this paper, several classification results of sea turtle carapaces using 
the learned image descriptors are presented. It was found that a template-based 
descriptor, i.e. Histogram of Oriented Gradients (HOG) performed much better 
during classification than keypoint-based descriptors. For our dataset, a high-
dimensional descriptor is a must because of the minimal gradient and color 
information in the carapace images. Using HOG, we obtained an average 
classification accuracy of 65%.  
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1 Introduction 
Biometric identification of sea turtles within a population is essential for 
behavioral and ecological study, allowing researchers to estimate vital statistics 
such as growth rate, survivorship, foraging patterns and population size. 
Traditional methods of permanent marking and artificial tagging induce stress 
and possibly harm to the animals. Furthermore, tag loss is common because of 
various factors, namely elapsed time after tagging, study area, target species, 
size of animal, piercing site and tag properties (e.g. material, color and design) 
[1-5]. Individual sea turtles can also be recognized via photographic 
identification of their natural marks, for example, based on coloration patterns 
around the head area [6], facial profiles [7] and facial scute patterns [8]. Still, 
the mark-recapture process puts a considerable amount of stress on the animal. 
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We propose a passive biometric identification system of sea turtles based on 
robust and co-variant image descriptor matching, see Figure 1. A distant camera 
remotely captures aerial images of sea turtles at their nesting site. These images 
are each learned as a robust and co-variant image descriptor, enabling indexing 
and retrieval. The set-up is non-invasive i.e. uses a remote camera and no flash 
photography. Using this set-up, images of sixteen juveniles were collected at a 
private breeding farm in Lundu, Sarawak. The images were taken at night (since 
females nest at night) inside a perimeter that imitated an actual nesting site. The 
image descriptor was learned from part of the sea turtle that is most visible from 
the air, i.e. its carapace. A Chelonia mydas carapace, see Figure 2, contains a 
distinctive scute pattern that can be used to identify individuals [9]. 

 

Figure 1 Our proposed framework. Matching is a minimizing function, 
ω�𝑑𝑥 ,𝑑𝑦�. 

 

Figure 2 Left to right. An outline drawing of a Chelonia mydas carapace, 
sourced from [10] and an actual image of a juvenile Chelonia mydas kept in a 
private breeding farm in Lundu, Sarawak. 
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2 Related Work 
Recent works on biometric identification of animals, not limited to sea turtles, 
were motivated by the use of computer vision pattern matching algorithms. An 
automated approach is a natural progression from manual inspection by human 
experts. Burghardt, et al. [11] used an extended version of Belongie, et al.’s 
Shape Contexts [12] to encode unique phase singularities of spot patterns on 
individual African penguins. In a more recent work [13] they proposed the 
detection of shape curls to represent individual Turing-patterned animals. 
Dababera and Rodrigo [14] implemented an eigenface-based identification 
mechanism to recognize individual African elephants using frontal-view face 
images. Loos and Pfiter [15] combined global and local facial features for visual 
identification of primates. Taha, et al. [16] learned SIFT [17] features from 
individual horse’s muzzle images, later using RANSAC to remove outliers 
during matching. Also using muzzle images, Monteiro [18] combined graph 
matching and local invariant features to recognize individual cattle. Li, et al. 
[19] learned Zernike moments from tail-head images of Holstein dairy cows to 
recognize individuals. To the best of our knowledge, this is the first time a 
passive biometric identification system for recognizing individual sea turtles 
was developed. 

2.1 Linear Deformation of Scute Pattern 
Matching sea turtle individuals based on images captured by a stationary 
camera is non-trivial due to the linear deformation of salient image features. In 
such settings, deformation may consist of scale change and in-plane translation 
and rotation. Dorai, et al. [20] suggested several pre-emptive strategies to limit 
the impact of image deformation when collecting biometric data. Their 
approach requires multiple measurements to be taken concurrently, later sorted 
according to the severity of deformity. 

