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Abstract. Convolutional encoding and data decoding are fundamental processes 
in convolutional error correction. One of the most popular error correction 
methods in decoding is the Viterbi algorithm. It is extensively implemented in 
many digital communication applications. Its VLSI design challenges are about 
area, speed, power, complexity and configurability. In this research, we 
specifically propose a VLSI architecture for a configurable and low-complexity 
design of a hard-decision Viterbi decoding algorithm. The configurable and low-
complexity design is achieved by designing a generic VLSI architecture, 
optimizing each processing element (PE) at the logical operation level and 
designing a conditional adapter. The proposed design can be configured for any 
predefined number of trace-backs, only by changing the trace-back parameter 
value. Its computational process only needs N + 2 clock cycles latency, with N is 
the number of trace-backs. Its configurability function has been proven for 
N = 8, N = 16, N = 32 and N = 64. Furthermore, the proposed design was 
synthesized and evaluated in Xilinx and Altera FPGA target boards for area 
consumption and speed performance. 

Keywords: conditional adapter; configurable and low-complexity design; hard-
decision Viterbi; optimized processing element; VLSI architecture. 

1 Introduction 
Convolutional encoding is often preferred among error correction coding 
methods in digital communications because of its high coding gains [1]. For its 
corresponding decoding scheme, the Viterbi decoding algorithm is the most 
popular method [2]. High coding gains with low error probability and high 
throughput processing are extensively needed for high-speed applications [3]. 
Hence, many researches have been conducted to explore the Viterbi decoding 
algorithm, especially for implementation in VLSI. Principally, single complete 
convolutional error correction consists of three main processes, i.e. 
convolutional encoding, transmission error disturbance and Viterbi decoding. 
The original data are convoluted by using a specific convolution calculation in 
order to produce the codewords. Every single codeword represents the original 
data and its redundant bits. Hence, if errors occur in the middle of data 
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transmission, the receiver will be able to reconstruct the correct data by using 
the Viterbi decoding algorithm. 

There are many publications about Viterbi decoder implementation in VLSI. 
Habib, et al. [2] discuss a VLSI design space exploration for a hard-decision 
Viterbi decoder. They describe any explorations that can be considered in 
designing a Viterbi decoder. Jinjin He, et al. [4] have proposed a low-power and 
high-speed Viterbi decoder using the T-algorithm for trellis coded modulation 
(TCM). A low-power design is important because a Viterbi decoder has high 
power consumption in TCM systems [5]. Low-power issues are quite popular, 
hence many researches on this topic have been presented (e.g. [4-8]). Besides 
power consumption, researches have been done on speed performance [9] and 
area efficiency (e.g. [10-14]). Furthermore, a comparison of Viterbi designs [15] 
and a configurable Viterbi decoder design [16] have been presented as well.  

The Viterbi decoding algorithm is usually implemented in a hardware circuit, 
since its process needs fast computation. In order to use its error correction 
capability in various real-time applications (e.g. mobile communication, 
software defined radio, etc.), Viterbi decoders are highly considered to be 
integrated in a hardware-software (HW-SW) co-design system, such as System-
on-Chip (SoC). Nowadays, SoC technology has driven many developments in 
electronic devices [17-18] because it provides powerful and flexible solutions 
for real-time applications. Integrating the Viterbi decoder into such systems is 
highly demanding. In order to get full benefit of various real-time error 
correction applications, a configurable design for the Viterbi decoder is needed. 
Thus, the application scheme can define how the Viterbi decoder should 
respond using only soft programming. Meanwhile, the error correction process 
can be done quickly, since it proceeds in the hardware circuit. This is what 
makes configurability in the Viterbi decoder design important.  

Our literature study showed that most researches discuss speed performance, 
low power consumption and area efficiency issues. These topics have been 
explored and discussed extensively because of their importance. Unfortunately, 
we found that only few researches have explored and discussed configurable 
and low-complexity designs. The main challenge in designing a configurable 
architecture is to accommodate several scenarios of trace-back and multiple 
constraint lengths in the hardware circuit. This may be the reason only few 
configurable designs have been reported. 

