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Abstract. An important problem in visual cryptography is the alignment 
problem. Although Liu, et al. have proposed a method for aligning the shares, 
there is still a problem with the non-identical mathematical support visual 
cryptography schemes. For overcoming this problem, the Three-Orthogonal-
Point (3OP) method is proposed in this paper. Based on the experimental result it 
was proven that it can overcome the alignment problem, while the time 
complexity for aligning the shares is decreased significantly from O((m×A)2) to 
O(m×AI), for AI < A. The security is maintained, since an attacker cannot obtain 
any information related to the secret image. 
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1 Introduction 

Several studies for the real-world implementation of visual cryptography have 
been conducted, such as the works of Hedge, et al. [1] and Hsu, et al. [2], which 
use visual cryptography for secure authentication in banking applications. An 
important problem in visual cryptography is the alignment problem. In 2009, 
Liu, et al. introduced a method for overcoming this problem [3]. They analyzed 
the structure of the basis matrices. Unfortunately, Liu, et al.’s method has a 
problem handling non-identical mathematical support visual cryptography 
schemes since there is no information about the exact position and orientation of 
each share. Therefore, alignment has to be done by brute force and consequently 
the time complexity is high. The Three-Orthogonal-Point (3OP) method is 
proposed in this paper for overcoming this problem. 

2 Visual Cryptography Model 

Visual cryptography is a cryptographic technique for encoding (encrypting) 
visual information. The information is decomposed into multiple shares, which 
can hence be decoded (decrypted) without using computation [4]. Suppose the 
secret information is in the form of an image. To encode the secret image (SI) it 
has to be decomposed into n shares, where n ≥ 2. For decryption (recovering the 
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secret message), at least k shares need to be stacked to reveal the secret image, 
where 2 ≤ k ≤ n. Construction of k out of n threshold access structures can be 
generalized. These are called general access structures and consist of the 
families of qualified sets and forbidden sets. A qualified set is a set of 
participants that can recover the secret image by stacking their shares, while a 
forbidden set is a set of participants that must not leak any information about 
the secret image. Let P = {P1,P2, …,Pn} be the set of n participants and S = 
{S1,S2, …,Sn} the set of shares. The secret image consists of black and white 
pixels.  

2.1 Encoding and Decoding Process   

The encoding process generates n shares from the secret image using the 
following process: 

1. Construct n × m basis matrix M0 (white) and M1 (black), where n is the 
number of shares and m is the number of pixels. Each row of the matrix is 
denoted as m-vector Vi, where i should meet the following requirement: 1 ≤ 

i ≤ n. The Hamming weight H(V) of the OR-ed m-vector Vi is interpreted by 
the visual system as follows. For some fixed threshold and Hamming 
weight is h, where 1 < h < m, a black pixel is interpreted if H(V) ≥ h and a 
white pixel is interpreted if H(V) < (h – αm), where the relative difference in 
weight is α > 0. For example for Block Threshold VCS (BTVCS), the 
adopted threshold for determining whether a block of sub-pixels should be 
encrypted as a white or black pixel is m/2 [5]. 

2. Generating share collections for white pixels is done by permuting the 
columns of M0. The group of these matrices is called C0, where C0 = 
{collection of matrices obtained by permuting the columns of matrix M0}. 
A similar process must be executed on M1 to generate the share collections 
for black pixels; the group of these matrices is called C1, where C1 = 
{collection of matrices obtained by permuting the columns of matrix M1}. 
The share patterns generated from M0 and M1 are shown in Figure 1. If the 
shares are stacked and the sub-pixels are aligned correctly, then the secret 
image will appear. 

 

Figure 1 Various types of share patterns. 
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In visual cryptography, a solution is considered valid if the following three 
conditions are satisfied: 

1. For any M0 in C0, the ‘or’ vector V of any k of m rows satisfies the 
Hamming weight H(V) ≤ l where l is equal to ℎ − � ×  � for fixed 
threshold 1 ≤ l ≤ m and relative difference � > 0. l is the maximum number 
of black sub-pixels for each pixel such that it is categorized as a white pixel 
(representing the white threshold), and h is the minimum number of black 
sub-pixels for each pixel such that it is categorized as a black pixel 
(representing the black threshold).  

