

J. ICT Res. Appl., Vol. 10, No. 2, 2016, 95-109 95

Received October 1st, 2015, 1st Revision November 2nd, 2015, 2nd Revision February 2nd, 2016, Accepted for
publication March 14th, 2016.
Copyright © 2016 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2016.10.2.1

High Performance CDR Processing with MapReduce

Mulya Agung* & A. Imam Kistijantoro

School of Electrical Engineering and Informatics,
Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia

*E-mail: agung@tritronik.com

Abstract. A call detail record (CDR) is a data record produced by
telecommunication equipment consisting of call detail transaction logs. It
contains valuable information for many purposes in several domains, such as
billing, fraud detection and analytical purposes. However, in the real world these
needs face a big data challenge. Billions of CDRs are generated every day and
the processing systems are expected to deliver results in a timely manner. The
capacity of our current production system is not enough to meet these needs.
Therefore a better performing system based on MapReduce and running on
Hadoop cluster was designed and implemented. This paper presents an analysis
of the previous system and the design and implementation of the new system,
called MS2. In this paper also empirical evidence is provided to demonstrate the
efficiency and linearity of MS2. Tests have shown that MS2 reduces overhead by
44% and speeds up performance nearly twice compared to the previous system.
From benchmarking with several related technologies in large-scale data
processing, MS2 was also shown to perform better in the case of CDR batch
processing. When it runs on a cluster consisting of eight CPU cores and two
conventional disks, MS2 is able to process 67,000 CDRs/second.

Keywords: call detail records; Hadoop; high performance; Java EE; MapReduce;
telecommunication mediation.

1 Introduction

CDRs generated by low-level telecommunication equipment must first be
prepared before they can be processed by high-level applications. In
telecommunications, the system that handles this preprocessing stage is called
the mediation system. Due to the large size of the generated CDRs and the need
for fast processing of the results for various purposes, the preprocessing stage in
the mediation system is a big data challenge. As discussed in [1], to achieve
acceptable performance, this kind of application needs other techniques than
conventional computation.

For many years, a scalable mediation system called MS1 has been used and
running in production systems to perform CDR processing for one of the
biggest telecommunication providers in Indonesia. However, due to the fast
growth of subscribers, using it at the current scale becomes increasingly

96 Mulya Agung & A. Imam Kistijantoro

challenging. The biggest challenge comes from efficiency, i.e. limited resources
are demanded to process more data.

In this paper, we present an investigation and analysis of the current parallel
system overhead due to I/O bottlenecks. Then we present the design and
implementation of a new system, which addresses the issues. The new system is
called MS2. It runs on a Hadoop cluster environment and uses MapReduce for
parallel data processing. We also present the results from an empirical
evaluation and COST analysis [2] to determine the system overhead compared
to single-thread performance. In the next section, we begin by briefly describing
MS1 and the motivation for developing MS2. Then, in the Section 3, we
describe an alternative that we considered to address the problems described
above. Section 4 presents the analysis, design and implementation of MS2. The
results from the empirical evaluation comparing MS1 and MS2 are presented in
Section 5. In Section 6 we discuss related works and benchmark MS2 with
several related technologies in big data processing. Finally, Section 7 contains
our conclusion and points to some directions for future work.

2 Motivation for MS2

MS1 has served the CDR processing needs from telecommunication billing
systems for the past several years. Based on our operation and maintenance
experience at the current scale, we wanted to improve the performance of the
current production system. Before that, we also needed to identify and analyze
the possible bottlenecks or inefficiencies of MS1, which are highlighted in the
following sections. These inefficiencies motivated us to develop MS2.

2.1 CDR Processing in Mediation System & MS1 Architecture

Due to efficiency constraints, CDRs are generated by low-level
telecommunication equipment in a compact binary format [3]. This binary
format should be converted to a textual format so it can be processed by next
steps or higher-level applications easier. Mediation is the first step in processing
the CDRs, which involves capturing CDRs from upstream network systems and
making them ready for processing by downstream applications (RA, BI, FM,
warehousing). This complex task is composed of several steps, including
functions for collection, validation, filtering, collating, correlation, aggregation,
formatting, normalization and data transformation [4].