Hence, in this research, we designed a configurable and low-complexity VLSI 
architecture for a hard-decision Viterbi decoding algorithm. The proposed 
configurable architecture means that the design trace-back implementation can 
be changed without any major modifications in the RTL code, but only by 
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changing the predefined number of trace-back parameters. Thus, the 
architecture has to be as generic as possible. Meanwhile, the proposed low-
complexity architecture means that the design only consists of simple logical 
operations. Thus, the architecture has to be optimized at the logic operation 
level. Furthermore, we chose the hard-decision category because of its 
simplicity for the first fundamental research. A hard-decision design means that 
the Viterbi decoder only uses two levels of decision, high ‘1’ and low ‘0’ [19]. 
These are our research goals. 

In this research, three main design steps were involved. The first one was to 
extract the fundamental processing element (PE) from the Viterbi algorithm. 
This extraction was conducted to optimize the three main units in the Viterbi 
decoder architecture: the branch metric unit (BMU), path metric unit (PMU), 
and survivor memory unit (SMU). The second step was to design a conditional 
adapter unit for the purpose of configurability. The last step was to incorporate 
the entire architecture in a generic structure.  

This paper is divided in a number of sections. The first section is an 
introduction about the research background and related past researches. The 
second section contains a brief explanation of the convolutional error correction 
methodology. This is followed by the proposed design, results and analysis 
sections. The last three sections are concluding remarks, nomenclature and 
references, respectively. 

2 Fundamental Concepts 

2.1 Overview 
The fundamental mechanism in convolutional error correction consists of three 
main elements: convolutional encoding, transmission, and Viterbi decoding, as 
illustrated in Figure 1. In the convolutional encoding process, the encoder will 
produce codewords (c) from the original data (dO). A codeword represents the 
original data and its redundant bits. These codewords will be sent from a 
transmitter to a receiver through a transmission channel. In the transmission 
channel, the data may be changed because of error disturbance. Thus, the data 
received (e) at the receiver may contain errors. These received data (e) have to 
be checked and processed in the Viterbi decoder in order to obtain the correct 
data (dR), because the Viterbi decoder contains an error correction algorithm 
that can reconstruct the original data. 
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Figure 1 Block diagram of convolutional error correction mechanism. 

2.2 Convolution Encoder  
The convolution encoder is the first element of the convolutional error 
correction method. It encodes the original data (dO) into codewords (c). The 
convolutional encoder has several important terms regarding its computation. 
They are called code rate (R), constraint length (K), number of states (S), 
original input data (dO), and encoded data or codewords (c). Constraint length K 
represents the length of the convolutional encoder process. It is defined by the 
number of shift-registers used in the process, plus one [2]. Figure 2 shows an 
illustration of convolutional encoding used in our research. We can also 
formulate the polynomial codeword generator, as shown in Eqs. (1) and (2). The 
number of states S of the convolutional encoder is a function of the original 
input data bits (dO-bits) and the constraint length K [20]. Its formulation is 
presented in Eq.(3). Meanwhile, code rate R represents the ratio between 
number of original input bits (dO-bits) and number of encoded bits (c-bits). Its 
formulation is presented in Eq.(4). In this research, we have chosen K = 4, R = 
1/2, and dO-bits = 1 bit. Thus, there are 3 shift-registers and 2 bits of code-word 
c. 
 

 
Figure 2 Block diagram of convolutional encoding scheme (K = 4, R = 1/2). 

