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Abstract. Electrical capacitance volume tomography is a volumetric tomography 
technique that utilizes capacitance and fringing to capture behavior or 
perturbation in the sensing domain. One of the crucial issues in developing 
ECVT technology is the reconstruction algorithm. In practice, ILBP is most used 
due to its simplicity. However, it still presents elongation errors for certain 
dielectric contrasts. The high undersampling measurement of the ECVT imaging 
system, which is mathematically defined as an undetermined linear system, is 
one of the most challenging issues. Compressive sensing (CS) is a framework 
that enables the recovery of a sparse signal or a signal that can be represented as 
sparse in a certain domain, by having a lower dimension of measurement data 
compared to the Shanon-Nyquist theorem. Thus, mathematically, this framework 
is promising for solving an undetermined linear system such as the ECVT 
imaging system. This paper discusses the possibility of developing an ECVT 
imaging technique for static objects based on a CS framework. Based on the 
simulation results, Non-optimized CS does not completely succeed in providing 
better ECVT imaging quality. However, it does provide more localized imaging 
compared to ILBP. In addition, by having fewer requirements for the 
measurement data dimension, the CS framework is promising for reducing the 
number of required electrodes. 

Keywords: compressive sensing framework; electrical capacitance volume 
tomography; imaging (reconstruction) algorithm;  static imaging; tomography imaging. 

1 0BIntroduction 
Electrical capacitance volume tomography (ECVT) is a further development of 
electrical capacitance tomography (ECT), which is used for volumetric imaging. 
In ECT, the reconstruction of a 3D object is done by stacking 2D imaging slices 
[1]. ECVT, on the other hand, is able to reconstruct 3D objects directly. Thus, 
for more rapid observation, ECVT is more reliable compared to ECT.  

The imaging technique and the image reconstruction algorithm are among the 
most important issues in improving ECVT performance beside the data 
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acquisition technology. The soft-field properties of electrical based tomography 
and the ill-conditioned measurement matrix are crucial factors that make the 
inverse problem (ECVT imaging) difficult to solve. The reconstruction 
algorithms that so far have been implemented in ECVT are ILBP [2], NN-
MOIRT [2] and Combined Feed Forward NN and ILBP [3]. ILBP, or the 
Landweber algorithm, is one of the oldest methods for electrical based 
tomography, including ECT. It will always be a benchmark for all proposed 
imaging methods due to its simplicity and acceptable imaging performance in 
simple cases. 

The most current reports show that NN-MOIRT performs much better 
compared to ILBP, especially when conducting dynamic observation [2]. When 
ILBP is applied, elongation noise is still observed for both static and dynamic 
ECVT imaging [2], while NN-MOIRT is successful in reducing it. In addition, 
in dynamic observation NN-MOIRT is successful in providing more stable 
imaging [2]. However, like all neural network based methods, NN-MOIRT is 
expensive in computational cost. 

The compressive sensing framework is a new concept of signal recovery that 
enables the recovery of a certain signal that is naturally sparse or sparse in a 
certain domain by having a number of linear projections with a dimension that 
is considerably lower than the number of samples required by the Shanon-
Nyquist Theorem [4-6]. The ECVT signal is naturally sparse and the dimension 
of capacitance measurement is much lower compared to the number of 
permittivity projections. Thus, theoretically, the compressive sensing 
framework is promising for adaption to ECVT imaging. 

This paper discusses the possibility of developing an ECVT imaging technique 
based on the CS framework. It discusses the crucial part of adapting CS and 
presents the future potential of CS framework ECVT imaging techniques based 
on an early simulation of non-optimized compressive sensing for ECVT 
imaging and a number of previous scientific reports. Based on the simulation 
results, Non-optimized CS was not completely successful in providing better 
ECVT imaging quality. However, it did provide more localized imaging 
compared to ILBP and potentially provides a smaller number of electrodes 
required. In addition, the CS framework mathematically has high potential to be 
further developed and optimized for ECVT imaging by considering the high 
undersampling of ECVT and the structure of the ECVT projection matrix. 

2 ECVT (Electrical Capacitance Volume Tomography) 
ECVT is a tomography technique based on capacitance measurement. It is used 
to predict the permittivity distribution inside the sensing domain utilizing 
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capacitance measurement on the sensor boundary [2,7,8]. The technique, 
originally invented by Warsito, et al. [2], is a further development of ECT, 
which is used for volumetric imaging. The technique is able to do 3D object 
imaging directly, which makes it more reliable for rapid observation compared 
to ECT [2].  