MS1 splits one-pipeline processing into three stages. The collection and
decoding stage involves collecting CDR files from external input sources and
decoding them to an intermediary format. The preprocessing stage evaluates
rules against the records’ contents. Mediation functions such as validation,

 High Performance CDR Processing with MapReduce 97

aggregation, filtering and normalization are specified in these rules. The
formatting and distribution stage converts and distributes the processed data to a
destination-friendly format.

MS1 is designed and implemented by adapting the Java Enterprise Integration
Patterns architecture (EIP) [5] to integrate its components. It uses a message-
passing and shared-memory model for data parallelism and achieves distributed
processing by moving data to computation. Processing components run in
cluster nodes and data are distributed to computation nodes as needed (Figure
1).

2.2 MS1 Performance Measurement and Analysis & Efficiency
Issues with MS1 Processing

The performance of the existing system was measured and analyzed by
conducting two test scenarios: the first test was performed in a multi-thread
configuration, the second was performed in a single-thread configuration. Both
scenarios were tested on clustered nodes consisting of two identical servers (i.e.
Server1 and Server2). The hardware specifications for each server were 2.66
GHz Intel Quad Cores CPU, 8 GB of DDR2 RAM, SATA 2 HDD 7200 RPM
and one gigabit Ethernet. The servers ran on Linux Operating System. The
performance parameters used for analysis were processing time and resources
utilization.

Parallel performance was assessed using a 1.6 GB data set consisting 100 of 16
MB batch CDRs files. The numbers of threads allocated for decoding,
preprocessing and formatting were 1, 8, and 20 respectively. The CPU
utilization graphs (Figure 2) show a pattern which gives a low CPU utilization
on average. The I/O utilization graphs show a similar pattern in which disk and
ethernet load have a high peak load and are idle several times. The investigation
continued by increasing the threads of the preprocessing stages. Figure 3(a)
shows the performance of MS1 with several thread number configurations. The
graph shows that increasing the threads does not increase performance
significantly. The result of thread analysis using JVisualVM shows that the
threads spend most of their time waiting for others to finish. There is no
indication of deadlock or blocked threads caused by thread synchronization.

Many parallel systems have a surprisingly large overhead [2]. Their overhead is
evaluated by benchmarking them against the performance of a single-thread
system. For the same reason, this scenario was used for MS1. The single-thread
configuration was tested on two types of I/O access, i.e. local storage access and
remote storage access. The analysis of both cases gives an understanding of
how both I/O types add more overhead to overall performance. The test results

98 Mulya Agung & A. Imam Kistijantoro

showed that remote I/O gives more overhead than local I/O access. This
overhead reduces the overall performance of MS1 significantly in the single-
thread configuration and when using remote access (Figure 3(b)). The remote
I/O overhead decreased the single-thread performance from 7658 record/s to
4427 record/s.

Figure 1 MS1 components and data flow.

Figure 2 CPU utilization in MS1.

Figure 3 MS1 performance by (a) number of threads and (b) single-thread.

Based on the performance assessment of the parallel configuration and the
single-thread configuration we concluded that the overall performance of MS1

 High Performance CDR Processing with MapReduce 99

is not optimum due to inefficient resources utilization. The inefficiency comes
from I/O overhead caused by local disk access and network access. From the
single-thread configuration test we found that the most significant reduction
could come from network I/O. So by reducing these overheads, the overall
performance of CDR processing should be increased significantly.

3 Design Alternative

As discussed in the previous section, the idea of increasing current performance
is by reducing the I/O overhead. One principle that can be used to do this is
locality [1,6]. This principle can minimize network I/O overhead by ensuring
that computation is always performed against data stored in local nodes. The
technique known to use this principle is moving computation to data. This
technique is used in the MapReduce processing model to increase its batch
processing performance [7]. Therefore, the analysis of MS1 brought us to the
current hypothesis that adopting the MapReduce model to the existing CDR
processing system will reduce the overhead of the distributed system and
increase overall performance.