 32)1( 1 DDDG +++=   (1) 

 32)2( 1 DDG ++=   (2) 

 
( ){ }12 −−= Kd bitwidthOS   ; dO bit-width  (3) 
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 O bitwidth

bitwidth

dR
c
−=         ; dO and c bit-width (4) 

2.3 Viterbi Decoder 
In the Viterbi decoding process there are specific decoding operations based on 
the corresponding computation in the convolutional encoder. There are three 
main elements in the Viterbi decoder, i.e.: the branch metric unit (BMU), path 
metric unit (PMU), and survivor memory unit (SMU). BMU is used for 
calculating the code distance between codewords c and comparator r [21], PMU 
is used for accumulating the distance from BMU for every stage, and SMU is 
used for storing the bit decision produced by PMU [2]. A generic block diagram 
for the Viterbi decoder architecture is shown in Figure. 3. BMU, PMU, and 
SMU are sequentially connected to decode the given codewords. 

 

 
Figure 3 Generic block diagram for Viterbi decoder. 

Figures 4 and 5 show the finite state machine (FSM) and trellis network that 
represent the Viterbi decoding process, which is formulated from the 
corresponding convolutional encoding in Figure 2. This indicates the state 
values S, predictors i, and comparator r. State values S are represented in 3-bit 
binary, which mean there are 8 states of convolutional encoding. This is 
obtained from calculation S = ( ){ }12 −− Kd bitwidthO = 2{1(4-1)} = 8 states. During 
computation, the predictors are involved as prediction values for determining 
the right reconstructed bit. The solid-arrow line represents the predictor i = ‘0’, 
while the dashed-arrow line represents the predictor i = ‘1’. Lastly, the 
comparator values are written near the arrow line. The comparator values are 
compared to the codewords in order to determine the Hamming distance, which 
represents the number of errors. For this operation, compare-select-add (CSA) is 
used, as shown in Figure 6. The CSA method was chosen because of its 
efficient implementation. Comparison is done first before selection and 
addition, hence we only compute addition once for each selected survivor (θ). 
We also optimize the process through bit-level optimization. Bit-level 
optimization is suitable in VLSI, as was found in past researches (e.g. [22]-
[24]). 
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Figure 4 FSM of Viterbi decoding algorithm. 

 

 
 

Figure 5 Trellis of Viterbi decoder for trace-back N = 4. 

As a practical example, Figures 4 and 5 show that the computational state 
begins at current state P = “000”. When the received codeword e comes in, the 
Viterbi decoder involves the predictors  i = ‘0’ and i = ‘1’ into the process. If 
predictor i = ‘0’, then next state Q = “000” and comparator r is “00”. 
Meanwhile, if predictor i = ‘1’, then next state Q = “100” and comparator value 
r is “11”. For every prediction process, the received codeword e is compared to 
the corresponding comparator value r. Each comparator value r examines each 
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received codeword e to determine the Hamming distance or weight (w). 
Survivor θ with the minimum Hamming distance w is considered to be the 
reconstructed data (dR). 

 

 
 

Figure 6 Design space of Viterbi decoder for VLSI [2]. 

3 Research Methodology  
Three design approaches were involved in this research. The first approach was 
designing an efficient processing element (PE). This was achieved by 
optimizing the three main units in the Viterbi decoder (i.e. BMU, PMU and 
SMU). BMU is used to calculate the code distance between codewords c and 
comparator r, thus efficient logic operation and addition are required. PMU 
accumulates the calculated distances from BMU, while SMU stores the bit 
decision produced by PMU. Because the data from PMU are stored in SMU, we 
can optimize these two units together. Moreover, BMU, PMU and SMU can be 
designed in a parallel instead of a sequential structure. Thus, operation delay 
can be minimized. The second approach was designing a conditional adapter 
unit for the purpose of configurability, based on predefined configurability 
parameters. This manages bit-width consumption, counter, and iteration steps 
based on the trace-back parameters. The final approach was designing the entire 
architecture in a generic structure, thus enabling the architecture to be extended 
and pipelined easily. 
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4 Proposed Architecture  

4.1 Efficient Processing Element (PE) 
The processing element (PE) is responsible for all logic operations conducted in 
the Viterbi decoder. In order to achieve the low-complexity target, PE has to be 
designed as simple as possible. Each PE has two main computations: compare-
select-add (CSA) and data storage operations. CSA operation determines the 
survivor, while the data storage operation updates and keeps the survivor 
information (i.e. current reconstructed data and their Hamming distances). 
Figure 7 shows an illustration of these operations in the PE. The solid arrow line 
represents the predictor ‘0’, while the dashed arrow line represents the predictor 
‘1’. 