The basic difference between ECT and ECVT can be seen clearly when it 
comes to producing a reconstruction of a 3D object. 3D reconstruction by ECT 
projection is generated by stacking slices of 2D images. In ECVT, the 
reconstructed 3D image is generated directly without stacking procedure and it 
can be done in real time [2]. To produce a 3D reconstruction, ECVT utilizes the 
fringe effect, which is dependent on the sensor design [2].  

2.1 ECVT Component  
There are three main hardware components that support the ECVT system, i.e. 
the sensoring system, the data aqcuisition system, and a computer system for 
image reconstruction. 

 

Figure 1 ECVT hardware components (Source: CtechLab). 

The sensoring system consists of electrodes that produce capacitance excitation 
between electrode couples. For a number N of installed electrodes there are 
N(N-1)/2 possible capacitance measurements [2]. The data acquisition system 
processes the capacitance and electrical field measurements to prepare them for 
processing by the computer system. The computer system consists of algorithms 
that utilize the measurements to build the reconstructed image. The 
corresponding reconstructed image describes a prediction of the permittivity 
distribution inside the sensing domain.  
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Currenly, ECVT is not only being utilized in process tomography but also for 
medical tomography [9,10]. Edawar Technology have developed and 
implemented ECVT for breast and brain tomography. Thus, the architecture of 
ECVT sensor design various subject to the tomography purposes.  

2.2 Mathematical Model 
As a working process (software), the ECVT system consists of two main parts: 
the forward problem and the inverse problem. The forward problem covers the 
capacitance measurement on the sensing boundary and the inverse problem 
covers the prediction of the permittivity distribution inside the sensing domian 
utilizing the capacitance measurements. 

2.1.1 Forward Problem 
The basic forward problem of ECVT, the same as defined for ECT, is the 
capacitance measurement process that follows the Poisson equation that can be 
represented in a 3-dimensional space as in Eq. (1) [2,9,11]:  

 ∇𝜖(𝑥,𝑦, 𝑧)∇2∅(𝑥,𝑦, 𝑧) = −𝜌(𝑥,𝑦, 𝑧)  (1) 

where ∇𝜖(𝑥,𝑦, 𝑧)  represents the permittivity distribution,  ∇2∅(𝑥,𝑦, 𝑧) 
represents the potential distribution of the electrical field and 𝜌(𝑥,𝑦, 𝑧) 
represents the charge density. By assuming there is no charge inside the sensor, 
Eq. (1) can be represented as [2]: 

 ∇𝜖(𝑥,𝑦, 𝑧)∇2∅(𝑥,𝑦, 𝑧) = 0 (2) 

Due to Eq. (2), the potential value can be calculated by the finite element 
method (FEM). If the potential can be calculated, then the capacitance can be 
calculated by the volume integral below[2]: 

 𝐶𝑖 = − 1
∆𝑉𝑖 ∮ 𝜖(𝑥,𝑦, 𝑧)∇∅(𝑥,𝑦, 𝑧)𝑑𝐴𝐴𝑖  (3) 

where ∆𝑉𝑖 is the voltage difference between the electrode pair and 𝐴𝑖 is the 
surface area enclosing the detector electrode. Eq. (2) relates the dielectric 
constant (permittivity) distribution inside the sensing domain, 𝜖(𝑥, 𝑦, 𝑧), to the 
measured capacitance, 𝐶𝑖. 

The linearization method, called the sensitivity model, is used to approach the 
solution of the forward problem given in Eq.(3). The linearization method is 
chosen due to its simplicity. The linearized form of Eq. (3) is mathematically 
formulated as in Eq. (4) [2]: 

 𝐶 = 𝑆𝐺 (4) 
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where C is the M-dimension of the measured capacitance vectors, G is the N-
dimension of the permittivity distribution vector and S is the M x N dimension of 
the sensitivity matrix.  

2.2 Inverse Problem 
The inverse problem of the ECVT system is the process of utilizing the 
measured capacitance along the boundary to predict the permittivity 
distribution, 𝜖(𝑥,𝑦, 𝑧), inside the sensing domain. By having a linearized model 
of the capacitance-permittivity relation as given in Eq. (4), the inverse problem 
can be formulated mathematically as: 

 𝐺 = 𝑆−1𝐶 (5) 

Eq. (5) seems simple to solve. However, the dimension of the predicted 
permittivity distribution (N) is normally much higher compared to the 
dimension of the measured capacitance (M). The problem in Eq.(5) becomes ill-
posed or the system has an undetermined solution. This is a main issue in the 
image reconstruction research area, especially in electrical tomography. 

