

70 J. ICT Res. Appl., Vol. 12, No. 1, 2018, 70-86

Received December 11
th
, 2016, Revised September 7

th
, 2017, Accepted for publication January 16

th
, 2018.

Copyright © 2018 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2018.12.1.5

An Inter-Processor Communication (IPC) Data Sharing

Architecture in Heterogeneous MPSoC for OFDMA

Trio Adiono
1,*

, Rian Ferdian
2
, Febri Dawani

1
, Imran Abdurrahman

1
,

Rachmad Vidya Wicaksana Putra
1
 & Nur Ahmadi

1

1University Center of Excellence on Microelectronics, Bandung Institute of

Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
2Department of Computer System, University of Andalas, Jalan Universitas Andalas,

Limau Manis, Pauh, Kota Padang 25163, Indonesia

*E-mail: tadiono@stei.itb.ac.id

Abstract. Multiprocessor system-on-chip (MPSoC) promises better data

management for parallel processing than conventional SoC. This feature is very

suitable for wireless communication systems. Better data processing

management can reduce resource utilization and can potentially reduce power

consumption as well. Hence, this research aimed to minimize the orthogonal

frequency-division multiple access (OFDMA) processing hardware by proposing

a new data sharing architecture on a heterogeneous MPSoC platform that
incorporates inter-processor communication (IPC), multi-processor, multi-bus,

multi-frequency and parallel processing design of the medium access controller

(MAC) layer. This MPSoC was designed based on a RISC processor with an

AMBA multi-bus system. To achieve high throughput, the proposed MPSoC

runs at two different frequencies, 40 MHz and 80 MHz. The proposed system

was implemented and verified using FPGA. The verification results showed that

the proposed system can work in real-time with a maximum throughput of 11

MBps using a 40 MHz system clock. The proposed MPSoC is a promising

solution to perform OFDMA processing on 4G and 5G technologies.

Keywords: IPC; MPSoC; multi-bus; multi-frequency; OFDMA.

1 Introduction

OFDMA-based 4G and 5G technologies provide high-throughput broadband

wireless communication. These technologies employ complex multi-carrier
signal processing to meet high throughput requirements. On the other hand,

because of the large number of target applications for mobile and portable

devices, data processing management is a crucial aspect to achieve low resource

utilization by the OFDMA system. Furthermore, it also opens the possibility to
reduce the power consumption level. To overcome these challenges, OFDMA

processing implementation in system-on-chip (SoC) technology is needed. The

main reason is that SoC technology can support resource usage management,
which is crucial for performance and power consumption. Moreover, SoC

technology can also be used for flexible purposes of applications. These benefits

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 71

currently make SoC technology popular as a solution for many different

electronic applications [1,2]. Several variations of SoC techniques have been

introduced, such as multiprocessor SoC (MPSoC) for parallel processing [3],

multi-SoC for task partitioning [4], hybrid multi-SoC (H-MSoC) for highly
flexible systems in application and task partitioning [1], etc.

MPSoC technology is considered a unique branch of computer architecture

evolution since it has real-time low-power multitasking as a feature [3].
Considering this fact, we chose to design an OFDMA system on a single

MPSoC platform and separate its implementation into hardware and software.

The main target was to minimize the OFDMA processing hardware on a

heterogeneous MPSoC platform, because minimizing the processing hardware
leads to low-cost implementation and possibly also to low-power consumption

while maintaining parallel processing performance. Four architectural concepts

are proposed to implement this OFDMA MPSoC design.