2. For any M1 in C1, the ‘or’ vector V of any k of n rows satisfies Hamming 
weight H(V) ≥ h. 

3. For any subset of u rows {i1, i2, i3,...,iu} of {1,2,...,n} with u < k, the two 
collections of � ×  � matrices for xϵ {0,1}, obtained by restricting each � ×  � matrix in Ct (where t = 0, 1) to rows {i1,i2, ...,iu}, are 
indistinguishable in the sense that they contain the same matrices with the 
same frequencies. 

  
(a) (b) 

Figure 2 Encoding and decoding processes in VCS. 

Based on [6,7], there is one participant P1 who knows the secret image (SI). 
He/she decomposes the SI. He/she keeps share S1 and distributes shares Sj to 
participants Pj for 2 ≤ j ≤ n. Thus, each participant Pj holds a share Sj. The 
decoding process is conducted by stacking the shares. In this case, the 
participants in the qualified set meet and stack their shares into one. An 
illustration of the encoding and decoding processes is shown in Figures 2(a) and 
2(b). 
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2.2 Non-Identical Mathematical Support Share 

Most existing VCS methods use identical mathematical support shares. 
Identical mathematical support shares have the same shapes, sizes, orientations, 
and/or coordinate references. However, some VCS methods use different 
shapes, sizes, orientations, and/or coordinate references; they are called non-
identical mathematical support VCS (NIMSVCS). The first NIMSVCS method 
was introduced by Machizaud, et al. [8]. NIMSVCS is used to increase the 
complexity of predicting the share structure. The encoding and decoding 
processes in NIMSVCS are similar to the encoding and decoding processes in 
IMSVCS. To avoid loss of generality, the shapes of the shares used in this study 
were restricted to squares and rectangles.  

2.3 Alignment Problem 

In general, the alignment process is conducted manually and is easy when the 
shares have small sub-pixel numbers and a large sub-pixel size. However, a 
large sub-pixel size will produce large shares, while shares with a small sub-
pixel size are relatively hard to align [9]. The problem of aligning shares is 
called the alignment problem. To ease the alignment process, a larger size of 
shares is necessary. Thus, the alignment problem should be solved while 
maintaining the size of the shares. 

3 Liu et al.’s Alignment Method 

Due to high resolution as well as printing noise it is not easy to do precise 
alignment [3,10-12]. This problem also occurs in digital image shares. Several 
methods have been proposed for overcoming alignment problems [3,13,14]. 
One of the solutions has been proposed by Liu, et al. [3]. They modified the 
basis matrix such that the secret image can be recovered even though there has 
been a misalignment by one sub-pixel (shifted left or right). Based on Liu, et 

al.’s study [3], the structure of basis matrices M0 and M1 in (2,2)-VCS consists 
of four blocks. Basis matrices M0 and M1 are in the following forms (Eqs. (1) 
and (2)): 

 	0 = �1 … 1 0 … 0 1 … 1 0 … 01 … 1��� 0 … 0��� 0 … 0��� 1 … 1���    �           �            �              �   �  (1) 

 	1 = � 1 … 1 0 … 0 1 … 1 0 … 01 … 1��� 0 … 0��� 0 … 0��� 1 … 1���    �′           �′            �′              �′   � (2) 

where a, b, c, d, a’, b’, c’, d’ are the sizes of the blocks (non-negative integers). 
These non-negative integers should satisfy a + c + d = l and  a’+ c’ + d’ = h, 
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where l is the maximum number of black sub-pixels for each pixel such that it is 
categorized into white pixel (represented white threshold), and h is the 
minimum number of black sub-pixel for each pixel such that it is categorized as 
black pixel (represented black threshold). The contrast and security should 
satisfy the requirement as discussed in Section 2.1. If e = b – b’, the pixel 
expansion is equal to m= a’+ b’ + c + d + 2e. Liu et al.’s algorithm can reveal 
the secret image even if the shares are miss-aligned (shifted left or right) as 
shown in Figure 3. Suppose the number of shifted sub-pixels is r, then matrix 
M0 is as shown in Eq. (3). 

