

 J. ICT Res. Appl., Vol. 10, No. 1, 2016, 57-75 57

Received April 30th, 2015, 1st Revision January 18th, 2016, 2nd Revision February 22nd, 2016, Accepted for
publication March 23rd, 2016.
Copyright © 2016 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2016.10.1.5

VLSI Architecture for Configurable and Low-Complexity
Design of Hard-Decision Viterbi Decoding Algorithm

Rachmad Vidya Wicaksana Putra* & Trio Adiono

Microelectronics Center, Institut Teknologi Bandung
Jalan Ganesha 10, Bandung 40132, Indonesia

*E-mail: rachmad@pme.itb.ac.id

Abstract. Convolutional encoding and data decoding are fundamental processes
in convolutional error correction. One of the most popular error correction
methods in decoding is the Viterbi algorithm. It is extensively implemented in
many digital communication applications. Its VLSI design challenges are about
area, speed, power, complexity and configurability. In this research, we
specifically propose a VLSI architecture for a configurable and low-complexity
design of a hard-decision Viterbi decoding algorithm. The configurable and low-
complexity design is achieved by designing a generic VLSI architecture,
optimizing each processing element (PE) at the logical operation level and
designing a conditional adapter. The proposed design can be configured for any
predefined number of trace-backs, only by changing the trace-back parameter
value. Its computational process only needs N + 2 clock cycles latency, with N is
the number of trace-backs. Its configurability function has been proven for
N = 8, N = 16, N = 32 and N = 64. Furthermore, the proposed design was
synthesized and evaluated in Xilinx and Altera FPGA target boards for area
consumption and speed performance.

Keywords: conditional adapter; configurable and low-complexity design; hard-
decision Viterbi; optimized processing element; VLSI architecture.

1 Introduction
Convolutional encoding is often preferred among error correction coding
methods in digital communications because of its high coding gains [1]. For its
corresponding decoding scheme, the Viterbi decoding algorithm is the most
popular method [2]. High coding gains with low error probability and high
throughput processing are extensively needed for high-speed applications [3].
Hence, many researches have been conducted to explore the Viterbi decoding
algorithm, especially for implementation in VLSI. Principally, single complete
convolutional error correction consists of three main processes, i.e.
convolutional encoding, transmission error disturbance and Viterbi decoding.
The original data are convoluted by using a specific convolution calculation in
order to produce the codewords. Every single codeword represents the original
data and its redundant bits. Hence, if errors occur in the middle of data

58 Rachmad Vidya Wicaksana Putra & Trio Adiono

transmission, the receiver will be able to reconstruct the correct data by using
the Viterbi decoding algorithm.

There are many publications about Viterbi decoder implementation in VLSI.
Habib, et al. [2] discuss a VLSI design space exploration for a hard-decision
Viterbi decoder. They describe any explorations that can be considered in
designing a Viterbi decoder. Jinjin He, et al. [4] have proposed a low-power and
high-speed Viterbi decoder using the T-algorithm for trellis coded modulation
(TCM). A low-power design is important because a Viterbi decoder has high
power consumption in TCM systems [5]. Low-power issues are quite popular,
hence many researches on this topic have been presented (e.g. [4-8]). Besides
power consumption, researches have been done on speed performance [9] and
area efficiency (e.g. [10-14]). Furthermore, a comparison of Viterbi designs [15]
and a configurable Viterbi decoder design [16] have been presented as well.

The Viterbi decoding algorithm is usually implemented in a hardware circuit,
since its process needs fast computation. In order to use its error correction
capability in various real-time applications (e.g. mobile communication,
software defined radio, etc.), Viterbi decoders are highly considered to be
integrated in a hardware-software (HW-SW) co-design system, such as System-
on-Chip (SoC). Nowadays, SoC technology has driven many developments in
electronic devices [17-18] because it provides powerful and flexible solutions
for real-time applications. Integrating the Viterbi decoder into such systems is
highly demanding. In order to get full benefit of various real-time error
correction applications, a configurable design for the Viterbi decoder is needed.
Thus, the application scheme can define how the Viterbi decoder should
respond using only soft programming. Meanwhile, the error correction process
can be done quickly, since it proceeds in the hardware circuit. This is what
makes configurability in the Viterbi decoder design important.