The first concept is to overcome the computationally intensive signal processing

of the OFDMA physical layer. We implemented the computation as an

application specific integrated circuit (ASIC) module. Furthermore, parallel
processing and pipeline architecture approaches are used at this level to

maintain a low system frequency. By keeping the clock frequency low, the

power consumption is expected to be low as well. The second concept is to

implement the medium access control (MAC) and network layers in software,
running on MPSoC processors because of their complex and dynamic data

processing requirements. Software-based computation is slower than hardware-

based computation [5], thus to achieve high throughput, the MAC processor
needs to work at a higher frequency than the physical layer. Therefore, the third

concept is to propose a heterogeneous clocking system through multi-bus

MPSoC. This is used to separate the physical layer ASIC from the data link

layer processor, where each processor is working at its own clock frequency.
Moreover, the data link can be implemented using a multi-core processor to

reduce the clock frequency while keeping the same throughput rate.

To make the MPSoC system works properly and efficiently, a shared-memory
mechanism is needed. Several shared-memory mechanisms can be found in the

literature, such as [6-9]. For example, Greiner, et al. [6] proposed the Multi-

Writer Multi-Reader (MWMR) communication middleware mechanism and
Ahmed, et al. [5] proposed the CARER algorithm. From the literature, most of

the proposed techniques have shared memory in a single-bus MPSoC

architecture, which unfortunately is not suitable for our multi-bus architecture.

A multi-bus architecture is usually built according to specific application needs.
Hence, the mechanism needed to handle such specific needs varies based on

many considerations (e.g., energy-efficiency, memory access, etc.) that

72 Trio Adiono, et al.

correspond to the application. In such cases it is quite difficult to compare one

mechanism to another. Since our case can hardly be found in the literature, we

needed to specially design a mechanism to overcome this challenge. This led us

to the use of inter-processor communication (IPC) as the last proposed concept.

Actually, the general IPC concept comes in various forms at the software level,

for example in the operating system (OS) layer. We exploited the general IPC

concept to build a custom and specific IPC table as a memory map of processors
and peripherals that can accommodate multi-bus architecture. Using this

proposed global table, each processor can freely access data from the other

processors’ memory or peripherals. This feature provides flexibility and

efficiency in memory and data access between processors inside the system.
This feature also makes it easy for the programmer to implement the code in

each processor since each processor can work independently. Moreover, the

number of processors or peripherals is not limited. Therefore, the proposed
system is scalable to larger numbers of processors and larger computational

power requirements.

This article is organized into several sections. Section 1 is the introduction,
which briefly describes the research background and the proposed methodology.

Section 2 explains the proposed MPSoC architecture, followed by a detailed

explanation of the IPC architecture, while its mechanism is discussed in Section

3. This is followed by explanations of processor resource allocation, the
network layer and FPGA implementation in three consecutive sections. System

verification and the results thereof are provided and discussed in Section 7. This

paper finishes with concluding remarks in Section 8.

2 Proposed MPSoC Architecture

The complete system architecture for the proposed MPSoC is illustrated in

Figure 1. The system comprises two RISC based processing units, Processor-0
(RISC0) and Processor-1 (RISC1). RISC1 is allocated for the physical layer

(PHY) function and RISC0 is allocated for the data link layer function. Two

independent AHB-based high-speed buses are used, namely AHB0 and AHB1.
Both buses work at heterogeneous clock frequencies. AHB0 works at a clock

frequency of 40 MHz, while AHB1 works at a clock frequency of 80 MHz. The

data interconnection between both buses is established through two AHB

bridges.

AHB0 interconnects the main processing units, i.e. the physical layer module

(PHY), the dual-core processors (RISC0 and RISC1), the direct memory access

(DMA) master controller, the RF module, etc. AHB0 works at the same clock
frequency as the RISC processors. AHB1 interconnects the system memories,

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 73

i.e. the shared memory, the boot code, and other peripheral memories. Although

the processors work at a lower frequency, the program memory is set to 80

MHz to maximize performance. Thus, AHB1’s clock speed is increased to 80

MHz. The bus clock speed is made configurable for multiplications of 40 MHz.
A higher frequency will increase the processing speed and the power

consumption. Therefore, the optimum clock frequency will be decided based on

the target implementation and data throughput.