 	0 = �1 … 1 0 … 0 1 … 1 0 … 0 0 … 0 0 … 0 0 … 01 … 1��� 0 … 0��� 0 … 0��� 1 … 1��� 1 … 1��� 1 … 1��� �1 … �������  �′           �′            �             �           �             �              �     � (3) 

where C1,..., Cr are the shifted pixels of share 2. Furthermore, the average 
contrast αavg of the shifted scheme is as shown in Eq. (4) as follows [3]: 

 ��� !" #$%&'($)#$%*'  (4) 

αavg reflects how clear the image can be perceived visually. Furthermore, after 
shifting r sub-pixels, the value of the average contrast is negative (αavg < 0) 
since the transparency size should be kept minimal. To reduce the transparency 
size, reducing the amount of pixel expansion and the size of each sub-pixel is 
necessary [15]. However, the smaller the share size, the more difficult it is to 
align the transparencies together. 

Thus, the problem of Liu, et al.’s method is that for overcoming the alignment 
problem they need a larger transparency size. The difficulties increase as the 
number of shares in non-identical mathematical support form increases.  

 
Figure 3 (a) Stacking result without shifting. (b) Stacking result with one sub-
pixel shifting. (c) Stacking result with two sub-pixel shifting. 
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4 Alignment Method for Non Identical Mathematical Support 

Share (NIMS) Visual Cryptography 

For decreasing the difficulty of aligning non-identical mathematical support 
shares, the 3-Orthogonal-Point (3OP) method is proposed in this paper. It is 
based on a three-point pair generated from two orthogonal vectors that are 
perpendicular with each other, such that the three-point pairs will form an angle 
of 90 degrees. As a result, during the stacking process the three pairs of points 
are easy to find and localize. Since the 3OP should be kept secret, a securing 
process is implemented using the secret sharing concept. Suppose a bank officer 
(P1) wants to authenticate a customer (P2), then the officer creates a secret 
message and generates two shares (encoding process). The second share is 
given to the customer and the first share is kept by the officer. When the 
customer tries to conduct a transaction, he/she should first be authenticated by 
the officer by stacking the customer’s share and the officer’s share (decoding 
process). When the secret image is revealed, the customer is authenticated.  

In order to implement the secret sharing concept, visual cryptography with a 
Chameleon hash function [16] was used. The Chameleon hash function is 
proposed because it can make the alignment process faster and there is a 
possibility to regenerate the same 3OP but with different numbers embedded in 
the shares. Thus, it can be used for securing the 3OP by camouflaging the 3OP. 
In this case, each point of the 3OP is generated by two numbers (3OP 
parameters), where one number is embedded in the first share (S1) and the other 
one in the second share (S2). For generating the 3OP, the secret image size is 
required. After determining the secret image size, the process is continued with 
determining the shadow shares. A shadow share is a template that is used 
together with the basis matrix to determine the shares. 

For the decoding process, two processes are conducted: calculating the 3OP and 
the stacking process. Calculating the 3OP is done by calculating the coordinates 
using the numbers embedded in the shares. After obtaining the coordinates of 
each point, both shares can be stacked and the secret image will be revealed. 

4.1 Encoding Process 

The encoding process consists of three sub-processes: pre-decomposing, 
decomposing, and embedding the 3OP parameters into the shares. The pre-
decomposing process is a process for generating the 3OP based on the secret 
image size.  

In the decomposing process, participant P1 generates shares S1 and S2, and the 
parameters of the 3OP are embedded into the shares. The parameters of the 3OP 
are used to calculate the coordinates of the 3OP using the Chameleon hash 



     Non-Identical Mathematical Support Visual Cryptography 93 

function. This function is used because its characteristics provide the ability to 
regenerate points in the same position using different parameters, such that it 
can be used to secure the 3OP. The details of the Chameleon hash function are 
discussed in Section 4.1.1. An overview of the pre-decomposing process is 
shown in Figure 4.  

 

Figure 4 Overview of the pre-decomposing process. 