Our literature study showed that most researches discuss speed performance,
low power consumption and area efficiency issues. These topics have been
explored and discussed extensively because of their importance. Unfortunately,
we found that only few researches have explored and discussed configurable
and low-complexity designs. The main challenge in designing a configurable
architecture is to accommodate several scenarios of trace-back and multiple
constraint lengths in the hardware circuit. This may be the reason only few
configurable designs have been reported.

Hence, in this research, we designed a configurable and low-complexity VLSI
architecture for a hard-decision Viterbi decoding algorithm. The proposed
configurable architecture means that the design trace-back implementation can
be changed without any major modifications in the RTL code, but only by

 VLSI Arch. for Configurable and Low-Complexity Viterbi 59

changing the predefined number of trace-back parameters. Thus, the
architecture has to be as generic as possible. Meanwhile, the proposed low-
complexity architecture means that the design only consists of simple logical
operations. Thus, the architecture has to be optimized at the logic operation
level. Furthermore, we chose the hard-decision category because of its
simplicity for the first fundamental research. A hard-decision design means that
the Viterbi decoder only uses two levels of decision, high ‘1’ and low ‘0’ [19].
These are our research goals.

In this research, three main design steps were involved. The first one was to
extract the fundamental processing element (PE) from the Viterbi algorithm.
This extraction was conducted to optimize the three main units in the Viterbi
decoder architecture: the branch metric unit (BMU), path metric unit (PMU),
and survivor memory unit (SMU). The second step was to design a conditional
adapter unit for the purpose of configurability. The last step was to incorporate
the entire architecture in a generic structure.

This paper is divided in a number of sections. The first section is an
introduction about the research background and related past researches. The
second section contains a brief explanation of the convolutional error correction
methodology. This is followed by the proposed design, results and analysis
sections. The last three sections are concluding remarks, nomenclature and
references, respectively.

2 Fundamental Concepts

2.1 Overview
The fundamental mechanism in convolutional error correction consists of three
main elements: convolutional encoding, transmission, and Viterbi decoding, as
illustrated in Figure 1. In the convolutional encoding process, the encoder will
produce codewords (c) from the original data (dO). A codeword represents the
original data and its redundant bits. These codewords will be sent from a
transmitter to a receiver through a transmission channel. In the transmission
channel, the data may be changed because of error disturbance. Thus, the data
received (e) at the receiver may contain errors. These received data (e) have to
be checked and processed in the Viterbi decoder in order to obtain the correct
data (dR), because the Viterbi decoder contains an error correction algorithm
that can reconstruct the original data.

60 Rachmad Vidya Wicaksana Putra & Trio Adiono

Figure 1 Block diagram of convolutional error correction mechanism.

2.2 Convolution Encoder
The convolution encoder is the first element of the convolutional error
correction method. It encodes the original data (dO) into codewords (c). The
convolutional encoder has several important terms regarding its computation.
They are called code rate (R), constraint length (K), number of states (S),
original input data (dO), and encoded data or codewords (c). Constraint length K
represents the length of the convolutional encoder process. It is defined by the
number of shift-registers used in the process, plus one [2]. Figure 2 shows an
illustration of convolutional encoding used in our research. We can also
formulate the polynomial codeword generator, as shown in Eqs. (1) and (2). The
number of states S of the convolutional encoder is a function of the original
input data bits (dO-bits) and the constraint length K [20]. Its formulation is
presented in Eq.(3). Meanwhile, code rate R represents the ratio between
number of original input bits (dO-bits) and number of encoded bits (c-bits). Its
formulation is presented in Eq.(4). In this research, we have chosen K = 4, R =
1/2, and dO-bits = 1 bit. Thus, there are 3 shift-registers and 2 bits of code-word
c.

Figure 2 Block diagram of convolutional encoding scheme (K = 4, R = 1/2).