Building on a different strategy, image feature descriptors such as [17,21,22] 
and [23] provide a better way to match scute patterns. The gradient-based 
feature descriptors are co-variant, or at least robust to various image 
transformations. When paired together with the bag-of-words framework, the 
set-up enables partial matching of models, i.e. using probability to find the 
closest match. Due to the low-light image capturing resulting in almost zero 
color information plus the minimal texture of sea turtle carapaces, we theorized 
that keypoint-based descriptors such as SIFT [17] would not fare well against 
our dataset. As for template-based descriptors, such as HOG [23], the higher 
dimensionality should provide a more robust description of the scute pattern. 
Nevertheless, template-based descriptors are not co-variant to rotation. 
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2.2 Matching of Scute Patterns 
Between unique landings it is probable for an individual sea turtle’s carapace to 
acquire new permanent markings, for example predation marks, scarring and 
barnacles. It may also acquire new ephemeral markings, for example, algae, 
sand particles and dirt. Our feature descriptor must be robust against such noise 
when matching scute patterns. Existing keypoint-based and template-based 
feature descriptors should solve this problem by providing a degree of 
robustness against noise during matching. However, the degree of robustness 
depends on the properties of the captured images. 

3 Our Dataset 
We collected between two and eleven RGB images (of 3,264 × 2,448 
resolution) each for sixteen Chelonia mydas juveniles, see Table 1. A total of 70 
images were taken without flash (as turtles are very sensitive to light). The 
complete dataset (CC-BY-4.0), see Figure 3, is available on the corresponding 
author’s website. The juvenile sea turtles were kept in captivity inside a private 
breeding farm in Lundu, Sarawak. During data capture, each individual was 
placed inside a perimeter and was allowed to move around freely for 3 to 5 
minutes. This set-up aimed to replicate an environment similar to a sea turtle’s 
nesting site. All sixteen individuals, as part of a larger group, were released 
back to the sea in December 2015 [24]. 

Table 1 PANDAN-CHELOMY dataset. 

No Number of 
Images No Number 

of Images 
1 3 9 4 
2 3 10 6 
3 6 11 3 
4 3 12 6 
5 7 13 3 
6 11 14 2 
7 4 15 3 
8 3 16 3 

The dataset was pre-processed prior to classification. Images were converted to 
gray scale and manually rotated to position the carapace in an upright pose, see 
Figure 4. The pose correction is required to enable the matching of template-
based image descriptors. Inside each image, we manually set an ROI window to 
exclude most of the background. The remaining background elements inside the 
ROI were later removed via a smoothing function. The rotated images and ROI 
information are both included inside our PANDAN-CHELOMY dataset. 
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Figure 3 A From left to right, top to bottom. Sample raw images of each 
Chelonia mydas juvenile, Turtle 1 to Turtle 16, taken from our dataset 
PANDAN-CHELOMY. 

  
Figure 4 Rotated images from PANDAN-CHELOMY, each with a visualized 
ROI. 

4 Matching of Carapace Images 

4.1 Classification 
The PANDAN-CHELOMY dataset contains 70 images belonging to sixteen 
juveniles. Prior to matching, the ROIs were smoothed using a 4 4×  Gaussian 
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kernel to suppress the remaining background elements. We found this kernel 
size to be optimal for removing sand features. A larger kernel erodes more 
gradient, resulting in a higher loss of discriminative features inside the ROI. A 
smaller kernel retains more noise, which reduces the classification’s accuracy. 

Using k -fold cross-validation, a matching score for each ROI of the test set is 
obtained against the other ROIs of the training set based on the nearest-neighbor 
distance ratio (NNDR) scheme. The threshold values were varied from 0.0 to 
1.0. We calculated the score, β , as follows: 

  ( ) ( )2, ,top x m nd x nd d d dβ ω ω=                                           (1) 

where topω  is the distance between the template descriptor, xd , and the best-

matching target descriptor, md , and 2ndω  is the distance between xd  and nd , 
i.e. the second best-matching target descriptor. 

If both xd  and md  belong to the same individual, the classification function, ξ , 
returns two possible values: 

  ( ),x md d
True Positive threshold

False Negative Otherwise

x
β

 ≤


  (2) 

Otherwise, 

 ( ),x md d
False Positive threshold
True Negative Otherwise

x
β

 ≤


  (3) 

In the event the classification function returns multiple top matches, we count 
the result as a false negative. Based on the total number of true positives (TP), 
false positives (FP), true negatives (TN) and false negatives (FN) obtained from 
our classification exercise, the true positive rate, ( )TPR TP TP FN= + , and the 

false positive rate, ( )FPR FP FP TN= + , for each threshold value are 
estimated. 

