

J. ICT Res. Appl., Vol. 11, No. 1, 2017, 21-37 21

Received August 30
th
, 2016, Revised December 27

th
, 2016, Accepted for publication January 4

th
, 2017.

Copyright © 2017 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2017.11.1.2

Improvement of Fuzzy Geographically Weighted

Clustering-Ant Colony Optimization Performance using

Context-Based Clustering and CUDA Parallel

Programming

Nila Nurmala
1,*

 & Ayu Purwarianti
2

1Statistics Indonesia, Jalan Dr. Sutomo No. 6-8, Jakarta 10710, Indonesia
2School of Electrical Engineering and Informatics, Institut Teknologi Bandung,

Jalan Ganesa No. 10, Bandung, 40132, Indonesia
*E-mail: nurmala.nila@gmail.com

Abstract. Geo-demographic analysis (GDA) is the study of population

characteristics by geographical area. Fuzzy Geographically Weighted Clustering

(FGWC) is an effective algorithm used in GDA. Improvement of FGWC has

been done by integrating a metaheuristic algorithm, Ant Colony Optimization

(ACO), as a global optimization tool to increase the clustering accuracy in the

initial stage of the FGWC algorithm. However, using ACO in FGWC increases

the time to run the algorithm compared to the standard FGWC algorithm. In this

paper, context-based clustering and CUDA parallel programming are proposed
to improve the performance of the improved algorithm (FGWC-ACO). Context-

based clustering is a method that focuses on the grouping of data based on

certain conditions, while CUDA parallel programming is a method that uses the

graphical processing unit (GPU) as a parallel processing tool. The Indonesian

Population Census 2010 was used as the experimental dataset. It was shown that

the proposed methods were able to improve the performance of FGWC-ACO

without reducing the clustering quality of the original method. The clustering

quality was evaluated using the clustering validity index.

Keywords: ant colony optimization; clustering; context-based clustering; CUDA; geo-

demographic analysis.

1 Introduction

Geo-demographic analysis (GDA) is a tool to discover hidden patterns in geo-

demographic data when studying the characteristics of a population based on

geographical area [1-4]. GDA is often used with a clustering technique to
identify groups or clusters in the geo-demographic data based on two main

assumptions: people living in the same location usually have similar

characteristics, and areas can be grouped according to their population [1].
Fuzzy clustering is often used because of its ability to reduce ecological fallacy

issues and to generate a specific distribution of a population’s characteristics

[5,6]. Using fuzzy clustering, an object has membership values and can be

22 Nila Nurmala & Ayu Purwarianti

categorized into one or more clusters based on its probability in every cluster

[7].

A clustering algorithm that is effective for GDA is the fuzzy geographically

weighted clustering (FGWC) algorithm. This is an improvement of the Fuzzy
C-Means (FCM) algorithm using geographical effect in the membership value

calculation [5]. FGWC has a weakness in the initialization process, i.e. it

determines cluster centers randomly, which can lead to a local optimum.
Because the global optimum solution may not be reached, FGWC does not

ensure reaching better clustering quality. This weakness has been overcome by

integrating a metaheuristic algorithm – ant colony optimization (ACO) –

resulting in the FGWC-ACO algorithm [8]. However, the addition of ACO to
FGWC leads to another weakness. The FGWC-ACO algorithm runs slower than

the FGWC algorithm because when running ACO there are repeated iterations

to find the best solution, i.e. the global optimum for the objective function.

Several researches have proved that context-based clustering can increase the

running time of clustering algorithms [2,9,10]. Context-based clustering is a

technique of dividing data into groups based on a defined context variable
without reducing clustering quality [9]. Context-based clustering by applying

auxiliary variables in FCM has been introduced in [11]. It also has been

implemented in the standard FGWC algorithm [10]. In the FGWC-ACO

algorithm, context-based clustering is implemented, resulting in the CFGWC-
ACO algorithm [12]. These researches showed that the proposed algorithm

using context-based clustering is faster than the original algorithm. The

researches also proved that implementation of context variables not only
decreases the running time but also increases clustering quality by focusing the

cluster centers on a specific purpose.