4.1.1 Generating the 3OP 

After determining the general access structure and the basis matrices, 
participant P1 determines the secret image (SI), including its size as well as the 
sizes of all shadow shares (SSi). For generating the 3OP, two prime numbers p 
and q are determined such that p = kq + 1, where q is a large prime factor. 
Furthermore, an element g of order q in Zq

*, where Zq
* is a group of non-zero 

integers that is closed for multiplication. P1 chooses the private number x ∈ Zq
*, 

then value r ∈ Zq
*, and calculates the Chameleon hash function y(m, r) = gm

h
r 

mod p, where h = g
x mod p. In this case, different parameters m and r can 

generate the same value of y due to the collision concept of the modulo 
function. Finally, the 3OP is calculated by P1 using the chameleon hash function 
for obtaining x1 and y1, x2 and y2 as well as x3 and y3 as the coordinates of the 3 
points using Eqs. (5) and (6). 

 x1 ≡ (((g
β1

)(h
γ1

) mod p) mod(the width of SS’s in pixels)) + 1 (5) 

 y1 ≡ (((g
β1

)(h
γ1

) mod p) mod (the height of SS’s in pixels)) + 1 (6) 

where x1 is the x-ordinate of the first point; g is the generator of p with order q; 
β1 and γ1 are random elements of p with order q, and p is a prime number. A 
similar calculation is used for determining the coordinates of other points. 
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The 3OP should be aligned in the vertical and horizontal direction. Since there 
are still possibilities that the 3OP is not in the vertical and horizontal direction, a 
normalization process should be conducted. After the normalization process, the 
normalized 3OP of the shares should have the same orientation. For adjusting 
the orientation, the following process is conducted: 

1. Pick the orthocenter of the 3OP from both shares and stack them. 
2. Make sure that the three points of the first share (S1) and the second share 

(S2) are in the same position. For achieving this goal, S2 can be rotated 90°, 
180° and 270° until the proper position is found. 

3. The 3OP is generated after the three points of the two shares are in the same 
position, such that the secret image is revealed. 

4.1.2 Calculating Intersection Area 

After generating the 3OP, participant P1 calculates the intersection area. 
Calculating the intersection area is necessary since there is a possibility that the 
intersection area generated by the 3OP is smaller than the area of the secret 
shares. For calculating the intersection area, the scenario as shown in Figure 5 is 
used. 

 

Figure 5 Scenario for calculating the intersection area. 

Suppose the width of SS1 and SS2 are w1 and w2 respectively. OP1 is the first 
point of the 3OP, OP1 – A is the distance from OP1 to the right border of share 
SS1. The distance is equal to l1. OP1 – B is the distance from OP1 to the right 
border of share SS2, which is equal to l2. If l2 is greater than l1, then the 
intersection’s width is Wintr =l1 + (w2 – l2). However, if l2 is smaller than l1, then 
the intersection’s width is Wintr = l2 + (w1 – l1). 

For calculating the height of the intersection, the distance from OP1 to the top 
border of the shares is necessary. In this case, suppose the heights of SS1 and SS2 
are h1 and h2 respectively, then OP1 – C is the distance between OP1 and the 
bottom border of share SS1, which is equal to s1, OP1 – D is the distance from 
OP1 to the bottom border of share SS2, which is equal to s2. If s2 is greater than 
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s1, then the intersection’s height is Hintr = s1 + (h2 – s2). However, if s2 is smaller 
than s1, then the intersection’s height is Hintr = s2 + (h1 – s1). Thus, the 
intersection area is Wintr × Hintr. 

After calculating the intersection area, P1 should check whether the intersection 
size can be embedded by the secret image. If it is not, then P1 should repeat the 
3OP generation process.  

4.1.3 Decomposing Process 

The decomposing process consists of two processes, dithering and share 
generation. Dithering is conducted if the secret image is in greyscale (8-bit 
representation). The objective of this process is to convert 8 bits into 1 bit. 
Based on [17], pixels I(i,j) of continuous-tone digital image are processed in a 
linear fashion, left-to-right and top-to-bottom. The algorithm compares the 
grey-level intensity value of the current pixel with a threshold (128). If the input 
greyscale value is greater than the threshold, the pixel is considered black and 
its value B(i,j) is 1, else the pixel is white and B(i,j) is 0. The process is shown 
in detail in Figure 6. An error occurs if there is a difference between the original 
greyscale value and the threshold. To reduce the error, it is distributed to four 
unprocessed pixels as shown in Figure 7.  

I(I,j)
QUANTIZE 

(THRESHOLD)+

ERROR FILTER 
(e)

-

U(i,j)
B(i,j)

e

P(i,j)

 

Figure 6 Floyd-Steinberg dithering process [17]. 