3 Compressive Sensing Framework 
Compressive sensing (CS) is a developing framework that was first formulated 
mathematically by Danoho, et al. [4] in 2004-2006. It states that any signal that 
is naturally sparse or sparse in a certain domain can be exactly recovered from 
the number of signal samplings of which the dimension is considerably lower 
than the number of samplings required by the Shanon-Nyquist theorem [4,12]. 
Mathematically, this concept is another approach of solving a linear system that 
has a smaller number of equations compared to the number of variables that 
should be solved, which is called an undetermined linear system. 

3.1 Mathematical Model 
Given a discrete time signal 𝑥𝜖𝑅𝑁 and considering a measurement system that 
acquires M-dimension of measurement values, then mathematically the linear 
measurement can be represented as in Eq.(6) [6,12]: 

 𝑦 = Φ𝑥 (6) 

where Φϵ𝑅𝑀𝑥𝑁 and 𝑦𝜖𝑅𝑀. Φ represents the measurement or sensing matrix. M 
is typically much smaller compared to N. 𝑥𝜖𝑅𝑁 is a coefficient vector that 
normally has only 𝐾 ≪ 𝑁 non-zero coefficients [6,12]. In order to ensure that 
the original signal is properly adapted to the compressive sensing, the original 
signal 𝑥 is often reformulated as a linear combination of a small number of 
signals taken from a ‘resource database’ determined as dictionary  𝜓ϵ𝑅𝑁𝑥𝐿 
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[5,6]. The elements of the dictionary are typically unit norm functions called 
atoms [6]. 

 𝑥 =  𝜓s (7) 

Then x in Eq.(7) is determined as a sparse signal in base ψ with K-degree of 
sparseness. 

By representing the original signal in a certain dictionary, the linear 
measurement on Eq. (6) can be represented as: 

 𝑦 = Φ 𝜓s (8) 

The main idea of the CS system is projection of 𝑥 to a low-dimensional 
measurement vector y by measurement matrix Φ, which completely has no 
relation to sparse base 𝜓 [5, 12]. However, some mathematical works and 
former simulations have shown criteria that should be satisfied by the 
measurement matrix in correlation with the sparse base matrix to achieve good 
CS performance. 

The mathematical model given in Eq. (8) indicates that the measurement matrix 
and the sparse base (dictionary) matrix are crucial parameters in the CS system. 
Thus, most of the algorithms proposed for improving the CS system 
performance provide an optimization procedure for both of these parameters [6, 
13-16]. 

3.2 Fundamental Compressive Sensing Principles 
A number of references present fundamental compressive-sensing principles 
concerning aspects that affect compressive sensing performance. By 
acknowledging these properties, optimal performance of compressive sensing 
should be achieved. Two fundamental principles that should be addressed to 
optimize CS performance are sparsity and the incoherence principle. 

3.2.1 Sparsity 
In a compressive sensing framework, the recovery of a signal can be exact if the 
signal being sensed has a low information rate [6,12]. In other words, it is 
sparse in the original or another, transformed domain. Thus, sparsity is one of 
the crucial properties in the compressive sensing framework. Normally, to make 
sure that the sparsity of the signal is reliably adaptable to the compressive 
sensing framework, the sensed signal is transformed to a certain domain by a 
certain sparse base function that is called a dictionary [5]. Some commonly used 
dictionaries are the cosine base, the sine base, the wavelet base, the chirplet 
base, the curvelet base function, etc. [5].  
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3.2.2 Incoherence 
The second most important principle of the CS framework in achieving optimal 
performance is the incoherence principle. The more incoherence between the 
measurement matrix and the dictionary, the more optimal recovery should be. 
Mathematically, the incoherence principle is represented by the restricted 
isotropy property (RIP). 