Parallel programming is another way of increasing computation performance

without reducing accuracy. One way to utilize CPU performance in parallel
computing is programming by using graphical processing units (GPUs). GPUs

with many cores can run thousands of threads in parallel [13]. Compute Unified

Device Architecture (CUDA) is a platform model of parallel programming
designed by NVIDIA. CUDA can improve computation performance by

utilizing the abilities of GPUs. Some researchers have proved that CUDA is

able to increase the running time of clustering algorithms, such as Jiang et al.,
who have reported that CUDA implementation can increase the running time of

the harmony K-means algorithm successfully, especially if the cluster number is

large [14]. Another research, by Glenis and Pham, successfully proved

performance acceleration of FCM by implementing CUDA [15].

 Improvement of FGWC-ACO using Context and CUDA 23

The present research was aimed at improving the performance of the FGWC-

ACO algorithm and context-based clustering in FGWC-ACO (CFGWC-ACO)

by using CUDA parallel programming. Implementation was done using two

parallel strategies: 1) in the stage of solution evaluation (FGWC-ACO-CUDA-
1), and 2) in the stage of both solution construction and solution evaluation

(FGWC-ACO-CUDA-2). The proposed method classifies processes of the

algorithm that can be run in parallel and then puts each of them into GPU
threads. The strategy is to implement CUDA parallel programming in the

original algorithms in order to get significant computation acceleration without

reducing clustering quality.

The rest of this paper is organized as follows. Section 2 explains the theoretical
background of this research. Section 3 gives the method that is proposed to

resolve the weakness of the original algorithm. Section 4 describes the

experimental testing of the proposed method using the dataset of the Indonesia
Population Census 2010. Section 5 gives the conclusion of the research and

future work that can be done.

2 Theoretical Background

2.1 Fuzzy Geographically Weighted Clustering – Ant Colony

Optimization

The FGWC-ACO algorithm is an improvement of the FGWC algorithm in its

initialization phase by implementing the metaheuristic ACO algorithm so that a

global optimal solution can be reached [8]. FGWC-ACO shows better clustering
quality than the standard FGWC algorithm. The activity of the FGWC-ACO

algorithm is shown in Figure 1.

The formula to calculate cluster centers is defined in Eq. (1) below:

 �� = ∑ ���	
����∑ ���	��� (1)

where vi is a cluster center, m is a weighted exponent that determines the

fuzziness degree of a cluster, uik is an element of the partition matrix, and xk is a

data point. The original membership matrix before modification using
alternative geographical areas is defined by Eq. (2) below:

 ��� = �
∑ �����������������

�	� (2)

24 Nila Nurmala & Ayu Purwarianti

Figure 1 Flowchart of FGWC-ACO algorithm [8].

 Improvement of FGWC-ACO using Context and CUDA 25

The membership matrix is modified by applying the population number, the

geographical distance effect to calculate geo-demographic clusters, and the

geographical weight in each clustering looping [5,8], as defined in Eq. (3)
below:

 ��� = ��� + �. �� ∑ �!�!"! (3)

where � + � = 1 (4)

and �! = $%�%�&'
(��) (5)

where ui
’
is a new cluster membership degree in area i and ui is the old cluster

membership degree in area i. Variable wij is a weighting measure showing the
effect of area i on j. α and β are scale variables to affect the proportion between

original membership and weighted membership, as expressed in Eq. (4).

Parameter A is defined to ensure that the sum of the membership values of an
area for all clusters is equal to 1. The weight is defined by the distance between

the area center and the population of both areas, as shown in Eq. (5). Variable

mimj is the population number of area i and j, dij is the distance between i and j,

and a and b are parameters defined by the user [5].

The minimized basic objective function of FGWC-ACO is expressed in the

following equation (Eq. (6)) [8],

 *+,-./�.012, 4; 67 = ∑ ∑ ���%|�� − :�|; →"�=�>�=� ?@A (6)

where m is a weighting exponent that determines the fuzziness of the cluster, uik

is an element of the partition matrix, vi is a cluster center, and xk is a data point.