 32)1(1 DDDG +++= (1)

 32)2(1 DDG ++= (2)

(){ }12 −−= Kd bitwidthOS ; dO bit-width (3)

 VLSI Arch. for Configurable and Low-Complexity Viterbi 61

 O bitwidth

bitwidth

dR
c
−= ; dO and c bit-width (4)

2.3 Viterbi Decoder
In the Viterbi decoding process there are specific decoding operations based on
the corresponding computation in the convolutional encoder. There are three
main elements in the Viterbi decoder, i.e.: the branch metric unit (BMU), path
metric unit (PMU), and survivor memory unit (SMU). BMU is used for
calculating the code distance between codewords c and comparator r [21], PMU
is used for accumulating the distance from BMU for every stage, and SMU is
used for storing the bit decision produced by PMU [2]. A generic block diagram
for the Viterbi decoder architecture is shown in Figure. 3. BMU, PMU, and
SMU are sequentially connected to decode the given codewords.

Figure 3 Generic block diagram for Viterbi decoder.

Figures 4 and 5 show the finite state machine (FSM) and trellis network that
represent the Viterbi decoding process, which is formulated from the
corresponding convolutional encoding in Figure 2. This indicates the state
values S, predictors i, and comparator r. State values S are represented in 3-bit
binary, which mean there are 8 states of convolutional encoding. This is
obtained from calculation S = (){ }12 −− Kd bitwidthO = 2{1(4-1)} = 8 states. During
computation, the predictors are involved as prediction values for determining
the right reconstructed bit. The solid-arrow line represents the predictor i = ‘0’,
while the dashed-arrow line represents the predictor i = ‘1’. Lastly, the
comparator values are written near the arrow line. The comparator values are
compared to the codewords in order to determine the Hamming distance, which
represents the number of errors. For this operation, compare-select-add (CSA) is
used, as shown in Figure 6. The CSA method was chosen because of its
efficient implementation. Comparison is done first before selection and
addition, hence we only compute addition once for each selected survivor (θ).
We also optimize the process through bit-level optimization. Bit-level
optimization is suitable in VLSI, as was found in past researches (e.g. [22]-
[24]).

62 Rachmad Vidya Wicaksana Putra & Trio Adiono

Figure 4 FSM of Viterbi decoding algorithm.

Figure 5 Trellis of Viterbi decoder for trace-back N = 4.

As a practical example, Figures 4 and 5 show that the computational state
begins at current state P = “000”. When the received codeword e comes in, the
Viterbi decoder involves the predictors i = ‘0’ and i = ‘1’ into the process. If
predictor i = ‘0’, then next state Q = “000” and comparator r is “00”.
Meanwhile, if predictor i = ‘1’, then next state Q = “100” and comparator value
r is “11”. For every prediction process, the received codeword e is compared to
the corresponding comparator value r. Each comparator value r examines each

 VLSI Arch. for Configurable and Low-Complexity Viterbi 63

received codeword e to determine the Hamming distance or weight (w).
Survivor θ with the minimum Hamming distance w is considered to be the
reconstructed data (dR).

Figure 6 Design space of Viterbi decoder for VLSI [2].

3 Research Methodology
Three design approaches were involved in this research. The first approach was
designing an efficient processing element (PE). This was achieved by
optimizing the three main units in the Viterbi decoder (i.e. BMU, PMU and
SMU). BMU is used to calculate the code distance between codewords c and
comparator r, thus efficient logic operation and addition are required. PMU
accumulates the calculated distances from BMU, while SMU stores the bit
decision produced by PMU. Because the data from PMU are stored in SMU, we
can optimize these two units together. Moreover, BMU, PMU and SMU can be
designed in a parallel instead of a sequential structure. Thus, operation delay
can be minimized. The second approach was designing a conditional adapter
unit for the purpose of configurability, based on predefined configurability
parameters. This manages bit-width consumption, counter, and iteration steps
based on the trace-back parameters. The final approach was designing the entire
architecture in a generic structure, thus enabling the architecture to be extended
and pipelined easily.

64 Rachmad Vidya Wicaksana Putra & Trio Adiono

4 Proposed Architecture

4.1 Efficient Processing Element (PE)
The processing element (PE) is responsible for all logic operations conducted in
the Viterbi decoder. In order to achieve the low-complexity target, PE has to be
designed as simple as possible. Each PE has two main computations: compare-
select-add (CSA) and data storage operations. CSA operation determines the
survivor, while the data storage operation updates and keeps the survivor
information (i.e. current reconstructed data and their Hamming distances).
Figure 7 shows an illustration of these operations in the PE. The solid arrow line
represents the predictor ‘0’, while the dashed arrow line represents the predictor
‘1’.