 
Figure 7 Illustration of a single processing element (PE). 

We optimize the BMU, PMU, and SMU concepts to result in a single 
processing element (PE). In every single PE, the Hamming distance or weight w 
is calculated with pseudoformula in Eqs. (5)-(6) by using only bitwise XOR 
logic operation ⊕  and addition (+). Distance w is calculated from the 
difference value between error codeword e with comparator r. Hence, bitwise 
XOR operation is needed, followed by addition. The bitwise XOR logical 
operation and addition processes are shown in Eqs. (5) and (6) respectively, 
while the full calculation is shown in Eq. (7). 

 , , ,m n m n m nb r e= ⊕
 

(5) 

 , , ,[1] [0]m n m n m nw b b= +  (6) 

 ( ) ( ), , , , ,[1] [1] [0] [0]m n m n m n m n m nw r e r e= ⊕ + ⊕
 

(7) 

 
From Eqs. (5)-(7), we can derive the total Hamming distance (W) in the single 
trellis survivor (Wm), which can be obtained with pseudo-formula in Eq.(8). 
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State Qm,n has parameters (m,n), which indicate trellis step (m) and trace-back 
step (n). Trellis step means the step number of the survivor chain. Hence, after a 
trellis survivor passes a PE, the trellis step will be doubled because of two 
probabilities of predictor i. Trace-back step n means the step number of the 
trace that occurs in the processing. Complete trace-back step n is equal to trace-
back number N. Next state value Q depends on predictor i = {0,1} and previous 
state P. The next survivor is written as θm,n. This is constructed from 
concatenation of previous data θm,n-1 and estimated predictor i. The last 
survivors of θm,n at the end of trace-back are considered to be the reconstructed 
data dR by comparing them with each other to get the smallest value of total 
distance W. Pseudo-formula in Eq.(9) shows how the next state Qm,n+1 is 
determined. Next state Qm,n+1 is obtained by concatenating predictor i with 2-
MSB from previous state Pm,n. Pseudo-formula in Eq.(10) shows how the 
survivor is reconstructed. Survivor data θm,n are obtained by concatenating 
previous survivor θm,n-1 with corresponding predictor i. Lastly, survivor θ with 
minimum weight w is considered to be the reconstructed data dR, as stated in 
Eq.(11). 
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In the Viterbi decoder core design there are 8 PEs representing 8 states. We can 
extract the trellis network connections in Figure 5 to create simple network 
connections as shown in Figure 8. These structures can be called butterfly pairs 
[25]. We can see that each state has a structure identical to the PE from Figure 
7. Because of its identical structure, we only need to create a single optimized 
PE and copy it eight times to represent S0 - S7. We also can see that each PE 
exactly has 2-way directional input and output (I/O). Hence, each PE has to 
accommodate the following datapaths. 
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Figure 8 Extracted Viterbi network connections. 
 
After defining the PE’s I/O structure and extracting the trellis network 
connections, the detailed PE architecture can be designed. Figure 9 shows the 
detailed architecture for a single PE. We can see that BMU, PMU and SMU are 
not separated distinctively. They are combined and optimized to become one 
single PE. There are only bitwise XOR logic, addition, concatenation, 
multiplexing, and shift-register operations. This shows that the PE architecture 
is low-complexity. Moreover, this architecture is designed to form a parallel 
structure, thus it is easy to pipeline. If we want to decrease the operational 
delay, we can examine the worst-case delay path and insert the pipeline there. 
 

 
Figure 9 Detailed architecture for single PE. 
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4.2 Core Architecture 
The core of the Viterbi decoder is constructed from eight PEs, 8 multiplexers 
and a single comparator, as illustrated in Figure 10. This receives data from the 
multiplexers and the broadcasted error codewords. This means that all PEs 
accept the same codewords. The multiplexers select which data from the 
previous process are passed to the PEs. Meanwhile, the comparator selects the 
last survivor with minimum distance W as reconstructed data dR. By using this 
generic architecture, the design can be easily pipelined and extended for further 
purposes. 
 