4 MS2

4.1 System Analysis

In this section, the systems analysis of MS2 is broken down based on identified
problem topics. Data ingress is done by a collection and decoding process,
while data egress is done by a formatting and distribution process. Several
optimizations are done in this step, as explained in [8]. Aggregation of many
and small data elements to one single big file can optimize data migration to
HDFS. Data format transformation is needed because, in our case, CDR is not
ideal to be directly processed by MapReduce. Based on the works [1,9], in fixed
disk mode, sequential access has much better performance than random access.
So in our case of using conventional disks, sequential pattern implementation
will improve ingress performance.

Mapping existing components to the MapReduce model requires the following
considerations. The preprocessing stage is more optimal when executed in a
mapper process because of the large input data. Mapper will process the data
using the locality principle [10,11] thus it will decrease network I/O access in
large input CDR processing. The formatting stage is more optimal when it is
executed in a reducer process because the formatter component gets
intermediary data from the preprocessing result, which is much smaller than the
ingress result. The reducer process uses intensive disk and network I/O, so to

100 Mulya Agung & A. Imam Kistijantoro

decrease the overhead, the data and task amounts have to be as small as possible
[11,12].

Transition from the existing architecture has its own challenges with regards to
the MapReduce single fixed dataflow characteristic [13]. In the MapReduce
environment, a Java Bean container that is initiated in one JVM cannot be
accessed directly by Mapper and Reducer objects in another JVM. However,
patterns such as Data Access Object (DAO), Singleton and Dependency
Injection (DI) depend on this container. The solution for this problem is
reinitiating the bean container when a Mapper and Reducer object is executed.
Consequently, time and resources needed in the initiation process can impact
the overall performance. An alternative and better solution is running the Java
Bean Container outside of MapReduce and using a stateless remote procedure
call to access the container [14].

The deployment strategy is important for the overall performance because it
determines the total resources that will be utilized. To maximize resource
utilization in existing nodes, HDFS and YARN should be deployed and running
on all nodes. NameNode, DataNode, and NodeManager should run on all nodes
with the replication level set to the number of nodes. Since there is only one
global ResourceManager, its deployment can be chosen in one of the servers
[10,15].

4.2 Design

Ingestor moves the CDR file to HDFS. It aggregates the data by multiplexing. It
is also designed to run sequentially in order to improve disk access
performance. To store the result of this aggregation process in a compressed big
file, a new data structure was designed using the Avro serialization framework
[8,10,11,16].

To maximize parallelism, the mapper component bundles partial decoding and
preprocessing into one process. Mapper will take the ingested file based on
batch key and decode binary contents to intermediary data. Then it will call
RecordProcessor to evaluate the processing rules and generate an array of
CdrData as its result. Mapper will access RefData service for every database
lookup. There will be additional I/O from HTTP and database access, but this
can be reduced by placing the database on the same host as the service. With
this locality, mapper only needs network I/O to access the service. Database
access performance is also improved with data caching [17]. Reducer executes
formatting and serialization by generating records in a destination-friendly
format. Serialization is needed to change the intermediary format to a text file

 High Performance CDR Processing with MapReduce 101

format that conforms to the upstream node. The reducer component is designed
similar to the external output pattern, as explained in [18].

Before processing and formatting, CDRs generated by sources are loaded to
MS2 by the ingestion process and stored in key-value based data (Figure 4).
Under the MapReduce model, processing and formatting are expressed in terms
of two processing stages (PS) – PSmap and PSreduce. The same PSmap is running at
all participating mappers, and the same PSreduce is running at all participating
reducers in parallel, such that each PSmap is applied to a set of key-value tuples
(k,v) and transforms it into a set of tuples of a different type (k’,v’); then all the
values v’ are re-partitioned by k’ and each PSreduce aggregates the set of values
v’ with the same k’, as expressed in Eqs. (1) and (2).

 PSmap: (k, v) => (k’, v’)* (1)

 PSreduce: (k’, v’)* => (k’, v’*) (2)

Hadoop components are deployed to existing servers with the following
structure. Node 1 and Node 2 are deployed in Server1 and Server2 respectively.
Both HDFS and YARN components are deployed in both nodes. Primary
NameNode and DataNode 1 of HDFS are deployed in Node 1.
ResourcesManager and NodeManager 1 of YARN are also deployed in Node 1.
Secondary NameNode, DataNode 2 and NodeManager 2 are deployed in Node
2. Figure 5 shows MS2 deployment in a Hadoop cluster and the execution of
ingestion and the MapReduce process.