Figure 7 Illustration of a single processing element (PE).

We optimize the BMU, PMU, and SMU concepts to result in a single
processing element (PE). In every single PE, the Hamming distance or weight w
is calculated with pseudoformula in Eqs. (5)-(6) by using only bitwise XOR
logic operation ⊕ and addition (+). Distance w is calculated from the
difference value between error codeword e with comparator r. Hence, bitwise
XOR operation is needed, followed by addition. The bitwise XOR logical
operation and addition processes are shown in Eqs. (5) and (6) respectively,
while the full calculation is shown in Eq. (7).

 , , ,m n m n m nb r e= ⊕

(5)

 , , ,[1] [0]m n m n m nw b b= + (6)

 () (), , , , ,[1] [1] [0] [0]m n m n m n m n m nw r e r e= ⊕ + ⊕

(7)

From Eqs. (5)-(7), we can derive the total Hamming distance (W) in the single
trellis survivor (Wm), which can be obtained with pseudo-formula in Eq.(8).

 VLSI Arch. for Configurable and Low-Complexity Viterbi 65

1

,
0

N

m m n
n

W w
−

=

=∑

(8)

State Qm,n has parameters (m,n), which indicate trellis step (m) and trace-back
step (n). Trellis step means the step number of the survivor chain. Hence, after a
trellis survivor passes a PE, the trellis step will be doubled because of two
probabilities of predictor i. Trace-back step n means the step number of the
trace that occurs in the processing. Complete trace-back step n is equal to trace-
back number N. Next state value Q depends on predictor i = {0,1} and previous
state P. The next survivor is written as θm,n. This is constructed from
concatenation of previous data θm,n-1 and estimated predictor i. The last
survivors of θm,n at the end of trace-back are considered to be the reconstructed
data dR by comparing them with each other to get the smallest value of total
distance W. Pseudo-formula in Eq.(9) shows how the next state Qm,n+1 is
determined. Next state Qm,n+1 is obtained by concatenating predictor i with 2-
MSB from previous state Pm,n. Pseudo-formula in Eq.(10) shows how the
survivor is reconstructed. Survivor data θm,n are obtained by concatenating
previous survivor θm,n-1 with corresponding predictor i. Lastly, survivor θ with
minimum weight w is considered to be the reconstructed data dR, as stated in
Eq.(11).

{ }

{ }

(, 1) ,

, 1

(, 1) ,

0 '0 ', [2 :1]

1 '1', [2 :1]

m n m n

m n

m n m n

i Q P

Q
i Q P

+

+

+

 = → =
= 
 = → =

 (9)

 { }, , 1 ,,m n m n m niθ θ −= (10)

 { }0 1 2 1min , , ,...,R Sd θ θ θ θ −= (11)

In the Viterbi decoder core design there are 8 PEs representing 8 states. We can
extract the trellis network connections in Figure 5 to create simple network
connections as shown in Figure 8. These structures can be called butterfly pairs
[25]. We can see that each state has a structure identical to the PE from Figure
7. Because of its identical structure, we only need to create a single optimized
PE and copy it eight times to represent S0 - S7. We also can see that each PE
exactly has 2-way directional input and output (I/O). Hence, each PE has to
accommodate the following datapaths.

66 Rachmad Vidya Wicaksana Putra & Trio Adiono

Figure 8 Extracted Viterbi network connections.

After defining the PE’s I/O structure and extracting the trellis network
connections, the detailed PE architecture can be designed. Figure 9 shows the
detailed architecture for a single PE. We can see that BMU, PMU and SMU are
not separated distinctively. They are combined and optimized to become one
single PE. There are only bitwise XOR logic, addition, concatenation,
multiplexing, and shift-register operations. This shows that the PE architecture
is low-complexity. Moreover, this architecture is designed to form a parallel
structure, thus it is easy to pipeline. If we want to decrease the operational
delay, we can examine the worst-case delay path and insert the pipeline there.