The FGWC-ACO algorithm uses modification of the basic objective function as

shown in Eq. (6) to make it more optimal. The basic objective function is

modified into two objective functions to handle the different datasets according
to their size [16]. If for a dataset with n records and d dimensions n > d then the

objective function calculation uses the cluster center (JFGWC-ACO(V;X)), but if n <

d, the calculation will be simpler by using the membership matrix for the
objective function calculation (JFGWC-ACO(U;X)) (See Eqs. (7) and (8)) [16].

 *+,-./�.014; 67 = ∑ ∑ |B�/
�|�
C∑ �D�����DE�����E����

�	�F
	 → ?@A"�=�>�=� (7)

 *+,-./�.012; 67 = ∑ ∑ ���% G∑ ���	
����∑ ���	��� − :�G"�=�>�=� ; → ?@A (8)

26 Nila Nurmala & Ayu Purwarianti

To reach the global optimum solution in the initial phase, the FGWC algorithm

is optimized using ACO. This metaheuristic method is inspired by ant colony

behavior [17]. ACO uses the way ants find the shortest path to a food source

and back to the nest. They find food by exploring the area around their nest
randomly and then evaluate the quantity and quality of the food if they find it

before bringing it to the nest. When they return to the nest, they will leave a

pheromone on the ground based on the quantity and quality of the food they
found. This pheromone will be used as a trail and will guide other ants to trace

the food source [17].

2.2 Context-Based Clustering

Context-based clustering is a method that concentrates the original dataset by

specific conditions from its dimensions, so only a subset of the original dataset

with a suitable relation to the defined condition will be invoked [9,10,18].

For dataset N with attributes X = {X1, … , XN}. The dataset is classified into C

clusters in dimension space (XεR
r
)

with Xk is the k-th data point and Vi is the i-th

cluster center. The context variable is defined with YεX (See Eq. (9)).

 H: J → K0,1M
 N� → O� = H1N�7 (9)

where fk represents the relation level between the k-th data point and the i-th

cluster. To define the correlation between fk and the membership of the k-th data
point in the i-th cluster, the sum operator or the maximum operator can be used

(See Eqs. (10) and (11)).

 ∑ ��!>!=� = O�; P = 1, QRRRRR (10)

 ?S:!=�. ��! = O�; P = 1, Q (11)

For partition matrix U is defined in Eq. (12) as follows:

 21O7 = T��! ∈ K0,1M: ∑ ��! = O� , ∀P = 1, … , Q;>!=�

 ∑ ��! < Q, ∀Y = 1, … , Z[�=� \ (12)

Steps to conduct the context-based clustering method [9,10,18]:

1. Initiate matrix U(t) at t = 0.

2. Recalculate center of each cluster according to Eq. (1).

3. Recalculate matrix U(t + 1) as provided in Eq. (13).

 Improvement of FGWC-ACO using Context and CUDA 27

 ��� =]�
∑ �������������� �	����

; P = 1, Q; @ = 1, Z (13)

4. Adjust partition matrix using geographical characteristics according to Eq.

(3).

The method can make the algorithm’s running time shorter because points with

fk equal to 0 will not be included in the calculation of the cluster centers and the

membership degrees. Those points have no meaning within the defined context.

2.3 CUDA Parallel Programming

Compute Unified Device Architecture (CUDA) is a technology developed by

NVIDIA to facilitate utilization of GPUs for general (non-graphic) purposes.
CUDA is an architecture for parallel computing on a GPU, which makes it

possible to develop and implement parallel programming algorithms on a GPU

[19]. One can create programs that run on a GPU using a common programming
language, such as C/C++ [20,21].

The CUDA program is divided into a host program, which consists of one or

more consecutive threads that run on the host CPU, and one or more parallel

kernels that are executed on a parallel processing tool like GPU [20,21].
Running CUDA starts with the execution program on the host CPU when kernel

functions are called and then the execution moves to the GPU tool, where a

large number of threads will be produced [20], as shown in Figure 2.

Figure 2 Basic architecture of CUDA [22].

Figure 2 illustrates the basic architecture of CUDA with the following process:

1. Copy input data from main memory to memory of GPU.

2. Program on host instructs program on GPU to run.
3. Execute parallel program in every core of GPU.

4. Copy result of parallel programming from memory of GPU to main

memory.