Figure 4 Data parallelism in MS2.

102 Mulya Agung & A. Imam Kistijantoro

Figure 5 MS2 deployment in a Hadoop cluster.

4.3 Implementation

The new components implemented are Ingestor, Cdr-processor and
intermediary data structure. Cdr-processor is a MapReduce driver consisting of
Mapper and Reducer classes. The MapReduce platform used in this
implementation is Hadoop 2.6.0 and is deployed and running with the same
operating system as used in MS1. Besides the components written in Java,
Hadoop provides components written in native C. These native components are
needed to improve Hadoop performance by accessing resources directly [10].
The additional REST service component is implemented for reference database
lookup. The initiation of a shared object which doesn’t need I/O is implemented
with the setup() method derived from Hadoop Mapper and the Reducer
interface. By overriding this method, the initiation will be ensured to run once
in the object’s lifetime [10].

Compression is used to improve ingestion performance. Based on results from
[12,19,20], snappy compression was chosen to give better performance than the
built-in method. Some useful OS tunings recommended in [12,19] are applied in
the deployed system. These include using the EXT4 file system and the noatime
option set in mount parameters for mount point used by HDFS. The noatime
option is useful to reduce disk-read overhead by disabling access log updates.
The number of file descriptors allowed for the Hadoop process is also increased.
This tuning is useful to prevent possible exceptions triggered at high loads,
which may cause MapReduce jobs to fail.

Ingestion is performed to process the same data set used in MS1 performance
assessment. To give more accurate results, this process is repeated for several

 High Performance CDR Processing with MapReduce 103

iterations. This stage runs in Node 1 and the duration was measured after each
iteration was finished. Ingestion needs 36.8 seconds on average to collect a 1.6
GB data set and results in a 1.43 GB compressed file stored in HDFS.

The configurations tested to evaluate the processing performance were the
Hadoop default configuration, tuning for 128 MB block size and tuning for 256
MB block size. From the test results, the configuration for 128 MB block size
(Table 1) performed best with the highest CPU utilization (Figure 6). This
configuration was set based on the recommended calculation in [12,19]. The
input.fileinputformat.split.minsize property sets the split size allocated to the
mapper process. It is set to 224MB so that if the input file resulting from
ingestion has a size of 1.43 GB, the minimum number of splitted tasks will be
1.43 GB/224 MB = 6.38 ≈ 7 tasks. This number of tasks is enough for the total
of 8 core CPU resources that the cluster has. If each core executes one mapper
task, then overall the system still has one spare core for managing resources.
Properties such as task.io.sort.mb, map.java.opts and map.memory.mb are set
according to the number of split tasks and the total RAM available in the
cluster. If one mapper task is allocated with 1280 MB heap, then one node will
allocate (1280x4) MB = 5120 MB of memory. This number is still below the
total RAM capacity of each node. This configuration ensures that mapper will
not use swap memory to perform its tasks.

Table 1 Tuning configuration of 128 MB block size.

Configuration Value
mapreduce.input.fileinputformat.split.minsize 224000000
mapreduce.task.io.sort.mb 500
mapreduce.map.java.opts -Xmx1024m
mapreduce.map.memory.mb 1280

Figure 6 CPU utilization of 128 MB block size tuning.

Total performance is calculated from ingestion and Cdr-processor throughput.
The performance of tested configurations is compared with MS1 and single-

104 Mulya Agung & A. Imam Kistijantoro

thread performance (Figure 7(a)). MS2 with the 128-block size tuning
configuration (MS2-128) had the best performance. The performance of the
evaluated systems and CPU allocated to each configuration are shown in Table
2.