Both AHB0 and AHB1 have their own bus arbiter, ARB0 and ARB1, which has

the function to select the active slave at a particular time slot. The DMA master

is used to transfer data between peripherals. Four DMA channels are used to

support four types of data transfer, namely memory-to-register, register-to-
memory, register-to-register, and memory-to-memory. The external interface,

i.e. Ethernet, is connected through an Ethernet controller. The shared memory

has the function to store the program and to process data for the connected
system processors (RISC0 and RISC1). The shared memory (Shared RAM) is

implemented using SDRAM. Each processor has a different memory allocation

inside Shared RAM.

The APB bus is a low-speed bus that is used to interconnect low-speed

peripherals for the baseband function, i.e. the DMA slave controller, SPI, timer,

GPIO and UART. An AHB-APB bridge is used to establish the connection

between the modules in the AHB bus and the APB bus. For the implementation,
two LEON3 SPARC V8 32-bit processors are used as the main processors

(RISC0 and RISC1). Gaisler’s Library IPs (GRLIB) and an Advanced

Microcontroller Bus Architecture (AMBA) bus system are utilized as well [10].

Figure 1 Proposed MPSoC architecture.

74 Trio Adiono, et al.

3 Inter-Processor Communication (IPC)

3.1 Architecture and Mechanism

Flexibility and efficiency of sharing data between processors are the most

important characteristics of the MPSoC architecture. We propose an

architecture and shared-memory mechanism that are flexible, efficient, and

feasible to program. The data-sharing mechanism between the two processors
(RISC0 and RISC1) was built using Shared RAM. Each processor has three

allocated memories and a dedicated memory allocation inside Shared RAM, as

illustrated in Figure 2. Inside the allocated memory address, each processor can
freely allocate memory for its purpose. In Figure 2, mem0, mem1, and mem2

are allocated by RISC0 and mem3, mem4, and mem5 are allocated by RISC1.

For instance, to support the PHY function, these memories can be used by

RISC1 for data, transmitter (TX) buffer and receiver (RX) buffer. Each
processor has a pointer to its allocated memory (i.e. *mem0, *mem1, *mem2).

If a processor wants to share its data with another processor, it has to pass the

pointer of its allocated memory to the other processor. To pass this information,
FIFOs are provided inside the inter-processor communication (IPC) RAM.

Therefore, the other processor will have a complete set of memory pointers

inside its IPC RAM, which it has the authority to access. Using these pointers,
each processor can freely access all memories inside the Shared RAM. Using

this mechanism, the proposed architecture can provide two types of data transfer

between processors, memory pointers (IPC RAM) and data (Shared RAM).

Figure 2 Proposed data-sharing mechanism using IPC.

The FIFO is provided to enable sending and receiving data between processors.

Each processor has a dedicated FIFO inside its IPC RAM (i.e. IPC FIFO).

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 75

Therefore, the number of IPC FIFO is the same as the number of processors.

The IPC FIFO works as the mailbox of each processor. If another processor

wants to send data, it only has to write the data to the IPC FIFO of the

designated processor. After the data have been written, the designated processor
will be notified by an interrupt. The amount of data that can be transferred

between processors is relatively small as it is limited by the size of IPC RAM.

Hence, this type of communication is only used to send shared data information
inside Shared RAM. After the Shared RAM information is received by the

designated processor, it can start sharing the real data using Shared RAM

instead of IPC RAM. Thus, Shared RAM is designed to have a larger capacity

than IPC RAM. IPC RAM also can be used to transfer small amounts of data
that require immediate action.

The real data shared between processors are stored inside Shared RAM. The

size of memory allocation is free for each processor depending on need.
However, it must be guaranteed that there will be no overlapping data. Each

type of shared data must have a format known by the other processors and be

defined as a data packet. The format must have a header or flag bit. This flag bit
indicates that the data have been written or read, because only updated data will

be read, and only empty allocations will be updated with new data. Therefore, to

make sure the updated data can be read, the other processor should pool the

header for information.