28 Nila Nurmala & Ayu Purwarianti

2.4 Classification Entropy (CE) Validity Index

One clustering validity index that can be used to measure clustering quality is

the classification entropy (CE) index. The CE index measures the fuzziness
degree of a cluster partition, defined in Eq. (14) as follows [23,24].

 Z^ = − �[∑ ∑ ��!_`ab1��!7[!=�>�=� (14)

where uij is the membership of the j-th data point in the i-th cluster, N is the
number of data points, and c is the number of clusters. The value range of the

CE index is between [0, loga c]. The optimal number of clusters is in the

minimum value of CE. The closer the CE index gets to 0, the better the

clustering quality.

3 Proposed Method

In this research, the FGWC-ACO algorithm implemented in CUDA is denoted
as FGWC-ACO-CUDA and CFGWC-ACO implemented in CUDA is denoted

as CFGWC-ACO-CUDA. Two strategies are used. The first strategy is parallel

computing implemented in the stage of solution evaluation, which is part of the

clustering algorithm, FGWC. The second strategy is parallel computing
implemented in the stage of both solution construction and solution evaluation.

In the stage of solution construction, parallel computing is implemented in the

pheromone updating when constructing the solution in the form of a cluster
center or a membership matrix. In implementation, the first strategy is denoted

as CUDA-1 and the second one is denoted as CUDA-2. In this research, the

results of implementing CUDA using these two strategies were compared.

Figure 3 CUDA implementation in solution construction.

 Improvement of FGWC-ACO using Context and CUDA 29

Implementation of CUDA parallel programming is done in the stage of solution

construction and solution evaluation. The steps of implementing CUDA in the

stage of solution construction and solution evaluation are illustrated in Figures 3

and 4 using flowcharts.

The first step in the solution construction stage is to copy the pheromones

initialized in the host to the device. Then for every thread, solution construction

is conducted based on the amount of pheromones and its probability is
calculated. Then the ant route, the amount of pheromones and the pheromone

matrix are updated. The pheromone matrix is a solution that has a size based on

the population size and the problem dimension. After all threads have finished

their task, the solution result is copied to the host.

Solution evaluation is divided into two, as follows. If n < d then the FGWC-U

function is used with the membership matrix as input. If n > d then the FGWC-

V function is used with the cluster center as input.

Steps of CUDA implementation in FGWC-U:

1. Copy clustering parameter and geographical parameter from host to device.

2. Copy membership matrix as input data to device; this is the solution that is
produced from the stage of solution construction.

3. For every thread, calculate every element of weight for geographical

modification.

4. For every thread, calculate every element of the cluster center.
5. For every thread, calculate membership matrix and membership matrix with

geographical modification.

6. Check whether it reaches the termination criteria. If yes, copy cluster center
and membership matrix to host. If not, back to step 4.

Steps of CUDA implementation in FGWC-V:

1. Copy clustering parameter and geographical parameter from host to device.

2. Copy cluster center as input data to device; this is the solution that is
produced from the stage of solution construction.

3. For every thread, calculate every element of weight for geographical

modification.
4. For every thread, calculate membership matrix and membership matrix with

geographical modification.

5. For every thread, calculate every element of the cluster center.
6. Check whether it reaches the termination criteria. If yes, copy cluster center

and membership matrix to host. If not, back to step 4.

30 Nila Nurmala & Ayu Purwarianti

Figure 4 CUDA implementation in solution evaluation.

 Improvement of FGWC-ACO using Context and CUDA 31

Using CUDA parallel programming for the FGWC-ACO algorithm has the

same procedure as using CUDA for the CFGWC-ACO algorithm. The only

difference is in the step of calculating the membership matrix. When calculating

the membership matrix in the CFGWC-ACO algorithm, it has a modified
formula using a defined context variable.

4 Experimental Result

An experiment was done to compare the running time of the original algorithm
and that of the proposed algorithm by calculating the average of 50 running

times of each algorithm. The algorithms were run on Windows 8 64 bit with

Intel® Core™ i5-4200U CPU @ 1.6GHz 2.3GHz, 4GB RAM.

