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Abstract. Intrusion detection systems (IDS) play an important role in 
information security. Two major problems in the development of IDSs are the 
computational aspect and the architectural aspect. The computational or 
algorithmic problems include lacking ability of novel-attack detection and 
computation overload caused by large data traffic. The architectural problems are 
related to the communication between components of detection, including 
difficulties to overcome distributed and coordinated attacks because of the need 
of large amounts of distributed information and synchronization between 
detection components. This paper proposes a multi-agent architecture for a 
distributed intrusion detection system (DIDS) based on ant-colony clustering 
(ACC), for recognizing new and coordinated attacks, handling large data traffic, 
synchronization, co-operation between components without the presence of 
centralized computation, and good detection performance in real-time with 
immediate alarm notification. Feature selection based on principal component 
analysis (PCA) is used for dimensional reduction of NSL-KDD. Initial features 
are transformed to new features in smaller dimensions, where probing attacks 
(Ra-Probe) have a characteristic sign in their average value that is different from 
that of normal activity. Selection is based on the characteristics of these factors, 
resulting in a two-dimensional subset of the 75% data reduction.   

Keywords: ACC; agent; ant colony clustering; distributed; IDS; intrusion detection 
system; PCA; principal component analysis. 

1 0BIntroduction 
Monitoring activities that occur in a computer system or network and analyzing 
them to recognize signs of an attack, identifying it as an attempt that endangers 
confidentiality, integrity and availability of the computer system or network or 
breaks through the security mechanism, is known as intrusion detection [1]. 
Signature-based detection capabilities rely on attack pattern information that has 
been collected in a database. A deficiency of this method lies in the inability to 
detect new patterns that do not exist in the database. Anomaly detection uses a 
history of normal patterns and detects deviations from these patterns.  
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Intrusion detection systems (IDS) can run in real-time or offline, using a 
centralized or distributed architecture. Centralized architectures are widely used 
to identify attacks on a single system that is being monitored. Distributed and 
coordinated attacks, such as DDoS, using many machines as attackers or 
victims, are likely to increase. Analysis based only one source location has 
difficulty to identify this type of attack. To overcome this, a distributed 
intrusion detection system (DIDS) is needed. 

Problems on attack detection can be reduced to problems of classification and 
clustering. Methods that have been developed in the direction of its application 
provide high quality results quickly and efficiently [2]. A clustering algorithm 
can be based on partitional or hierarchical clustering. Basic partitional 
clustering algorithms have a linear running time and some are able to handle 
large amounts of data, such as k-means clustering, but they still have 
shortcomings in terms of dependence on initial conditions and the results of 
initiation tending towards a local minimum [3].  

Swarm intelligence techniques aim to solve complicated problems through the 
development of simple agents working together without supervision to achieve 
the optimal solution through a mechanism of direct or indirect communication, 
where agents are constantly exploring the search space. The agents are used to 
complete the difficult task of finding the classification rules for signature-based 
detection and finding clusters for anomaly-based detection. They have the 
ability to organize themselves (self-organization), which is used to divide the 
problem into simpler subproblems that are given to different agents. This 
capability has the potential to make the IDS autonomous, able to adapt, parallel, 
self-organized and efficient [2]. 

The ant colony clustering (ACC) algorithm from the field of swarm 
intelligence, inspired by ant-colony intelligence, is a Lumer-Faieta (LF) model 
that combines hierarchical-based and partitional-based clustering without 
requiring initiation of the number of clusters. In hierarchical clustering, the 
object is initially regarded as a cluster and it is iteratively merged through a 
comparison of attributes to assess dissimilarity. In partitional clustering (a) the 
object comparisons are made with the mean (centroid) in the cluster, and (b) 
cluster membership can be moved [4]. 

ACC was inspired by two behaviors of ant colonies, firstly brood care 
performed by the colony, each individual ant working independently without 
receiving orders from others in a higher hierarchical position. For example, in 
the nest, the eggs, larvae and food are not scattered around randomly, but follow 
spatial patterns. Secondly, the behavior of cemetery organization with which 
the colony deals with dead members. Each individual ant shows funereal 
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behavior by randomly moving around to collect the remains of dead ants and 
arrange them in the form of clusters. Both of these behaviors are based on the 
ability of ants to compare objects that are encountered when exploring the 
search space [4].  