Compared to single-threaded MS1 (MS1-single-t), MS2 with 8 allocated cores
resulted in 8.7x performance speed-up. The overheads of the compared systems
were also measured. Figure 7(b) shows that the MS1 system had the highest
overhead of the evaluated systems. To achieve 7658 rec/s performance, parallel
MS1 needs 1.6 cores, whereas MS2-128 needs only 0.9 cores. This CPU cost
reduction proves MS2-128 successfully reduced 44% of the overhead
introduced by MS1. This result also shows that with the correct tuning, MS2 is
able to achieve a performance that is more efficient than MS1, even compared
with single-thread performance.

Figure 7 Comparison of (a) throughput (b) CPU to achieve single-t throughput.

Table 2 Performance of MS1 and MS2 by CPU.

System and configuration
Performance

(rec/s)
CPU
core

MS1 (10 preprocessing thread) 39037.57 8
MS2 (default Hadoop configuration) 54719.85 8
MS2-128 (block size=128, split task=7) 67060.70 8
MS2-256 (block size=256, split task=6) 62839.25 8
MS1 Single-thread 7658.73 1

Experiments were carried out to see MS2 performance while load increases.
The best performing configuration was used to process a higher number of input
files. Sample data with total file sizes increasing from 1.6 GB to 3.2 GB, 4.8
GB, 6.4 GB and 8 GB were used as input. Figure 8(a) shows that the ingestion
process time increased almost linearly from 1.6 GB to 8 GB input files sizes in
36.8 seconds to 272 seconds (slope = 61.29). This increase of the duration in the
processing stage was consistent as input files sizes kept increasing. Figure 8(b)

 High Performance CDR Processing with MapReduce 105

shows how the duration line of the processing stage compares to its linear line.
From these experimental results we may conclude that the performance of MS2
is linear when total input file size increases.

Figure 8 Performance linearity of (a) ingestion and (b) processing.

5 Related Works

At the time of writing, the number of publications specific to CDR
preprocessing is still limited. Some works on CDR analysis techniques have
been presented [21-23] but these techniques are designed for analytical
processing after CDR has been preprocessed by mediation. Work on a
middleware-based mediation system has been reported by Bouilett, et al. [4].
This system runs on IBM InfoSphere middleware and uses region-based
parallelism to improve performance. Instead of using the same approach, MS2
uses record- and locality-based parallelism because region-based parallelism
gives no benefit when CDRs are batched across different regions. Bouilett et al.
reported that the resulted performance, i.e. 70,000 CDRs/second, was not
adequate to meet business constraints at the time, which was 220,000
CDRs/second. Unfortunately, we cannot compare this performance to MS2
because the hardware configuration was not specified in their paper.

A pipeline-based parallel framework for mass file processing [24] can be used
to process file-based CDRs; this is similar to the technique used in MS1.
However, this technique is not optimal enough for CDR processing because it
uses file-based decomposition instead of record-based decomposition. A
scalable and distributed system of CDR stream analytics was proposed in [25].
The solution was optimized for streams where CDRs are continuously received
in much smaller chunks. MapReduce is used to parallelize analytic processing
after stream CDRs are previously merged and stored in a data warehouse. While
there are additional computational costs for merging and storing in a data

106 Mulya Agung & A. Imam Kistijantoro

warehouse, it will reduce performance when CDRs are already ingested in
batches. Due to the lack of a performance evaluation in the paper, we cannot
compare its performance to MS2.

Table 3 Performance of MS2 and related technologies.

System
Rec

size (B)
Performance

(rec/s)
MB
/s

CPU
(core @
2.xGHz)

RAM
(GB)

MS2 200 67,060 13.4 8 16
Kafka Producer (batch size=1) 200 50,000 10 16 32

Kafka Producer (batch size=50) 200 400,000 80 16 32

Kafka Consumer 200 22,000 4.4 16 32
iMR (MR Jobs) 7 13,000,000 91 80 960

Another class of related technologies comes from large-scale log processing,
such as iMR [26], Kafka [27], and Flume [28]. iMR increases performance by
moving analytics onto the log servers themselves. By transforming the data in
place, this can increase locality and reduce volume of data crossing the network.
But unlike batch-oriented workloads (as in the case of MS2), iMR takes as input
small and continuous input streams and can take benefit in performance by only
processing subsets of data and decreasing result fidelity (lossy processing). In
many cases of CDR preprocessing, completeness is mandatory because
unprocessed records may lead to missing transactions.