3.2.2.1 Restricted Isotropy Property 
The restricted isotropy property is a property that should be satisfied by 
measurement matrix Φ to guarantee the convergence of the reconstruction 
algorithm that recovers any K-sparse signal using M measurement values [4-
6,12]. Mathematically, for any K-sparse signal 𝑠 and any constant 𝜀 ∈ (0,1), the 
RIP criterion restricts the Φ,𝜓 to the following criteria in Eq. (9) [5]: 

 1 − 𝜀 ≤ ‖Φ 𝜓𝑠‖2
‖𝑠‖2

≤ 1 + 𝜀 (9) 

The interpretation of the above criterion is the un-correlation (incoherency) 
between the measurement matrix and the sparse base matrix (dictionary). 

Another way to see the un-correlation between the measurement matrix and the 
sparse base matrix is by observing the mutual coherence between these two 
parameters using the Gram matrix. 

3.2.2.2 Mutual Coherence  
Mutual coherence of 𝐴 = Φ 𝜓, denoted as 𝜇(𝐴), determines the worst-case 
coherence between any two columns (atoms) of A [17].  

Definition 1 For a given matrix 𝐴 = Φ 𝜓, the mutual coherence of A {𝜇(𝐴)} is 
defined as the largest absolute and normalized inner product between the two 
different columns in A, formulated as in Eq.(10) [18]: 

 𝜇(𝐴) ≅
𝑚𝑎𝑥

1 ≤ 𝑖 ≠ 𝑗 ≤ 𝐿
�𝐴𝑖
𝑇𝐴𝑗�

‖𝐴𝑖‖2�𝐴𝑗�2
 (10) 

The strongest similarity between the different columns of matrix A can be 
evaluated by their mutual coherence. The measurement can reflect the weakness 
of the matrix. A close relationship between two columns may confuse any 
greedy pursuit algorithm, which can lead to inappropriate reconstruction [18]. 

The Gram matrix is considered another way to measure mutual coherence.  
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Definition 2 For a given matrix 𝐴 = Φ 𝜓, the Gram matrix is defined as in Eq. 
(11) [6]: 

 𝐺 = 𝐴𝑇𝐴 (11) 

the (i,j)-th element of the Gram matrix of A is defined as in Eq. (12)[6]: 

 𝑔𝑖𝑗 = 𝐴𝑖𝑇𝐴𝑗  (12) 

The Gram matrix is normalized such that  𝑔𝑖𝑗 = 1,𝑓𝑜𝑟 ∀𝑖 = 𝑗. The mutual 
coherence of A is determined by the maximum value of the off-diagonal 
elements of G. 

The values of the mutual coherence are bounded in the interval of  𝜇 ≤ 𝜇(𝐴) ≤
1, with low bound 𝜇 defined as in Eq.(13) [6]: 

  𝜇 ≅ � 𝐿−𝑀
𝑀(𝐿−1)

 (13) 

Instead of the maximum value of the off-diagonal elements of G, the former 
simulations show that the average of the mutual coherence is more related to the 
performance of the CS system. Thus, the other measurement, called average 
mutual coherence, is drawn as in Eq. (14) [6]: 

 �̅�(𝐴) =
∑ 𝑔𝑖𝑗∀(𝑖,𝑗 ),𝑤𝑖𝑡ℎ 𝑖≠𝑗

𝑁𝑡
 (14) 

with 𝑁𝑡 off-diagonal elements. In this paper, the distribution of the off-diagonal 
entries of normalized Gram matrix G is presented to give a supporting reasons 
for the resulted simulation performance. 

4 Non-Optimized Compressive Sensing Framework for ECVT 
Imaging 

An early simulation of implementing a non-optimized CS framework for ECVT 
imaging is presented in this paper. The simulation’s aim was to show the nature 
performance of the CS framework for ECVT imaging without optimizing the 
incoherency between the measurement matrix and the corresponding dictionary. 
The performance of the algorithm in terms of ECVT imaging quality was 
observed, so that the future potential of ECVT imaging based on the CS 
framework can be proposed. 

4.1 The Framework for ECVT Imaging 
The compressive sensing framework on ECVT imaging can be correspondingly 
explained as 𝑦 represents the measuring capacitance (c), Φ represents the 
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sensitivity matrix (S), and 𝑥 represents the permittivity distribution (𝑔). Thus, 
Eq. (6) can be represented as in Eq. (15): 

 𝑐 = S𝑔 (15) 

By representing the signal of the permittivity distribution as a sparse signal in a 
certain dictionary  𝜓, permittivity distribution g can represented as in Eq.(16): 

 𝑔 =  𝜓α (16) 

Thus, the linear capacitance measurement along the sensor’s boundary can be 
represented as in Eq. (17): 

 𝑐 = S  𝜓α (17) 

α is sparse, thus theoretically Eq. 17 should have an exact solution. The sparse 
signal α can be obtained by Eq. (18) [5]: 

 min‖𝛼‖𝑙0   𝑠. 𝑡   𝑐 = S  𝜓α (18) 

The image reconstruction technique in the compressive sensing framework will 
find the optimum predicted sparse signal representation α that correspondingly 
will obtain the optimum predicted permittivity distribution 𝑔 by Eq. 16. 