Two major problems in the development of an ACC-based IDS are the 
algorithmic aspect of detection (computational) and the communication between 
components of detection (architectural). From the computational point of view, 
the ability of novel-attack detection is lacking, detection rate (DR) and false 
alarm rate (FAR) are not ideal, large data traffic leads to burdensome 
computation, detection through real-time data analysis while a session is 
running and immediate alarm notification are difficult. Issues from the 
architectural point of view are: difficulty to overcome distributed and 
coordinated attacks because this requires large amounts of distributed 
information, the synchronization of information between distributed 
components of detection is difficult, the network traffic due to the distribution 
of large amounts of information between components is burdening, cooperation 
between components of detection is lacking, and the centralized hierarchical 
structure between components allows attackers to cut off the lines of 
communication and command the central node. 

The aim of this research was to develop an architecture of distributed IDS that 
implements an ACC detection algorithm that is able to recognize new attacks 
and coordinated attacks, handle huge data and traffic, has synchronization 
capabilities, has the ability of cooperation between components without the 
presence of centralized computing components, execute detection in real-time 
and send an alarm notification immediately. 

2 Related Work 
ACC has evolved into two different directions, namely models without 
communication mechanism and models using indirect communication. 
Pheromones are used in the communication mechanisms of ant colonies in 
search for food sources to determine the shortest path toward a food source 
(foraging behavior). ACC models in the first group include: (a) basic models 
[5], (b) Lumer-Faieta (LF) models [6] and (c) ATTA models [7]. The second 
group uses pheromones as communication mechanism, for example: (a) 
ANTIDS models [8], (b) ACCM models [9], (c) hybrid ACC and C4.5 models 
[10], and (d) ACCA-IDS models [11]. 
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2.1 ACC without Direct Communication 
The ACC basic model (BM) was first proposed by Deneubourg, et al. [5] and 
applied in so-called ant-like robots (ALR) or robot-like ants (RLA), performing 
simulation of ant behavior in clustering and sorting objects. A number of robots 
moves around randomly, without direct communication with each other, 
without having any hierarchy in their organization and without knowing any 
global mapping. They are only able to see objects in front of them and to 
distinguish between two or more different types of objects with a certain error 
rate [5]. 

The assumptions of BM were: (a) all objects and RLAs are placed randomly in 
a 2D grid space, (b) only one object can be placed in one position of the grid, 
(c) RLAs randomly move one step at each iteration (Figure 1). 

             
                           (a)                                     (b)                                            (c) 

Figure 1 (a) 2D grid space for ants and objects placed randomly at the first 
iteration (b) four possible directions for ants moving randomly, and (c) 
conditions for an ant to pick up an object it found or dropping the object it was 
carrying. 

If at some location there is an object as well as an RLA in unloaded condition, 
then the probability of the RLA taking the object is: 2

pick

pick

k
pick kP λ+

 =  
, where λ is the 

proportion of the number of objects (n) found by the RLA at the T last steps.  T 
is determined using the short-term memory (m) of the RLA. For example, if m = 
3 is the short-term memory at the 5th step (10111), then n is determined only at 
the three last steps (111) of the 5 steps that have been taken by the RLA. In 
loaded condition, the probability of the RLA dropping the object at a given 
location is: 2

dropdrop kP λ
λ+

 =  
, where kpick is a constant value for ppick and kdrop for 

pdrop.  

The Lumer-Faieta (LF) model is a modified BM making it able to handle 
numerical data, improving the quality of solutions and the convergence time 
[12]. Its function f(i) (1), which identifies conditions in the environment using 
the dissimilarity between individuals data δ(i,j), is defined as: 
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   (1)  

where δ(i,j) is the dissimilarity function between objects oi and oj in the data 
space using the Euclidian distance, α∈[0,1] is a scaling parameter of the data, 
and σ2∈{9,25} is the size of the local environment around the RLA. The 
environment around the RLA is a square grid, so the radius of perception (σ) is

1
2

σ − .  While moving randomly in the 2D grid, the unloaded-RLA decides to take 
action (pick up or drop oi) when it finds an object oi in a location, using the 
average similarity between oi and all oj in local environment σ2 (Figure 2). Thus 
f(i) aggregates the RLA’s environment, where empty locations will not 
contribute to the function. 

 
Figure 2 An ant in a 2D-grid space finds an object oi at a position, then moves 
using the average similarity between oi and all oj in local environment σ = 3. 

Short-term memory for keeping information about the location of the last 
dropped object was also introduced in LF. After picking up oi, it compares 
dissimilarity δ(i,j) between oi and oj in its memory, chooses the most similar one 
and then jumps to the location of oj. LF also introduced non-homogeneous 
colonies using velocity v to distinguish slower RLAs that are more selective in 
performing the pick up or drop action and fast-moving RLAs that form clusters. 