3.2 The IPC Sequence

To provide data sharing between processors, a sequence of processes must be
executed by all processors. In this sequence, one processor will act as a master

that controls the sequence. In the boot sequence, processor allocation memory

reference data are sent through IPC RAM. The designated processor must

provide space to store the references that are implemented with pointers. After
each processor has obtained the references from the other processors, the

communication between the processors can be performed through writing and

reading those references. The IPC sequence is shown in Figure 3.

Figure 3 The IPC sequence.

At the start, only the assigned master processor is active, while the other

processors and peripherals are halted. Hence, at this point only the master

Master

Processor

(RISC0)

Active

Master

Processor

Initialize

IPC Table

Each

Processor

Registers to

IPC Table

Master

Processor

Enables
IPC

IPC Data

Transfer

is
Initialized

76 Trio Adiono, et al.

processor can access the bus. In the proposed MPSoC system, we assign RISC0

as the master processor. As a consequence, RISC0 will occupy all buses and has

the privilege to create content inside IPC RAM. At this stage, the master

processor creates the IPC table inside IPC RAM. The information in this table is
used by all processors to access other allocated memory areas. The structure of

the IPC table will be described in the next section. After the IPC table has been

created successfully, all connected processors are registered in this table.
Registration must be done by each connected processor. Registration must also

be done for all memory allocations that are intended to be shared with others.

After all processors have been registered, the system is ready to share data by

directly accessing Shared RAM. Thus, the slave processors have to be activated.
Activation is done using a wake-up interrupt from the RISC processor. The

sender checks the availability of the receiver by checking the receiver’s IPC

connection descriptor block (ICDB). If it is available, the sender writes the data
into FIFO under the receiver’s data pool that matches the head position in

ICDB. Afterwards, the receiver sequentially receives the IPC interrupt, check its

ICDB, and takes the data. The receiver also checks whether there are data that
are pending or not in a routine task (pooling). Since the implementation of the

data pool is based on FIFO, the receiving order is the same as the sending order.

Accessing unregistered memory allocations leads to undefined behavior.

Therefore, it is necessary to update the IPC table if a new memory allocation
needs to be shared. The IPC table can be updated by registering new resources

at the beginning of IPC initialization. The IPC mechanism is used only for

distributing each processor’s memory reference. This is because MAC has
pooling characteristic and will compose and decompose frames in the fixed

allocated memory. MAC does not work based on events like PHY-SAP.

Therefore, there is no need to synchronize between MAC and PHY-SAP, since

they are placed in different processors. Communication between processors
using the IPC mechanism costs additional overhead. If MAC and PHY-SAP

frequently communicate with each other, the overhead caused by this

mechanism will be quite significant.

3.3 The IPC RAM

The IPC RAM has the function to record the allocated memory addresses for

each processor inside Shared RAM. These addresses are used as pointers to
access allocated memory. The IPC RAM has three segments, as shown in

Figure 4, namely IPC Global Control (IGC), IPC Connection Descriptor Block

(ICDB) and Data Pool (segment). Thus, in the proposed MPSoC with dual-core
processors, 32 KB of SDRAM is divided into two memory allocations, namely

half for RISC0 and half for RISC1, as shown in Figure 5. Each memory

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 77

allocation is divided into 128 slots, where each slot consists of 128 bytes. As a

consequence, data messages for IPC will have a data length of 128 bytes. The

proposed architecture also gives independence to each processor to work with

its own local memory, accelerator engine, and peripherals.

Figure 4 IPC block structure.

Figure 5 IPC memory allocation.