4.2 The Algorithm of ECVT Imaging by Non-Optimized CS 
Step 1 (Data acquisition) 

Data acquisition intends to obtain the capacitance measurement, the sensitivity 
approximation, and their corresponding normalization. The sensitivity is 
approximated by Eq. (19)[2]: 

 𝑆𝑖𝑗 ≅ 𝑉0𝑗
𝐸𝑠𝑖(𝑥,𝑦,𝑧).𝐸𝑑𝑖(𝑥,𝑦,𝑧)

𝑉𝑠𝑖𝑉𝑑𝑖
 (19) 

where 𝐸𝑠𝑖(= −∇𝜙) is the electrical field distribution vector when the source 
electrode in the ith pair is activated with voltage 𝑉𝑠𝑖 while the rest of the 
electrodes are grounded. 𝐸𝑑𝑖 is the electrical field distribution vector when the 
detector electrode in the ith pair is activated with voltage 𝑉𝑑𝑖 while the rest of 
the electrodes are grounded. 𝑉0𝑗 is the volume of the jth voxel. 

Step 2 (Sparse base (dictionary) determination) 

Determine the dictionary (sparse base) that will represent the original signal 𝑔 
in a certain sparse domain. In this early simulation, an orthogonal DCT (discrete 
cosine transform) base was used. If the length of the original signal is N, the 
orthogonal DCT base can be written as in Eq. (20): 

 𝜓(𝑚,𝑛) = �2
𝑁
�𝑐(𝑚)𝑐𝑜𝑠 (2𝑛−1)(𝑚−1)

𝑁
� (20) 
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where   

 𝑚,𝑛 = 1,2, … ,𝑁, 𝑐(𝑚) = �
1
√2

, 𝑚 = 1
1, 𝑚 = 2,3, …𝑁

  

Step 3 

Solving the optimization problem on Eq.(18) in order to obtain the representing 
sparse signal α. In this early simulation, a classical greedy iterative, orthogonal 
matching pursuit (OMP) algorithm is applied. 

Step 4 

Calculate the prediction of the original signal 𝑔 based on Eq. (16). 

4.3 Simulation Set-up 
To evaluate the performance of the proposed algorithm, we used syntactic data 
generated by Comsol. Static object simulation with various dielectric contrasts 
was designed. The simulation employed Comsol and MATLAB as the main 
software. A flow diagram of the corresponding simulation is shown in Figure 2. 

 
Figure 2 Flow diagram of simulation. 

Comsol was utilized to replace the experimental set-up. It can be used to imitate 
the physical behavior during the sensing process by ECVT. The sensor design, 
detected object design and all corresponding properties were set up in Comsol. 
In addition, the capacitance and the electrical field measurement for the first 
activated port were simulated in Comsol, while the remainder was done by 
creating routines in MATLAB. Sensitivity approximation calculation, 
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dictionary determination and the imaging process were done by writing the 
codes in MATLAB. 

The used sensor design was a cylindrical sensor with 8 electrodes, as shown in 
Figure 3. 

 

Figure 3   Cylindrical sensor with 8 electrodes, d = 10 cm, h = 20 cm, (Source: 
CTech Lab). 

Detailed specifications of all properties used in the simulation are presented in 
Table 1. The simulation’s properties covered the sensor geometry, shape and 
position of the detected object, contrast dielectric value, and the performance 
parameter used to measure the imaging performance. 

Table 1 Properties of simulation. 

Simulation’s Properties Specification 
Sensor geometry Cylindrical sensor with 8 electrodes 
Detected object Ball with r = 4 cm 
Dielectric contrast  1:3; 1:6; 1:80 
Detected object position Center of the sensor 
Number of objects detected Single object 
Performance measurement parameter Visual observation, NMSE, NMAE, R 

5 Simulation and Discussion 
The simulation represents the performance of a non-optimized CS framework 
for ECVT imaging. The ILBP (Landweber) algorithm was used as benchmark. 
Visual observation and a number of quantitative measurements, coefficient of 
correlation (R), normalized mean square error (NMSE) and normalized mean 
absolute error (NMAE), were used to evaluate the performance of ILBP and 
Non-optimized CS for ECVT imaging. Both of the simulations of ILBP and 
Non-optimized CS used a 20 x 20 x 20 resolution. 
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(a) (b) 

Figure 4 Actual imaging. 