 
Figure 7 Error dispersed to neighboring pixels [17]. 
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Figures 6 and 7 show that the modified pixel value after spread quantization can 
be calculated using Eq. (7). 

 ,#-, /' = 0#-, /' ∑  2 ∑ 3#4, 5'�##- − 4', #/ − 5''6   (7) 

where e((i-k)(,j-l))= U(i-k, j-l) - B(i-k, j-l) and w is the weight that is represented 
by α, β, γ, δ. 

 

Figure 8 Structure of the stacked area. 

For generating the shares, the two shadow shares should be stacked using the 
3OP, as shown in Figure 8, where there are three areas: the intersection area, the 
area outside the intersection, and the area inside both the intersection and the 
secret image. In the share generation process, the two following rules are used: 

1. For the intersection area inside the secret image, each pixel is expanded 
using the basis matrices based on the pixel value (e.g. if the pixel value is 0, 
then the share pixel should be expanded using the black basis matrix and 
vice versa). 

2. For the area outside the intersection, all pixels should be expanded using the 
black basis matrix. 

3. For the area inside the intersection, all pixels should be expanded using the 
white basis matrix, such that after stacking the shares it is easy to identify 
the secret image. 
 

For securing the 3OP, after generating the shares the 3OP parameters should be 
modified such that an attacker cannot obtain the original 3OP, even though the 
modified 3OP is obtained. Modification of the 3OP is conducted by reducing 
the parameters β1, β2, β3 and γ1, γ2, γ3 by µ (µ should be agreed upon and kept 
secret by both parties), such that β1’= β1-µ, β2’= β2 -µ, and β3’= β3-µ. A similar 
process is conducted to γ1, γ2, γ3 for obtaining γ1’, γ2’, and γ3’. The modified 3OP 
parameters g, p, β1’, β2’, β3’ should be embedded into share S1 and p,h, γ1’, γ2’, 
and γ3’ should be embedded into share S2, as shown in Figure 9. 



     Non-Identical Mathematical Support Visual Cryptography 97 

 
Figure 9 Structure of the shares. 

4.2 Decoding Process 

Since the decoding process should be done for authenticating the customer 
(participant P2), the customer (participant P2) extracts the modified 3OP 
parameter of share S2 and calculates the original 3OP parameters γ1 = γ1’ + α,        
γ2 = γ2’ + α, and γ3’ = γ3 + α, where  α  should be agreed upon and kept secret by 
both parties. Finally, the ordinates of the 3OP are calculated using Eqs. (5) and 
(6). After obtaining the 3OP ordinates, the three points should be normalized as 
shown in Figure 10, where (x1, y1), (x2, y2), and (x3, y3), while (x1N, y1N) and (x3N, 
y3N) are the normalized two points of the 3OP. 

Furthermore, the bank officer stacks share 2 and share 1 using the three 
normalized points. The normalizing process starts by finding the longest 
distance between the points of the 3OP and drawing a line between them. The 
point that is not on the line is set as the orthocenter of the 3OP (in Figure 10, the 
orthocenter is (x2, y2)). Furthermore, the two other points should be normalized 
by projecting the point onto the x axis and the y axis. In Figure 10, (x1, y1) is 
projected onto (x1N, y1N) and (x3,y3) is projected onto (x3N, y3N). Finally, the two 
shares should be stacked by stacking the orthocenter, continuing with the other 
two points of the 3OP. Then it is checked whether the three points are aligned 
precisely. If these points are not aligned precisely, share 2 should be rotated 
until the right position is found and the secret image is revealed. When the 
secret image has appeared, the bank officer can authorize the customer. 

 

Figure 10 Normalization of 3OP. 
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4.3 Time Complexity 

Based on the discussion in Section 4.1 (encoding process), it can be concluded 
that the time complexity for the encoding process of the proposed method is 
equal to O(A×(m+r)) (where m is the pixel expansion, A is the area of the 
largest share, and r is the rotation interval). Meanwhile, the time complexity of 
Liu, et al.’s method is O(m×A). However, the time complexity for the decoding 
process of the proposed method is O(m×AI) (where m is the pixel expansion 
and AI is the area of the intersection of the two shares), while the time 
complexity of Liu, et al.’s method is O((m×A)

2
) because their method uses 

brute force for the alignment process. Thus, the time complexity of the proposed 
method is smaller than that of Liu et al.’s method for the decoding process but 
the same for the encoding process. This is because the encoding process of the 
proposed method and Liu ,et al.’s one are similar.  