 
Figure 10 Core architecture of Viterbi decoder. 

 
4.3 Conditional Adapter 
In order to make a configurable design for any predefined number of trace-
backs, we need to design a conditional adapter. This consists of a finite-input 
unit and a multiplexer block. The conditional adapter is responsible for 
receiving and managing the e-bit data (i.e. error codeword) and deliver them to 
the Viterbi core in codeword size (c-bit). In detail, the finite-input unit manages 
the size of the input and stored data, while the multiplexer block manages the 
size of the data that are transferred to the Viterbi core. Thus, in order to 
synchronize the process in the conditional adapter and the Viterbi core, there is 
a control signal, which is produced by the finite-input unit to control the process 
in the multiplexer and the Viterbi core. A detailed illustration of the conditional 
adapter unit is presented in Figure 11. In the finite-input unit, there are two 
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functional sections, i.e. the data buffers and the finite-state controller. The data 
buffers are established by the finite number of registers. The number of registers 
are determined by the error-codeword bit-width (e-bits). Meanwhile, the finite-
state controller is responsible for controlling the flow of the decoding process. 
This finite-state controller selects the buffered data to be passed into the Viterbi 
core through a multiplexing mechanism and gives a status signal in order to 
control the decoding process.  

 
Figure 11 Conditional adapter architecture. 

 
4.4 Top Level Integration 
Integrating the conditional adapter and the Viterbi core results in the whole 
decoder design. A top level illustration of the Viterbi decoder is presented in 
Figure 12. From this illustration, we can see that the proposed architecture is 
actually in a simple generic form. The datapath bit-width and trace-back 
parameters can be adjusted for specific needs and are set in the pre-synthesis 
process.  

 
Figure 12 Detailed top level design of Viterbi decoder. 
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5 Results and Analysis 

5.1 Functional Simulation 
Functional simulation was done using waveform analyzer software. The design 
configurations were tested for four trace-back scenarios (i.e. N = 8, N = 16, 
N = 32 and N = 64). A testbench provided raw test data (original data) and 
triggered the simulation. We could observe the convolutional encoding, 
transmission error disturbance and decoding processes. Figures 13-16 show the 
results. The first process arrow indicates the convolutional encoding process, 
the second one indicates the transmission error disturbance process and the last 
one indicates the Viterbi decoding process. The design with trace-back N = 8 
needed 10 clock cycles latency, while the designs with trace-back  N = 16, N 
= 32, and N = 64 needed 18, 34, and 66 clock cycles latency, respectively. 
These results show that the proposed design only needs N + 2 clock cycles 
latency to produce valid data. 

 
Figure 13 Waveform simulation for trace-back N = 8. 

 

 
Figure 14  Waveform simulation for trace-back N = 16. 
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Figure 15  Waveform simulation for trace-back N = 32. 

 

 
Figure 16 Waveform simulation for trace-back N = 64. 

 
5.2 Synthesis Results 
Design synthesis scenarios were conducted for N = 8, N = 16, N = 32 and 
N = 64 trace-back designs in FPGA Altera Cyclone II EP2C35F672C6 and 
Xilinx Virtex 6 XC6VCX75T. There are two major categories of synthesis 
evaluation: area occupation and computational speed. Both are presented in 
Table 1. From the synthesis reports, we can see that if a higher number of trace-
backs is chosen, the area occupation increases because if the trace-back number 
is higher, the computation size will be higher too. The hardware architecture 
needs to accommodate the possibility of the calculated value. This condition 
affects the performance speed. The speed of calculation decreases along with 
the increase of the trace-back number. Overall, the synthesis results delivered 
promising area occupation and performance speed values. 
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Table 1 Synthesis results. 