  
 

 
(a)         (b)         (a)      (b) 

Figure 5 ILBP; contrast 
dielectric 1:3. 

Figure 6 Non-optimized CS 
framework for ECVT imaging; 
dielectric contrast 1:3. 

  
  

(a)         (b)     (a)        (b) 

Figure 7 ILBP; dielectric 
contrast 1:6. 

Figure 8 Non-optimized CS 
framework for ECVT imaging; 
dielectric contrast 1:6. 
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(a) (b) (a)     (b) 

Figure 9 ILBP; dielectric 
contrast 1:80. 

Figure 10   Non-optimized CS 
framework for ECVT imaging; 
dielectric contrast 1:80. 

 

Figure 11 Off-diagonal component distribution (Gram matrix). 

Table 2 Quantitative performance measurement. 

  

ILBP Non Optimized CS 

1:3 1:6 1:80 1:3 1:6 1:80 

NMSE 0.0274 0.0296 0.0387 0.0263 0.0263 0.0253 

NMAE 0.7837 0.7835 0.9683 0.7941 0.7911 0.8902 

R  0.5660 0.7654 0.7883 0.5955 0.7580 0.7771 
*NMSE: normalized mean square error 
NMAE: normalized mean absolute error 
R: coefficient of correlation 

Figure 4 shows the imaging that should be achieved. The detected object is 
located exactly at the center of the sensing domain. Each figure (Figures 4 to 
10) is occupied by two figures, indicated by (a) and (b), as the full imaging and 
the horizontal slice imaging respectively. The horizontal slice is used to 
evaluate the existence of elongation error. Figure 5 to Figure 10 present the 
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performances of ILBP and Non-optimized CS for ECVT imaging with various 
dielectric contrasts on static object tomography. The quantitative performance 
measurements are presented in Table 2 and Figure 12 

 

Figure 12   Performance comparison by NMSE and coefficient of correlation. 

Subject to the coefficient of correlation, ILBP tends to perform better at a higher 
dielectric contrast. By qualitative observation, however, the elongation error 
appears more obvious at a higher dielectric contrast, which is also supported by 
the higher values of NMSE and NMAE as presented in Table 2. In general, 
ILBP can provide ECVT imaging but the elongation error was still observed for 
both low and high dielectric contrasts. This condition is not reliable enough for 
dynamic observations (moving object) or for medical tomography. 

Based on quantitative measurement, Non-optimized CS performs better for 
higher dielectric contrast, which is supported by the smaller NMSE and the 
higher value of R in Table 2. However, Non-optimized CS fails to differentiate 
the imaging based on the dielectric contrast. This can be observed in Figure 6, 
Figure 8 and Figure 10. The three figures show the imaging of a static object at 
various dielectric contrasts with very similar visual appearance. In addition, 
overestimate imaging is another limitation of Non-optimized CS for ECVT 
imaging.   

Based on quantitative measurement, ILBP and Non-optimized CS perform 
almost equally, as presented in Figure 12. The visual observation indicates that 
Non-optimized CS is able to reduce the elongation error that exists in ILBP. 
The imaging result tends to be more localized compared to ILBP. However, the 
imaging result of Non-optimized CS as presented in Figures 8 to Figure 10 still 

0

0.2

0.4

0.6

0.8

1

1:3 1:6 1:80
R-ILBP R-Non Optimized CS
NMSE-ILBP NMSE-Non Optimized CS
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overestimates the actual imaging as presented in Figure 4. In addition, some 
artifacts appear at the edge of the sensor.  

It has been reported on CS framework modeling for MRI imaging that for 
image reconstruction with high undersampling measurement, CS image 
reconstruction employing a fixed or non-adaptive dictionary will typically 
suffer from many artifacts [19]. The ECVT imaging system mathematically has 
high undersampling measurement. Thus, the appearance of artifacts at the edge 
of the sensor boundary and the overestimate imaging are equitable. This issue is 
one of the challenges in developing a compressive-sensing framework for 
ECVT imaging that has a high undersampling projection (measurement) matrix. 
Moreover, the projection matrix for ECVT is structured instead of random, 
which can normally be optimized easily by a projection matrix optimization 
algorithm. 