5 Experiments and Discussion 

This section discusses the result of the experiments that were conducted for 
evaluating the encoding and decoding time as well as the security analysis. 

5.1 Experiments for Encoding and Decoding Process 

Two experiments were conducted, one for comparing the performance of the 
encoding and decoding processes between the proposed method, Moni-Naor’s 
method and Liu, et al.’s method. For evaluating the encoding process, share size 
was used as the independent variable while the encoding time was used as the 
dependent variable, using one secret image. The result is shown in Figure 11. It 
shows that the encoding time of the proposed method was longer than that of 
Liu, et al.’s and Moni-Naor’s method because in the proposed method there is 
the requirement that the 3OP generated by the system should generate the 
intersection area. Based on the result of the experiment, the encoding time of 
the proposed method is in line with the encoding time complexity as discussed 
in Section 4.3, i.e. O((m+r)×A), while Liu, et al.’s and Moni-Naor’s method has 
time complexity O(m×A). 

For evaluating the decoding process, an experiment using the intersection area 
as the independent variable and the decoding time as the dependent variable was 
used. The experiment’s result is shown in Figure 12. Based on Figure 12, it can 
be concluded that the decoding time of Moni-Naor’s and Liu, et al.’s method 
are not influenced by the intersection area, while in the case of the proposed 
method the decoding time is influenced by the intersection area. This is because 
the stacking time depends on the intersection area instead of the largest share 
area. However, even if the decoding time of the proposed method depends on 
the intersection area, it is still shorter than the decoding time of Liu, et al.’s and 
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Moni-Naor’s method. This is in line with the decoding time complexity for the 
proposed method as discussed in Section 4.3, i.e. O(AI×m)), while Liu et al.’s 
and Moni-Naor’s method have time complexity O(m×A)

2. 

 
Figure 11 Encoding time for non-identical mathematical support VCS. 

 
Figure 12 Decoding time for non-identical mathematical support VCS. 

5.2 Security Analysis 

Each share has different mathematical support, such that the share (C), the 
permutation code (K), and the secret image (M) are independent. Even if an 
attacker knows the share area as well as the permutation code, he/she cannot 
learn anything from those parameters. This is because the exact position of the 
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shares is unknown. In other words, the advantage of non-identical mathematical 
support VCS is that it not only secures the secret image but also the basis 
matrices structure.  

The security analysis was done by analyzing the entropy [18,19]. Suppose the 
reduced 3OP parameters embedded into the shares is E, then it should be 
ensured that the parameters do not give any information about the messages by 
evaluating whether 7#	|9' is equal to 1 using the following equation: 

 7#	|9' = :#;'×:#<':#<' = 7#	' = 1 (8) 

Furthermore, 7#9|	' = 7#9' should be proven for ensuring that the secret 
image does not give any information about the parameters using Eq. (9) as 
follow: 

7#9|	' = :#<'×:#;':#;' = 7#9'��  (9)

Finally, it should be ensured that there is no mutual information between the 
parameters and the secret image using Eq. (10) as follow: 

 0#	; 9' = 7#	' − 7#	|9' = 1 − 1 = 0     (10) 

Since 0#	; 9' = 0, it can be concluded that there is no mutual information 
between the reduced 3OP parameters and the secret image, such that if an 
attacker knows the parameters, he/she cannot obtain any information that is 
related to the secret image. 

6 Conclusion 

The main contribution of this study is the proposed method, called the Three-
Orthogonal-Point (3OP) method. The three orthogonal points are used for 
reducing the decoding (alignment) time complexity of Naor Shamir’s and Liu et 
al.’s methods. Using these points, the participants obtain the precise coordinates 
and orientation for each share such that the decoding process is speeded up. 
Based on the experimental result and discussion, it was proven that the 
proposed method is able to overcome the alignment problem in non-identical 
mathematical support visual cryptography schemes while maintaining security. 
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