4 Processor Resource Allocation

The dual-core processors need to execute concurrent tasks to maximize the

benefits. To perform uplink (UL) and downlink (DL) communication between
the base station (BS) and a subscriber station (SS) in TDD OFDMA, we

incorporated four types of data link tasks, as shown in Table 1. The BS

Transmit and BS Receive tasks are performed in the base station, while SS

Transmit and SS Receive are performed in the subscriber station. These data
link tasks consist of three processing layers, namely the physical layer (PHY),

the medium access control layer (MAC), and the network layer. To perform

processing division and increase processing parallelism, the data link tasks are
divided between RISC1 and RISC0 based on the processing layer. Each

processor is allocated as shown in Table 2. RISC0 handles any functions related

to processes in the network and MAC layers, while RISC1 handle any functions
related to the PHY layer and the RF configuration.

Table 1 Data link tasks.

Type Function Communication

BS Transmit Transmit data from BS to SS DL
BS Receive Receive data from SS to BS UL

SS Transmit Transmit data from SS to BS UL
SS Receiver Receive data from BS to SS DL

78 Trio Adiono, et al.

Table 2 Processor functional allocation.

Processor Function

RISC1
1. Physical (PHY) layer
2. RF configuration

RISC0
1. Medium access control (MAC) layer
2. Network layer

4.1 RISC1 Resource Allocation

RISC1 handles the processing related to the PHY layer. In the proposed system,
the physical layer is implemented using a dedicated hardware architecture. In

order to communicate with other devices, we make an abstraction layer of this

hardware and access it with a specially designated protocol, called Physical
Layer Service Application Protocol (PHY-SAP). The main function of PHY-

SAP is to establish a connection between the MAC and PHY layers. Since it

supports the MAC function, this task is also called lower MAC. It consists of
library-calling functions. Besides, RISC1 is also responsible for configuring the

RF module during both initialization and run-time.

4.2 RISC0 Resource Allocation

RISC0 performs the rest of the processing for the MAC and network layers.

MAC has the function to construct or decode frames and maintain quality of

service (QoS). An Ethernet connection is utilized for the network layer.

Therefore, RISC0 also handles the Ethernet driver. The dual-core MPSoC
performance depends on the parallelism of the data link task processing. The

data link task processes based on the previous resource allocation are illustrated

in Figures 6-8.

BS Receive task processing is illustrated in Figure 6. There are two types of

data decoding in this task: data burst and contention burst. In case of data burst,

the data packets are decoded and extracted from burst and the PDU decoder.
The information data for the base station are passed to Ethernet. In the case of

contention burst, the data are used for controlling the base station (i.e. initial

ranging and bandwidth request). It shows that PHY-SAP (Lower MAC) is done

in RISC1, while the MAC and network layers are done in RISC0. Both base-
station processors work independently and share the burst data in Shared RAM.

SS Transmit task processing is illustrated in Figure 7. Three types of transmitted

data are constructed within the MAC layer, namely uplink (UL) burst, initial
ranging, and bandwidth request. SS Receive task processing is illustrated in

Figure 8. Here, data transfer is similar to the BS Receive task, except it only

uses the data burst section. This is because the data receiving mechanism is

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 79

designed to be as simple as possible and a similar mechanism is the best choice

for minimizing the design complexity.

Figure 6 BS Receive task.

Figure 7 SS Transmit task.

80 Trio Adiono, et al.

Figure 8 SS Receive task.

5 Network Layer

The network layer has the responsibility to provide the network communication

protocol and data exchange. To provide this function, eCos 1.8 is used as the
operating system (OS). This layer ensures the communication between the

MAC layer and the network layer using Ethernet. All data are packed and then

transferred from the MAC layer to an IP packet and vice versa the IP packet is
received and then unpacked by the MAC layer for a higher layer.

6 FPGA Implementation

The whole MPSoC including OFDMA PHY was implemented on an FPGA
Altera Stratix IV EP4SGX530KH40C3

®
 and set up in a prototyping scale, as

shown in Figure 9. The RTL codes were synthesized using Altera Quartus
®

software. The synthesis area reports can be seen in Figure 10. It was shown that
the proposed system only consumed 36% of resources, comprising 117493

combinational ALUTs, 32 memory ALUTs, and 53334 dedicated logic

registers. The proposed system was synthesized at 40 MHz clock frequency as
the clock frequency for the main system and a clock frequency of 80 MHz was

created from the phase locked loop (PLL) for the memory and high-speed bus

modules.