Figure 9 Detailed architecture for single PE.

 VLSI Arch. for Configurable and Low-Complexity Viterbi 67

4.2 Core Architecture
The core of the Viterbi decoder is constructed from eight PEs, 8 multiplexers
and a single comparator, as illustrated in Figure 10. This receives data from the
multiplexers and the broadcasted error codewords. This means that all PEs
accept the same codewords. The multiplexers select which data from the
previous process are passed to the PEs. Meanwhile, the comparator selects the
last survivor with minimum distance W as reconstructed data dR. By using this
generic architecture, the design can be easily pipelined and extended for further
purposes.

Figure 10 Core architecture of Viterbi decoder.

4.3 Conditional Adapter
In order to make a configurable design for any predefined number of trace-
backs, we need to design a conditional adapter. This consists of a finite-input
unit and a multiplexer block. The conditional adapter is responsible for
receiving and managing the e-bit data (i.e. error codeword) and deliver them to
the Viterbi core in codeword size (c-bit). In detail, the finite-input unit manages
the size of the input and stored data, while the multiplexer block manages the
size of the data that are transferred to the Viterbi core. Thus, in order to
synchronize the process in the conditional adapter and the Viterbi core, there is
a control signal, which is produced by the finite-input unit to control the process
in the multiplexer and the Viterbi core. A detailed illustration of the conditional
adapter unit is presented in Figure 11. In the finite-input unit, there are two

68 Rachmad Vidya Wicaksana Putra & Trio Adiono

functional sections, i.e. the data buffers and the finite-state controller. The data
buffers are established by the finite number of registers. The number of registers
are determined by the error-codeword bit-width (e-bits). Meanwhile, the finite-
state controller is responsible for controlling the flow of the decoding process.
This finite-state controller selects the buffered data to be passed into the Viterbi
core through a multiplexing mechanism and gives a status signal in order to
control the decoding process.

Figure 11 Conditional adapter architecture.

4.4 Top Level Integration
Integrating the conditional adapter and the Viterbi core results in the whole
decoder design. A top level illustration of the Viterbi decoder is presented in
Figure 12. From this illustration, we can see that the proposed architecture is
actually in a simple generic form. The datapath bit-width and trace-back
parameters can be adjusted for specific needs and are set in the pre-synthesis
process.

Figure 12 Detailed top level design of Viterbi decoder.

 VLSI Arch. for Configurable and Low-Complexity Viterbi 69

5 Results and Analysis

5.1 Functional Simulation
Functional simulation was done using waveform analyzer software. The design
configurations were tested for four trace-back scenarios (i.e. N = 8, N = 16,
N = 32 and N = 64). A testbench provided raw test data (original data) and
triggered the simulation. We could observe the convolutional encoding,
transmission error disturbance and decoding processes. Figures 13-16 show the
results. The first process arrow indicates the convolutional encoding process,
the second one indicates the transmission error disturbance process and the last
one indicates the Viterbi decoding process. The design with trace-back N = 8
needed 10 clock cycles latency, while the designs with trace-back N = 16, N
= 32, and N = 64 needed 18, 34, and 66 clock cycles latency, respectively.
These results show that the proposed design only needs N + 2 clock cycles
latency to produce valid data.

Figure 13 Waveform simulation for trace-back N = 8.

Figure 14 Waveform simulation for trace-back N = 16.

70 Rachmad Vidya Wicaksana Putra & Trio Adiono

Figure 15 Waveform simulation for trace-back N = 32.

Figure 16 Waveform simulation for trace-back N = 64.

5.2 Synthesis Results
Design synthesis scenarios were conducted for N = 8, N = 16, N = 32 and
N = 64 trace-back designs in FPGA Altera Cyclone II EP2C35F672C6 and
Xilinx Virtex 6 XC6VCX75T. There are two major categories of synthesis
evaluation: area occupation and computational speed. Both are presented in
Table 1. From the synthesis reports, we can see that if a higher number of trace-
backs is chosen, the area occupation increases because if the trace-back number
is higher, the computation size will be higher too. The hardware architecture
needs to accommodate the possibility of the calculated value. This condition
affects the performance speed. The speed of calculation decreases along with
the increase of the trace-back number. Overall, the synthesis results delivered
promising area occupation and performance speed values.