This experiment was done using three datasets taken from the Indonesia

Population Census 2010 with different sizes. The first dataset contained

regency-level data from one province, consisting of 14 data points; the second
contained provincial-level data, consisting of 33 data points; and the third one

contained regency-level data from one island, consisting of 118 data points.

This dataset contains 110 social-demographic variables [25]. The clustering

parameters were defined as fuzziness exponent m = 2, δ = 0.001, and
geographic parameters were defined as α = 0.5, β = 0.5, a = 1, and b = 1.

Figure 5 shows the experimental result of using CUDA parallel programming

for the FGWC-ACO algorithm. Implementation of CUDA in the stage of
solution evaluation shows that the running time was shorter than that of the

FGWC-ACO algorithm. In FGWC-ACO-CUDA-1, implementation of CUDA

was done in the stage of solution evaluation, which is a process from the FGWC
algorithm, so the process of sending data from the host to the device and vice

versa only happens in the clustering process. This clustering process happens in

each ACO iteration, so the running time of FGWC-ACO-CUDA-1 was shorter

than that of FGWC-ACO, but it still increased because of the number of clusters

defined. So, the acceleration result of FGWC-ACO-CUDA-1 was not maximal.

The acceleration produced by comparing the running time of FGWC-ACO with
that of FGWC-ACO-CUDA-1 is shown in Figure 6. Based on the experimental

result, the acceleration produced by the dataset with size 14 was up to 2.4 times,

the dataset with size 33 produced an acceleration of up to 3 times, and the

dataset with size 118 produced an acceleration of up to 3.5 times.

In FGWC-ACO-CUDA-2, implementation of CUDA is not only done in the

stage of solution evaluation, but also in the stage of solution construction. The

solution construction process happens in each ACO iteration, and so does the

32 Nila Nurmala & Ayu Purwarianti

Figure 5 Running time of FGWC-ACO-CUDA using various dataset sizes.

evaluation process. More processes running in parallel means that the running

time produced will be shorter. On the other hand, more parallel processes run by

CUDA kernels means that more time is needed to send data from the host to the
device. This causes a speed reduction in processes with a small number of

clusters. If the number of clusters is large, it is not too influential because

sequential processing on large numbers of clusters needs more time. Based on

0

10

20

2 3 4 5 6 7 8 9 10

R
u

n
n

in
g
 T

im
e

(S
e
c
o
n

d
)

Cluster Number

Running Time of FGWC-ACO-CUDA using Dataset with Size 14

FGWC-ACO FGWC-ACO-CUDA-1 FGWC-ACO-CUDA-2

0

10

20

30

2 3 4 5 6 7 8 9 10

R
u

n
n

in
g
 T

im
e
 (

S
e
c
o
n

d
)

Cluster Number

Running Time of FGWC-ACO-CUDA using Dataset with Size 33

FGWC-ACO FGWC-ACO-CUDA-1 FGWC-ACO-CUDA-2

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
u

n
n

in
g
 T

im
e
 (

S
e
c
o
n

d
)

Cluster Number

Running Time of FGWC-ACO-CUDA using Dataset with Size 118

FGWC-ACO FGWC-ACO-CUDA-1 FGWC-ACO-CUDA-2

 Improvement of FGWC-ACO using Context and CUDA 33

the experimental result, the acceleration produced by the dataset with size 14

was up to 1.9 times, the dataset with size 33 produced an acceleration of up to

3.6 times, and the dataset with size 118 produced an acceleration of up to 9.8

times.

Figure 7 shows that FGWC-ACO-CUDA-2 decreases the amount of running

time on cluster numbers 1 and 2, and the speed increased along with the

increase in number of clusters. From the acceleration produced by FGWC-
ACO-CUDA-1 and FGWC-ACO-CUDA-2 it can be concluded that for small

datasets or small cluster numbers, the running time is shorter when using the

FGWC-ACO-CUDA-1 algorithm. Otherwise, for large datasets or large cluster

numbers, using the FGWC-ACO-CUDA-2 algorithm further increases the
algorithm’s performance. Figure 8 illustrates that an increase in performance

using CUDA parallel programming does not change the clustering result. The

CE index value for the FGWC-ACO algorithm is the same as the CE index
value for the FGWC-ACO-CUDA algorithm. Implementation of CUDA in the

CFGWC-ACO algorithm shows a result with the same characteristics as the

result of the implementation of CUDA in the FGWC-ACO algorithm.