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 81

Figure 9 The MPSoC prototyping set-up.

Figure 10 Synthesis reports.

7 System Verification

System verification is required to ensure that the system’s functionality is
working properly. Here, system verification consisted of a functional

simulation, waveform evaluation and application evaluation (i.e. web browsing

and video streaming). The Register Transfer Level (RTL) simulator software
was used to do the functional simulation and waveform evaluation. The

functional simulation verified whether the modules were positioned correctly in

82 Trio Adiono, et al.

the AMBA bus system. A part of this SoC functional simulation can be seen in

Figure 11. Here we can see that the OFDMA PHY IP module is mentioned after

‘Unknown Device’, which is placed as slave 0 (‘slv0’). The memory addresses

match the designated memory allocations. These ensure that the OFDMA
MPSoC is established well.

Figure 11 Established MPSoC architecture.

The bus controller gives output strings that confirm all the module

functionalities are working properly. A simple ‘hello world’ program was also
loaded to the SDRAM to check the connection between the SDRAM within the

MPSoC. String ‘cpu-0 active’ is the string from RISC0 and string ‘cpu-1 active’

is the string from RISC1. These results confirm that the two processors can run
the program in parallel. The waveform simulation was needed to check all

signaling and related timing in the MPSoC. To ensure the communication

between the modules, a testing scenario was designed as described in Table 3.
Evaluations were conducted by generating a packet of data and sending it to the

destination module. The received data were read and compared to the original

data. Identical original and received data means that the sharing mechanism

worked properly.

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 83

Table 3 Internal communication test scenario.

Scenario Source Destination

RISC1_RISC0 RISC1 SDRAM RISC0 SDRAM

RISC0_RISC1 RISC0 SDRAM RISC1 SDRAM

RISC1_eth RISC1 SDRAM Ethernet

eth_RISC1 Ethernet RISC1 SDRAM

As an advanced verification scenario, web browsing and video streaming were

conducted using two designated MPSoC systems as OFDMA base station (BS)

and subscriber station (SS), as depicted in Figure 12. The test environment
consisted of two parts, a base station (BS) and a subscriber station (SS). In the

BS section, there were PC BS and OFDMA BS (i.e. MPSoC). PC BS was

responsible for accessing Internet and determining what kind of data to transmit

to the SS section. The data selected by PC BS were processed in OFDMA BS
MPSoC and transformed into OFDMA physical signals for wireless

transmission to the SS section. In the SS section, the OFDMA signals were

received and processed by the OFDMA SS MPSoC to obtain the desired data.
When the signals were ready for the user, they were forwarded to PC SS.

Several web browsing tests were conducted, one of which is displayed in Figure

13. Meanwhile, video streaming tests were conducted as well, one of which is
displayed in Figure 14. We can see that the SS PC can do web browsing and

video streaming via the OFDMA communication scheme provided by the

proposed MPSoC. This proves that the proposed MPSoC architecture worked as

expected.

Figure 12 Advanced verification test scheme.

84 Trio Adiono, et al.

Figure 13 Web browsing test.

Figure 14 Video streaming test.

8 Conclusion and Future Work

The proposed MPSoC architecture that incorporates an IPC table for OFDMA
processing, provides flexible and efficient access to each processor for

accessing the shared memory. Therefore, computational resources for data

sharing can be maintained as low as possible. The architecture is also scalable to
more than two processors with different clock frequencies (heterogeneous

MPSoC). The system also supports multi-bus and multi-frequency. The

frequency can be set based on the attached module and system requirements.