Apart from some limitations in the performance of Non-optimized CS for 
ECVT imaging, this method is promising for further development. Even though 
the resulting imaging still overestimates the actual image, the localized imaging 
is promising for medical tomography. Further development should be able to 
eliminate the overestimate result, which may distract analysis in real 
implementation. In addition, the imaging method based on compressive sensing 
is theoretically very well capable of providing imaging with less measurement 
data. This implies that an optimized CS for ECVT imaging will tend to reduce 
the number of required electrodes for providing acceptable ECVT imaging 
quality. 

5.1 Analysis of Mutual Coherence Distribution (Gram Matrix) 
The performance of CS on signal recovery or imaging can be indicated by the 
incoherency between the measurement (projection) matrix and the dictionary. 
The values of the off-diagonal components in the Gram matrix as explained in 
Definition 2 can be used to evaluate the performance of CS. Figure 11 presents 
the components of the off-diagonal elements of the Gram matrix for Non-
optimized CS. Theoretically, the higher the frequency of small values and the 
lower the frequency of high values (range 0-1), the more precise the recovery 
achieved by CS reconstruction. As presented in Figure 11, the frequency of high 
values for the off-diagonal components is still considerably high. Thus, the 
resulting imaging performance of Non-optimized CS is still not optimal. This 
indicates that the poor ECVT imaging quality by Non-optimized CS may be 
caused by an impropriate design of the measurement matrix or the dictionary. 
Since ECVT imaging has its own structured measurement matrix, another 
optimization approach is by designing an appropriate dictionary, which leads to 
an increase in the incoherency. As previously reported in [19], an adaptive 
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dictionary would be appropriate for such an ECVT imaging system with a very 
high undersampling measurement. 

6  Conclusion and Future Work 
A compressive sensing framework for signal recovery was elaborated. 
Mathematically, it is promising to be adopted for solving the ECVT imaging 
problem, which is an undetermined linear system. An early simulation of the CS 
framework for ECVT imaging was presented. The CS framework for ECVT 
imaging was implemented without optimization on the projection 
(measurement) matrix and dictionary, which is called Non-optimized 
compressive sensing. 

A number of simulations were presented to evaluate the performance of Non-
optimized CS for ECVT imaging. ILBP, or Landweber algorithm, was used as 
the benchmark. Static object detection by using a cylindrical sensor with 8 
electrodes was set up for the case study. The dielectric contrast was varied from 
low to high. 

Based on the presented simulation, it cannot be said that ECVT imaging was 
successfully performed by Non-optimized CS. However, based on the early 
simulations, the proposed algorithm based on the CS framework is promising 
for use in ECVT imaging. Compared to ILBP, the proposed algorithm is able to 
reduce the existence of elongation error for various dielectric contrasts. 
However, the reconstructed ECVT image produced by Non-optimized CS still 
overestimates the actual imaging and produces some artifacts at the edge of the 
sensor, which may distract analysis in real implementation. The limitations of 
Non-optimized CS for ECVT imaging is theoretically equitable since the 
frequency of the high values for off-diagonal components of the Gram matrix is 
still considerably high. Moreover, for image reconstruction with high 
undersampling measurement, as in the case of ECVT imaging, the CS 
framework employing a fixed or non-adaptive dictionary will typically suffer 
from many artifacts [19].  

The proposed ECVT imaging algorithm based on a non-optimized CS 
framework has a number of limitations, which have been theoretically clarified. 
However, it is promising for further development. The more localized imaging 
is one aspect of ECVT imaging by Non-optimized CS that is preferable 
compared to ILBP, especially for medical tomography purposes. Apart from 
that, the CS framework needs a smaller number of sampling data for signal 
recovery, which potentially implies a reduction of the number of required 
electrodes.  
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Based on previous research [19], it can be concluded that optimizing the 
projection matrix while maintaining a fixed dictionary for ECVT imaging, 
which is considered high-undersampling measurement, will not give significant 
improvement of the imaging quality. Optimization of the CS framework for 
ECVT imaging has to consider the dynamic dictionary framework. Another 
issue is that optimization should also consider the fact that the projection matrix 
of ECVT is structured instead of randomly assigned.  
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