 VLSI Arch. for Configurable and Low-Complexity Viterbi 71

Table 1 Synthesis results.

 Trace Back
(N)

Clock Cycles
Latency

Area
(Logic Utilization)

Speed
(MHz)

Altera
Cyclone II

8 10 627 LEs 148.70
16 18 1197 LEs 120.15
32 34 2238 LEs 92.20
64 66 4325 LEs 69.18

Xilinx
Virtex 6

8 10 537 LUTs 139 Regs 312.36
16 18 1129 LUTs 287 Regs 254.44
32 34 2305 LUTs 576 Regs 228.29
64 66 4521 LUTs 1160 Regs 157.15

Nomenclature LEs: Logic Elements LUTs: Look-up Tables Regs: Registers

5.3 Benchmarks
Benchmarks with other works are not easy to establish, because publications
about a Viterbi decoder with K = 4 and R = 1/2 are relatively hard to find. In
several cases, the existing publications cannot be compared to the proposed
design directly because each publication usually has a specific application
issue. Fortunately, we managed to find a publication which uses the same
parameters. The benchmarks derived from this work are presented in Table 2.
We can see that our proposed design has a smaller latency, smaller area
occupation, and good performance speed. Although its performance speed was
slower than the design [26] in Altera Cyclone II, its area occupation and
latency were smaller. For Xilinx Virtex 6 implementation, our proposed design
was better in all investigated aspects (i.e. latency, area occupation, and
performance speed). Moreover, the design time of the proposed method only
needed around one day of mathematical works for operational optimization and
1-2 days of Hardware Description Language (HDL) coding and
implementation. This is quite fast for research development.

Table 2 Design benchmarks.

Works K R Trace
Back

Clock
Cycles

Latency

Altera
Cyclone II

Xilinx
Virtex 6

Area
(LEs)

Speed
(MHz)

Area
(LUTs)

Speed
(MHz)

Paper [26] 4 1/2 32 35 3572 132.73 3519 179.46
Proposed 4 1/2 32 34 2238 92.20 2305 228.29

5.4 Future Research
The proposed method offers two possibilities that can be further explored in the
future. The first one is designing possible extensions for specific applications.
For example, if we want to increase the performance speed and throughput, we
can use pipelining techniques. If we observe Figures 9 and 10, there are

72 Rachmad Vidya Wicaksana Putra & Trio Adiono

opportunities to insert pipelines into the design. There is a sequence of logical
operations (i.e. XOR and addition) that can be separated by a pipeline in order
to increase the processing speed and throughput. Thus, we need to adjust the
operational finite-state machine (FSM) to implement that strategy. The second
possibility is implementing the proposed technique for a soft-decision Viterbi
decoder. A soft-decision approach is necessary in particular cases. Hence, future
research on this topic is important.

6 Conclusions
A configurable and low-complexity VLSI architecture for a hard-decision
Viterbi decoder were presented in this paper. The design can do error correction
and produce valid reconstructed data. The design can be configured for any
predefined number of trace-backs. This is achieved by changing the trace-back
parameter value. It only needs N + 2 clock cycles latency to complete the
process, with N is the number of trace-backs. Its configurability function was
validated for N = 8, N = 16, N = 32 and N = 64. The design was also
synthesized and evaluated in both Xilinx and Altera FPGA target boards for
area consumption and speed performance. The proposed design produced
promising synthesis results. There are two main possibilities this method offers
that can be explored in the future: designing possible extensions for specific
applications and implementing the proposed technique for a soft-decision
Viterbi decoder.

Nomenclature
dO = original data
c = codewords / encoded data / transmitted data
e = error codeword / received data
dR = reconstructed data
S = number of states
Sx = state x
K = constraint length
R = code ratio
m = trellis number
n = trace-back number
P = PE current state
Q = PE next state

Pm,n = (m,n)-specified state
Qm,n = (m,n)-specified state

i = predictor / prediction value
r = codeword comparator
w = Hamming distance / weight

 VLSI Arch. for Configurable and Low-Complexity Viterbi 73

References
[1] Biver, M., Kaeslin, H., & Tommasini, C., In-Place Updating of Path

Metrics in Viterbi Decoders, IEEE Journal of Solid-State Circuits, 24(4),
pp. 1158-1160, 1989.