Both Kafka and Flume are focused on data loading such as log aggregation and
message feeds. They lack parallelism model support for processing but are often
combined with other platforms to deliver full real-time data analytics and
processing [28,29]. We found that in our case, both Kafka and Flume can be
used to load the CDRs to the processing nodes but as they are optimized for
streams, this approach may introduce overhead for splitting larger sizes of
batched CDRs to smaller chunks.

To give a view of how the efficiency of MS2 is compared with other related
technologies, we also compared the performance based on resources used (i.e.
CPU and RAM). We chose Kafka and iMR since the hardware configurations
used in the experiments were published in the respective papers [27,28]. From
Table 3, we can see that the Kafka producer is more efficient than MS2 with
larger batch sizes but it performs no data processing, which is needed in case of
MS2. The throughput of iMR on its test environment is higher than that of MS2
but the resources used are also higher than those used in the MS2 evaluation. If
we adjust the resources based on ratio, MS2 has higher performance than iMR.
MS2 performs better because it does not need the aggregation phase for
continuous streams, which needs to be done in iMR.

 High Performance CDR Processing with MapReduce 107

6 Conclusion and Future Work

The need for CDR processing at telecommunication providers continues to
grow and in the existing production system, it pushes the limits of what the
system can deliver in terms of performance. To meet this need, a new CDR
processing system was designed and implemented, called MS2 and based on a
deep analysis of the existing system, which was presented in this paper. Also
the results from an empirical evaluation of MS2 were presented, which
demonstrate significant reductions in I/O overhead when using MS2, while
delivering nearly 2 times improvement in throughput linear to the number of
input CDRs. The performance of the CDR ingestion process was increased by
using a multiplexing technique and sequential access. The performance of CDR
preprocessing and the formatting process was increased by optimizing the
MapReduce process and applying the correct tuning. Correct tuning here means
that the system is configured to make optimal use of available CPU and
memory resources.

However, the performance evaluated in this paper is based on a one-case
scenario of CDR processing in a telecommunication mediation system. The
performance result can possibly vary with different rules of CDR processing.
Future research could evaluate the performance of the proposed system for
several patterns of CDR processing rules. This evaluation can be also helpful
for system improvement and further optimization.

Acknowledgement

We are very grateful to the anonymous reviewers for their helpful comments
and suggestions.

References

[1] Jacobs, A., The Pathologies of Big Data, Communications of the ACM,
52(8), pp. 36-44, 2009.

[2] McSherry, F., Isard, M. & Murray, D.G., Scalability! But at what COST,
in 15th Workshop on Hot Topics in Operating Systems (HotOS XV),
Kartause Ittingen, USENIX Association (2015), pp. 14, 2015.

[3] ITU-T, X.690 Information Technology - ASN.1 Encoding Rules, 1st ed.,
International Telecommunication Union, 2002.

[4] Bouillet, E., Kothari, R., Kumar, V., Mignet, L., Nathan, S.,
Ranganathan, A., Turaga, D.S., Udrea, O. & Verscheure, O., Processing
6 billion CDRs/day: from research to production (experience report), in
Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems, Berlin, ACM (2012), pp. 264-267, 2012.

108 Mulya Agung & A. Imam Kistijantoro

[5] Hohpe, G. & Bobby W., Enterprise Integration Patterns, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[6] Bell, G., Gray, J. & Szalay, A., Petascale computational systems,
Computer, 39(1), pp. 110-112, 2006.

[7] Dean, J. & Sanjay, G., MapReduce: simplified data processing on large
clusters, Communications of the ACM, 51(1), pp. 107-113, 2008.

[8] Holmes, A., Hadoop in Practice, 1st ed., Manning Publications Co.
Greenwich, CT, USA, 2012.

[9] Gray, J. & Prashant, S., Rules of Thumb in Data Engineering, in Data
Engineering, IEEE (2000), pp. 3-10, 2000.

[10] Apache Hadoop, Apache Foundation, http://hadoop.apache.org, (1 July
2015).