4.2 Image Descriptors 
Scale-invariant Feature Transform (SIFT) [17], Speeded Up Robust Features 
(SURF) [21] and Oriented FAST and Rotated BRIEF (ORB) [22] were selected 
as keypoint-based descriptors. Histogram of Oriented Gradients (HOG) [23] 
was chosen as the sole template-based descriptor. All parameters were set to the 
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default values as suggested in the original publications [17,21,22], except for 
HOG. 

For HOG, we rescale each ROI to 96 × 128 resolution, which translates to a 
descriptor length of �96

8
− 1 × 128

8
− 1� × (2 × 2) ×= 5,940, with 8 × 8 pixel 

cells, blocks of 2 × 2 cells, and a 9-bin orientation histogram (0°-180°). Our 
ROIs were larger than the 64 × 128 resolution used in [23] due to the typical 
dimension of a sea turtle carapace being almost equal in width and height. 

 
Figure 5 Example of a SIFT matching result (acceptance threshold of 0.8) 
between Turtle 8a and Turtle 6d. The number of positive matches was 5. Image 
brightness was increased to improve visual clarity. 

  
Figure 6 Visualized HOG descriptor for Turtle 8a (left) and Turtle 6d (right). 
The L2-norm value was 6.82. Image brightness was increased to improve visual 
clarity. 

Additionally, for SIFT, SURF and ORB, the acceptance threshold was varied 
during keypoint matching from 0.2 to 0.8. The classification result for each 
acceptance threshold was plotted separately. See Figure 5 for an example of a 
SIFT matching result and Figure 6 for an example of visualized HOG 
descriptors for two paired carapace images. 
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5 Results and Discussion 
Our classification of 70 sea turtle carapaces, using 𝑘-fold cross-validation, 
produced the ROC curve plots shown in Figure 7. As predicted, all keypoint-
based descriptors, with acceptance threshold values ranging from 0.2 to 0.8, 
failed spectacularly with worse performance than random guessing. Only HOG 
performed better (than random guessing) with an average accuracy of 65%. 
Classification accuracy of this dataset via random guessing was 6.25%. 
Evidently, the nature of our ROI images, i.e. minimal color information and 
lack of texture, contributed to the failure of SIFT, SURF and ORB. Our 
implementation of HOG produced a descriptor length of 5,940, which is a far 
greater number than SIFT’s 128, making it more discriminative and robust. 

The optimal threshold value for HOG is 0.9. This reveals that with HOG, even 
though we managed to obtain an average classification accuracy of 65%, the 
distance between the top match and the second-best match is nominal. The 
confusion matrix using the optimal configuration is shown in Figure 8. There 
are 16 actual classes and 16+1 predicted classes. The additional predicted class, 
i.e. class MANY, represents cases where our classification function returned 
multiple top matches. Such cases were considered a false negative to penalize 
the configuration. 

 

Figure 7 ROC curve plots obtained from all classification results. 
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Figure 8 Confusion matrix obtained from the classification results using HOG 
[23], with threshold value for NNDR scheme set to 0.9. 

6 Conclusion 
Based on the results of this study, it can be concluded that the recognition of 
Chelonia mydas individuals using aerial images of their carapace is possible. By 
learning these ROI images as HOG descriptors, an average classification 
accuracy of 65% was obtained, for certain individuals 75% or higher. By 
dealing with cases where multiple top matches are returned from a single 
classification instance, it should be possible to further improve the average 
classification accuracy. Solutions such as cumulative voting scheme [25,26] and 
modular classification [27] will be explored in the future. Another potential 
solution is to use 3D features captured using an RGB-D sensor to represent the 
scutes, such as normal surface [28]. 

Constrained by our grant’s limitation, we deliberately ignored the effect of scute 
deformation over time. The dataset contains images captured during a single 
landing. In future, we plan to collect images of multiple landings at an actual 
nesting site over a longer period of time. 
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