[2] Habib, I., Paker, Ö., & Sawitzki, S., Design Space Exploration of Hard-
Decision Viterbi Decoding: Algorithm and VLSI Implementation, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 18(5), pp.
794-807, 2010.

[3] Sugur, N.V., Siddamal, S.V., & Vemala, S.S., Design and
Implementation of High Throughput and Area Efficient Hard Decision
Viterbi Decoder in 65nm Technology, Proc. of 27th International
Conference on VLSI Design and 13th International Conference on
Embedded Systems, Mumbai, India, pp. 353-358, 2014.

[4] He, J., Liu, H., Wang, Z., Huang, X., & Zhang, K., High-speed Low-
Power Viterbi Decoder Design for TCM Decoders, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 20(4), pp. 755-759, 2012.

[5] Nargis, J., Vaithiyanathan, D., & Seshasayanan, R., Design of High Speed
Low Power Viterbi Decoder for TCM System, Proc. of International
Conference on Information Communication and Embedded Systems,
Chennai, India, pp. 185-190, 2013.

[6] Chakraborty, D., Raha, P., Bhattacharya, A., & Dutta, R., Speed
Optimization of a FPGA based Modified Viterbi Decoder, Proc. of
International Conference on Computer Communication and Informatics,
Coimbatore, India, pp. 1-6, 2013.

[7] Sun, F., & Zhang, T., Low-Power State-Parallel Relaxed Adaptive Viterbi
Decoder, IEEE Transactions on Circuits and Systems, 54(5), pp. 1060-
1068, 2007.

[8] Shiau, Y.H., Yang, H.Y., Chen, P.Y., & Huang, S.G., Power-Efficient
Decoder Implementation based on State Transparent Convolutional
Codes, IET Circuits, Devices & Systems, 6(4), pp. 227-234, 2012.

[9] Azhar, M.W., Själander, M., Ali, H., Vijayashekar, A., Hoang, T.T.,
Ansari, K.K., & Larsson-Edefors, P., Viterbi Accelerator for Embedded
Processor Datapaths, Proc. of IEEE 23rd International Conference on
Application-Specific Systems, Architectures, and Processors, Delft,
Netherlands, pp. 133-140, 2012.

wm,n = (m,n)-specified Hamming distance / weight
W = total Hamming distance / weight
Wm = (m)-specified total Hamming distance / weight
θ = survivor
θm,n = (m,n)-specified survivor

74 Rachmad Vidya Wicaksana Putra & Trio Adiono

[10] Karim, M.U., Khan, M.U.K., & Khawaja, Y.M., An Area Reduced, Speed
Optimized Implementation of Viterbi Decoder, Proc. of International
Conference on Computer Networks and Information Technology,
Abbottabad, Pakistan, pp. 93-98, 2011.

[11] Kim, S., & Hwang, S.Y., Area-Efficient VLSI Architecture for the
Traceback Viterbi Decoder Supporting Punctured Codes, Electronics
Letters, 32(8), pp. 733-735, 1996.

[12] Sparsoe, J., Jorgensen, H.N., Paaske, E., Pedersen, S., & Rubner-
Petersen, T., An Area-Efficient Topology for VLSI Implementation of
Viterbi Decoders and Other Shuffle-Exchange Type Structures, IEEE
Journal of Solid-State Circuits, 26(2), pp. 90-97, 1991.

[13] Lloyd, A.H., Reynolds, M.R., & Shah, Y.C., VLSI Architectures for
Viterbi Decoding, IEE Colloquium on VLSI Implementations for Second
Generation Digital Cordless and Mobile Telecommunication Systems,
London, United Kingdom, pp. 6/1-6/7, 1990.

[14] Cabrera, C., Boo, M., & Bruguera, J.D., VLSI Implementation of an Area-
Efficient Architecture for the Viterbi Algorithm, Proc. of IEEE
International Conference on Acoustics, Speech, and Signal Processing,
Munich, Germany, pp. 623-626, 1, 1997.