[11] White, T., Hadoop: The Definitive Guide, 1st ed., O’Reilly Media Inc.,
2012.

[12] Heger, D., Hadoop Performance Tuning-A Pragmatic & Iterative
Approach, Computer Measurement Group Journal, 4, pp. 97-113, 2013.

[13] Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., & Moon, B., Parallel data
processing with MapReduce: a survey, AcM sIGMoD Record, 40(4), pp.
11-20, 2012.

[14] Feng, X., Shen, J. & Fan, Y., REST: An alternative to RPC for Web
services architecture, in Future Information Networks, IEEE (2009), pp.
7-10, 2009.

[15] Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M.,
Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S. & Saha, B., Apache
hadoop yarn: Yet Another Resource Negotiator, in Proceedings of the 4th
annual Symposium on Cloud Computing, Santa Clara, ACM (2013), pp.
5, 2013.

[16] Floratou, A., Patel, J.M., Shekita, E.J. & Tata, S., Column-Oriented
Storage Techniques for MapReduce, Proceedings of the VLDB
Endowment, 4(7), 419-429, 2011.

[17] Gadkari, A., Caching in the Distributed Environment, Advances in
Computer Science: an International Journal, 2(1), pp. 9-16, 2013.

[18] Miner, D. & Adam S., MapReduce Design Patterns: Building Effective
Algorithms and Analytics for Hadoop and Other Systems, 1st ed.,
O’Reilly Media Inc., 189-195, 2012.

[19] Joshi, S.B., Apache Hadoop Performance-Tuning Methodologies And
Best Practices, in Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, Boston, ACM (2012), pp. 241-
242, 2012.

[20] Chang, J., Lim, K.T., Byrne, J., Ramirez, L., & Ranganathan, P.,
Workload Diversity and Dynamics in Big Data Analytics: Implications To
System Designers, in Proceedings of the 2nd Workshop on Architectures
and Systems for Big Data, Portland, ACM (2012), pp. 21-26, 2012.

 High Performance CDR Processing with MapReduce 109

[21] Teng, W.G., & Chou, M.C., Mining Communities of Acquainted Mobile
Users on Call Detail Records, in Proceedings of the 2007 ACM
symposium on Applied computing, ACM (2007), pp. 957-958, 2007.

[22] Ding, L., Gu, J., Wang, Y. & Wu, J., Analysis of Telephone Call Detail
Records Based on Fuzzy Decision Tree, Forensics in
Telecommunications, Information, and Multimedia, 56, pp. 301-311,
2011.

[23] Lin, Q. & Wan, Y., Mobile Customer Clustering Based on Call Detail
Records for Marketing Campaigns, in Management and Service Science,
IEEE (2009), pp. 1-4, 2009.

[24] Liu, T., Liu, Y., Wang, Q., Wang, X., Gao, F. & Qian, D., Pipeline-Based
Parallel Framework for Mass File Processing, in Cloud and Service
Computing (CSC), IEEE (2013), pp. 42-48, 2013.

[25] Chen, Q., & Hsu, M., Scale out Parallel and Distributed CDR Stream
Analytics, Data Management in Grid and Peer-to-Peer Systems, Springer
Berlin Heidelberg, 6265, 124-136, 2010.

[26] Logothetis, D., Trezzo, C., Webb, K.C., & Yocum, K., In-situ
MapReduce for log processing, in 2011 USENIX Annual Technical
Conference, Portland, USENIX Association (2011), pp. 115, 2011.

[27] Kreps, J., Narkhede, N. & Rao, J., Kafka: A Distributed Messaging
System for Log Processing, in Proceedings of the NetDB, ACM (2011),
2011.

[28] Liu, X., Iftikhar, N. & Xie, X., Survey of Real-Time Processing Systems
For Big Data, in Proceedings of the 18th International Database
Engineering & Applications Symposium, Porto, ACM (2014), pp. 356-
361, 2014.

[29] Sumbaly, R., Kreps, J. & Shah, S., The “Big Data” Ecosystem at
LinkedIn, in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, New York, ACM (2013), pp. 1125-
1134, 2013.