Figure 6 Acceleration time of FGWC-ACO-CUDA-1 based on dataset sizes.

Figure 7 Acceleration time of FGWC-ACO-CUDA-2 based on dataset sizes.

0

1

2

3

4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
e
le

r
a
ti

o
n

 (
T

im
e
s)

Cluster Number

Running Time Acceleration of FGWC-ACO-CUDA-1

14 33 118

0

5

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20A
c
c
e
le

r
a
ti

o
n

 (
T

im
e
s)

Cluster Number

Running Time Acceleration of FGWC-ACO-CUDA-2

14 33 118

34 Nila Nurmala & Ayu Purwarianti

Figure 8 CE validity index of FGWC-ACO-CUDA algorithm.

5 Conclusion

In this paper, implementation of CUDA parallel programming for the FGWC-
ACO and CFGWC-ACO algorithms was proposed in order to optimize the

running time of the FGWC-ACO algorithm. In the implementation of CUDA

parallel programming, the experimental result proved that it is able to increase
the running time speed. In the experiment, the maximum acceleration that was

reached was up to 9.8 times. Evaluation of clustering quality after implementing

CUDA parallel programming had the same result as with the original algorithm
because both algorithms produce the same membership matrix and cluster

centers. Future research that can be done is to investigate how to implement

0,00E+00

1,00E+00

2,00E+00

3,00E+00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CE Index of Dataset with Size 118

CE FGWC-ACO CE FGWC-ACO-CUDA

 Improvement of FGWC-ACO using Context and CUDA 35

CUDA parallel programming by applying a multi-GPU device, so a higher

increase of computation speed can be reached. As in our previous paper [12],

one context variable was used in this research. It is an interesting challenge to

implement two or more context variables when conducting context-based
clustering so the result can focus on the correlation between two or more

context variables. Beside that, in the clustering process, it will be useful to build

a tool to interpret and visualize new information from the clustering data,
especially when applying clustering to large datasets.

References

[1] Son, L.H., Cuong, B.C., Lanzi, P.L. & Thong, N.T., A Novel Intuitionistic
Fuzzy Clustering Method for Geo-demographic Analysis, Expert Systems

with Applications, 39(10), pp. 9848-9859, 2012.

[2] Son, L.H., Enhancing Clustering Quality of Geo-demographic Analysis
using Context Fuzzy Clustering Type-2 and Particle Swarm Optimization,

Applied Soft Computing Journal, 22, pp. 566-584, 2014.

[3] Wijayanto, A.W. & Purwarianti, A., Improvement of Fuzzy

Geographically Weighted Clustering using Particle Swarm Optimization,
in 2014 International Conference on Information Technology System and

Innovation (ICITSI), pp. 7-12, 2014.

[4] Wijayanto, A.W., Purwarianti, A. & Son, L.H., Fuzzy Geographically
Weighted Clustering using Artificial Bee Colony: An Efficient Geo-

demographic Analysis Algorithm and Applications to the Analysis of

Crime Behavior in Population, Applied Intelligence, 44(2), pp. 377-398,
2016.

[5] Mason, G.A. & Jacobson, R.D., Fuzzy Geographically Weighted

Clustering, in Proceedings of the 9th International Conference on

Geocomputation, (1998), pp. 1-7, 2007.
[6] Son, L.H., Cuong, B.C. & Long, H.V., Spatial Interaction – Modification

Model and Applications to Geo-demographic Analysis, Knowledge-

Based Systems, 49, pp. 152-170, 2013.
[7] Gan, G., Ma, C. & Wu, J., Data Clustering: Theory, Algorithms, and

Applications, the American Statistical Association and the Society for

Industrial and Applied Mathematics (SIAM), 2007.