[15] Bobby, N.D., Srivatsa, S.K., Kishore, L., Rajiv, A. & Suresh, S.S.,
Comparison of Fast Radix 2 ACS with Adaptive Fast Radix 2 ACS in
Viterbi Decoder, Proc. of International Conference on Emerging Trends
in VLSI, Embedded System, Nano Electronics and Telecommunication
System, Tiruvannamalai, India, pp. 1-5, 2013.

[16] Nandula, S., Rao, Y.S., & Embanath, S.P., High Speed Area Efficient
Configurable Viterbi Decoder for WiFi and WiMAX Systems, Proc. of
International Conference on Intelligent and Advanced Systems, Kuala
Lumpur, Malaysia, pp. 1396-1399, 2007.

[17] Putra, R.V.W., & Adiono, T., Hybrid Multi–System-on-Chip Architecture
as a Rapid Development Approach for a High-Flexibility System, IEIE
Transactions on Smart Processing and Computing, 5(1), pp. 55-62, 2016.

[18] Putra, R.V.W., & Adiono, T., Hybrid Multi System-on-Chip Architecture:
A Rapid Development Design for High-Flexibility System, Proc. of
International Conference on Electronics Information and Communication,
Danang, Vietnam, pp. 39-42, 2016.

[19] Suganya, G.S., & Kavya, G., RTL Design and VLSI Implementation of an
Efficient Convolutional Encoder and Adaptive Viterbi Decoder, Proc. of
International Conference on Communications and Signal Processing,
Melmaruvathur, India, pp. 494-498, 2013.

[20] Kubota, S., Kato, S., & Ishitani, T., Novel Viterbi Decoder VLSI
Implementation and Its Performance, IEEE Transactions on
Communications, 41(8), pp. 1170-1178, 1993.

 VLSI Arch. for Configurable and Low-Complexity Viterbi 75

[21] Wu, Z., Hou, S., & Li, H., A Light-weighted Viterbi Decoder
Implemented in FPGA, Proc. of International Conference on
Instrumentation Measurement Computer Communication and Control,
Beijing, China, pp. 601-604, 2011.

[22] Putra, R.V.W., Mareta, R., Anbarsanti, N., & Adiono, T., A New RTL
Design Approach for DCT/IDCT-based Image Compression Architecture
using the mCBE Algorithm, Journal of ICT Research and Applications,
6(2), pp. 131-150, 2012.

[23] Putra, R.V.W., Mareta, R., Anbarsanti, N., & Adiono, T., The Efficient
mCBE Algorithm and Quantization Numbers for Multiplierless and Low
Complexity DCT/IDCT Image Compression Architecture, Proc. of
International Conference on Electrical Engineering and Informatics,
Bandung, Indonesia, pp. 1-6, 2011.

[24] Putra, R.V.W., Adiono, T., The Refined mCBE Algorithm for Efficient
Constants Multipliers Architecture, Proc. of International SoC Design
Conference, Gyeongju, South Korea, pp. 129-130, 2015.

[25] Guo, M., FPGA Design and Implementation of Systolic Array-Based
Viterbi Decoders, Master Thesis, Department of Electrical and Computer
Engineering, Concordia University, Montreal – Quebec – Canada, 2002.

[26] Ramdani, A.Z., & Adiono, T., Dynamic States Viterbi Decoder
Architecture Based on Systolic Array, Proc. of Regional Conference on
Computer and Information Engineering, Yogyakarta, Indonesia, pp. 126-
129, 2014.

	1 Introduction
	2 Fundamental Concepts
	2.1 Overview
	2.2 Convolution Encoder
	2.3 Viterbi Decoder

	3 Research Methodology
	4 Proposed Architecture
	4.1 Efficient Processing Element (PE)
	4.2 Core Architecture
	4.3 Conditional Adapter
	4.4 Top Level Integration

	5 Results and Analysis
	5.1 Functional Simulation
	5.2 Synthesis Results
	5.3 Benchmarks
	5.4 Future Research

	6 Conclusions