Hence, a low clock frequency can be maintained. The proposed MPSoC system
was implemented on an FPGA Altera Stratix IV EP4SGX530KH40C3

®
 and

 IPC Data Sharing Arch. in Heterogeneous MPSoC for OFDMA 85

only consumed 36% of resources, comprising 11,7493 combinational ALUTs,

32 memory ALUTs, and 53,334 dedicated logic registers. Real-time application

tests were conducted for web browsing and video streaming and the results

showed that the proposed MPSoC worked properly. The proposed system is a
good stepping stone for further investigation of the optimal architecture for

OFDMA in terms of performance, speed frequency and power consumption in

the future.

Acknowledgements

This article is an extension of a paper presented in the 2015 International SoC

Design Conference (ISOCC), Gyeongju-si, South Korea [11]. Furthermore, the
authors would like to thank Mr. Kresno Adityowibowo, who has contributed to

the Ethernet driver part related to this work.

References

[1] Putra, R.V.W. & Adiono, T., Hybrid Multi System-on-Chip Architecture:

A Rapid Development Design for High-Flexibility System, Proc. of 2016
Int. Conf. on Electronics, Information, and Communications (ICEIC), pp.

1-4, January 2016.

[2] Putra, R.V.W. & Adiono, T., Hybrid Multi–System-on-Chip Architecture
as Rapid Development Approach for High-Flexibility System, IEIE

Transactions on Smart Processing and Computing (IEIE-SPC), 5(1), pp.

55-62, February 2016.
[3] Wolf, W., Jerraya, A.A. & Martin, G., Multiprocessor System-on-Chip

(MPSoC) Technology, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), 27(10), pp. 1701-1723, October

2008.
[4] Kliem, D. & Voight, S.O., An Asynchronous Bus Bridge for Partitioned

Multi-SoC Architectures on FPGAs, Proc. of Int. Conf. on Field

Programmable Logic and Applicat., pp. 1-4, September 2013.
[5] Adiono, T., Dwiyasa, F., Sutisna, N., Samhany, H.A., Soryawan, E.,

Dawani, F. & Ferdian, R., Real-Time WiMAX System on Chip Design,

Implementation and Field Test, Proc. of IEEJ Int. Analog VLSI

Workshop (AVLSI), pp. 1-5, November 2011.
[6] Greiner, A., Faure, E., Pouillon, N. & Genius, D., A Generic

Hardware/Software Communication Middleware for Streaming

Applications on Shared Memory Multi Processor Systems-on-Chip, Proc.
of Forum on Specification and Design Languages (FDL), pp. 1-4,

September 2009.

[7] Ahmed, R.E., Frazier, R.C. & Marinos, P.N., Cache-Aided Rollback
Error Recovery (CARER) Algorithms for Shared-Memory Multiprocessor

86 Trio Adiono, et al.

Systems, Proc. of 20th Int. Symp. on Fault-Tolerant Computing (FCTS),

pp. 82-88, June 1990.

[8] Xiao, H., Isshiki, T., Kunieda, H., Nakase, Y. & Kimura, S., Hybrid

Shared-memory and Message-passing Multiprocessor System-on-Chip
for UWB MAC, Proc. of 2012 IEEE Int. Conf. on Consumer Electronics

(ICCE), pp. 658-659, January 2012.

[9] Yamawaki, A. & Iwane, M., An FPGA Implementation of a Snoop Cache
with Synchronization for a Multiprocessor System-on-Chip, Proc. of Int.

Conf. on Parallel and Distributed Systems, pp. 1-8, December 2007.

[10] GRLIB IP Core User’s Manual (Rev 1.0.2), March 2009.

[11] Adiono, T., Ferdian, R., Ahmadi, N., Dawani, F. & Abdurrahman, I.,
Flexible data sharing architecture of WiMAX heterogeneous

Multiprocessor System on Chip, Proc. of 2015 Int. SoC Design Conf.

(ISOCC), pp. 131-132, November 2015.