[8] Wijayanto, A.W., Improvement of Fuzzy Geo-Demographic Clustering
Using Metaheuristic Optimization on Indonesia Population Census,

Master's Program Thesis, Institut Teknologi Bandung, Bandung, 2015.

[9] Cuong, B.C., Son, L.H. & Chau, H.T.M., Some Context Fuzzy Clustering
Methods for Classification Problems, in Proceedings of the 2010

Symposium on Information and Communication Technology – SoICT

’10, p. 34, 2010.

36 Nila Nurmala & Ayu Purwarianti

[10] Son, L.H., Lanzi, P.L., Cuong, B.C. & Hung, H.A., Data Mining in GIS :

A Novel Context-Based Fuzzy Geographically Weighted Clustering

Algorithm, International Journal of Machine Learning and Computing,

2(3), pp. 1-4, 2012.
[11] Pedrycz, W., Conditional Fuzzy C-Means, Pattern Recognition Letters,

17(6), pp. 625-631, May 1996.

[12] Nurmala, N. & Purwarianti, A., Improvement of Fuzzy Geographically
Weighted Clustering-Ant Colony Optimization using Context-Based

Clustering, in 2015 International Conference on Information Technology

Systems and Innovation (ICITSI), pp. 1-6, 2015.

[13] Luebke, D., Cuda: Scalable Parallel Programming for High-
Performance Scientific Computing, in 2008 5th IEEE International

Symposium on Biomedical Imaging: From Nano to Macro, pp. 836–838,

2008.
[14] Jiang, Y., Li, E. & Gao, Z., A GPU-Based Harmony K-Means Algorithm

For Document Clustering, in IET International Conference on

Information Science and Control Engineering 2012 (ICISCE 2012), pp.
3.29-3.29, 2012,

[15] Glenis A. & Pham, V., A Linear Algebra Approach to C-Means

Clustering Using GPUs and MPI, in 2012 16th Panhellenic Conference

on Informatics, 7, pp. 198-203, 2012.
[16] Runkler, T.A. & Katz, C., Fuzzy Clustering by Particle Swarm

Optimization, in 2006 IEEE International Conference on Fuzzy Systems,

pp. 601-608, 2006.
[17] Dorigo, M. & Stützle, T., Ant Colony Optimization, The MIT Press,

Cambridge, Massachusetts, United States of America, 2004.

[18] Minh, N.V & Son, L.H., Fuzzy Approaches to Context Variables in Fuzzy

Geographically Weighted Clustering, in Computer Science &
Information Technology (CS & IT), pp. 21-30, 2015.

[19] Sanders, J. & Kandrot, E., CUDA by Example: An Introduction to

General Purpose GPU Programming, Pearson Education Inc., Boston,
Massachusetts, United States of America, 2008.

[20] Kirk, D.B. & Hwu, W.W., Programming Massively Parallel Processors:

A Hands-on Approach, Elsevier Inc., Burlington, Massachusetts, United
States of America, 2010.

[21] Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J.,

Morton, S., Phillips, E., Zhang, Y. & Volkov, V., Parallel Computing

Experiences with CUDA, IEEE Micro, 28(4), pp. 13-27, 2008.
[22] Lee, J.S., Park, S.C., Lee, J.J. & Ham, H.H., Document Clustering using

Multi-Objective Genetic Algorithms with Parallel Programming Based

on CUDA, in Proceedings of the 11th International Conference on
Informatics in Control, Automation and Robotics, pp. 280-287, 2014.

 Improvement of FGWC-ACO using Context and CUDA 37

[23] Balasko, B., Abonyi, J. & Feil, B., Fuzzy Clustering and Data Analysis

Toolbox for Use with Matlab, Veszprem, Hungary, 2005.

[24] Grekousis, G. & Thomas, H., Comparison of Two Fuzzy Algorithms in

Geodemographic Segmentation Analysis: The Fuzzy C-Means and
Gustafson-Kessel Methods, Applied Geography, 34, pp. 125-136, 2012.

[25] Badan Pusat Statistik, Statistics Indonesia–2010 Population Census,

http://sp2010.bps.go.id/, (1 April 2015).