 Trace Back 
(N) 

Clock Cycles  
Latency 

Area 
(Logic Utilization) 

Speed  
(MHz) 

Altera 
Cyclone II 

8 10   627 LEs 148.70 
16 18 1197 LEs 120.15 
32 34 2238 LEs   92.20 
64 66 4325 LEs   69.18 

Xilinx 
Virtex 6 

8 10   537 LUTs   139 Regs 312.36 
16 18 1129 LUTs   287 Regs 254.44 
32 34 2305 LUTs   576 Regs 228.29 
64 66 4521 LUTs 1160 Regs 157.15 

 

Nomenclature       LEs: Logic Elements     LUTs: Look-up Tables    Regs: Registers 

5.3 Benchmarks 
Benchmarks with other works are not easy to establish, because publications 
about a Viterbi decoder with K = 4 and R = 1/2 are relatively hard to find. In 
several cases, the existing publications cannot be compared to the proposed 
design directly because each publication usually has a specific application 
issue. Fortunately, we managed to find a publication which uses the same 
parameters. The benchmarks derived from this work are presented in Table 2. 
We can see that our proposed design has a smaller latency, smaller area 
occupation, and good performance speed. Although its performance speed was 
slower than the design [26] in Altera Cyclone II, its area occupation and 
latency were smaller. For Xilinx Virtex 6 implementation, our proposed design 
was better in all investigated aspects (i.e. latency, area occupation, and 
performance speed). Moreover, the design time of the proposed method only 
needed around one day of mathematical works for operational optimization and 
1-2 days of Hardware Description Language (HDL) coding and 
implementation. This is quite fast for research development. 
 

Table 2 Design benchmarks. 

Works  K R Trace 
Back 

Clock 
Cycles 

Latency 

Altera  
Cyclone II 

Xilinx  
Virtex 6 

Area 
(LEs) 

Speed 
(MHz) 

Area 
(LUTs) 

Speed 
(MHz) 

Paper [26] 4 1/2 32 35 3572 132.73 3519 179.46 
Proposed 4 1/2 32 34 2238 92.20 2305 228.29 

5.4 Future Research 
The proposed method offers two possibilities that can be further explored in the 
future. The first one is designing possible extensions for specific applications. 
For example, if we want to increase the performance speed and throughput, we 
can use pipelining techniques. If we observe Figures 9 and 10, there are 
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opportunities to insert pipelines into the design. There is a sequence of logical 
operations (i.e. XOR and addition) that can be separated by a pipeline in order 
to increase the processing speed and throughput. Thus, we need to adjust the 
operational finite-state machine (FSM) to implement that strategy. The second 
possibility is implementing the proposed technique for a soft-decision Viterbi 
decoder. A soft-decision approach is necessary in particular cases. Hence, future 
research on this topic is important.  

6 Conclusions 
A configurable and low-complexity VLSI architecture for a hard-decision 
Viterbi decoder were presented in this paper. The design can do error correction 
and produce valid reconstructed data. The design can be configured for any 
predefined number of trace-backs. This is achieved by changing the trace-back 
parameter value. It only needs N + 2 clock cycles latency to complete the 
process, with N is the number of trace-backs. Its configurability function was 
validated for N = 8, N = 16, N = 32 and N = 64. The design was also 
synthesized and evaluated in both Xilinx and Altera FPGA target boards for 
area consumption and speed performance. The proposed design produced 
promising synthesis results. There are two main possibilities this method offers 
that can be explored in the future: designing possible extensions for specific 
applications and implementing the proposed technique for a soft-decision 
Viterbi decoder. 

Nomenclature 
dO = original data 
c = codewords / encoded data / transmitted data 
e = error codeword / received data 
dR = reconstructed data  
S = number of states 
Sx = state x 
K =  constraint length 
R =  code ratio 
m = trellis number 
n = trace-back number 
P = PE current state 
Q =  PE next state 

Pm,n =  (m,n)-specified state  
Qm,n =  (m,n)-specified state 

i = predictor / prediction value 
r = codeword comparator 
w = Hamming distance / weight 
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