There are shortcomings of the LF model in terms of convergence. While the 
number of data increases, the clustering process produces many small clusters 
of similar objects that are not visible and will be merged with enough 
computing time. LF proposed a switching behavioral mechanism for the RLAs 
to change the behavior of building clusters into destroying clusters during 
phases of stagnancy [12]. 

The adaptive time-dependent transporter ants (ATTA) model [12] proposes two 
modifications for function f(i). Firstly, an empty location or loose cluster will 
not contribute to the function other than locations filled with an object or dense 

clusters, and secondly it uses the restriction of 0),(1 >





 −∀

α
δ ji

j  for the case 

of high dissimilarity leading to spatial separation between clusters in the 2D 
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grid space.  Four other changes are also included in ATTA. Firstly, too many 
idle phases because of objects not being found while the RLAs move around 
randomly (in BM and LF) causes a significant increase in iterations, so eager 
ants were introduced. The RLA contributes to the clustering process when it 
finds oi on the grid. It is then set to go to the location of another object for 
picking it up directly. Secondly, ATTA also uses jump ants. If the step size 
value is large in LF, the RLA is able to jump directly to another location that 
contains a small cluster of objects of the same type to be merged, resulting in a 
time reduction of the iteration process. Thirdly, α-adaptation was introduced as 
an adaptation scheme of α in order to cluster data. And fourthly, control of 
stagnation was introduced to avoid blockage by RLAs dropping the object they 
carry because of outlier values in the data. If the iteration number is high and 
the RLA does not drop the object, then it drops deterministically [12]. 

2.2 ACC with Indirect Communication Using Pheromones 
Investigation of an ACC-based IDS using pheromone mechanisms for indirect 
communication was first conducted by Ramos and Abraham through the 
ANTIDS model [8], by Tsang and Kwong through the ACCM model [9],[13], a 
hybrid model through ACC and C4.5 [10], and the ACCA-IDS model [11]. 
ANTIDS proposed an algorithm similar to the algorithm of LF against the 
KDD1999 dataset. ACCM featured several improvements of LF. 

Table 1 Detection accuracy (%) between ACC-Based IDS using KDD1999. 

Attack  
Category  
on KDD1999 

Winner on  
KDD1999  

[14] 

K-Means  
Clustering  

[14] 

ACC-Based IDS using KDD1999 
ANTIDS 

[8] 
ACCM 

[9] 
ACC-C4.5  

[10] 
ACCA-IDS  

[11] 
Normal 99.50 96.20 99.73 98.80 95.42 - 
Probe 83.30 86.90 99.86 87.50 99.70 99.40 
DoS 97.10 94.20 99.97 97.30 99.35 99.20 
U2R 13.20 27.40 68.00 30.70 73.20 99.70 
R2L 8.40 6.50 99.47 12.60 71.10 99.50 

 

Detection accuracy of ANTIDS and ACCM was tested on KDD1999, showing 
results beyond the k-means winner on KDD1999 (Table 1), especially in user-
to-root (U2R) and remote-to-local (R2L) attacks that appeared in the testing 
dataset compared to the training dataset. This shows that methods based on 
colony intelligence, such as ACC, are adaptive and are able to recognize new 
types of attacks more easily.  

Some of the advantages offered by ANTIDS (ANT colony-based IDS) [8]: 
detection is done online and in real-time because it is distributed. In contrast, 
DT, SVM, LGP and SOM are not able to classify new data or new categories 
and visualize them continuously or in a self-organized way. Also, repetition of 
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the learning process is done from the beginning. Handling new classes can be 
done without retraining. The stigmergy mechanism in the colony is relevant to 
aspects of flexibility when environmental changes occur due to interference 
from outside of the system, so members of the colony can respond appropriately 
to disturbances as if environmental modifications are made by the ants 
collectively, using the same behavior. A colony is able to work either 
unsupervised or supervised by adding classification results using k-NNR and 
marking them using the training data. ANTIDS self-organized nature makes it a 
potential distributed IDS. 

According to Tsang and Kwong [13], large and high dimension data are known 
as a feature of IDSs. There are two inefficiencies in LF. First, a number of 
homogeneous clusters is formed that are difficult to combine when they are 
separated in a large search area. Second, it measures the intensity of an object’s 
similarity, directs the formation of clusters in dense areas locally but also 
distinguishes objects that are not intensively similar. Therefore, object A and 
object B which are close to a dense cluster, will tend to remain isolated and 
separated [13]. Hence, the authors proposed the ant colony clustering model 
(ACCM), which combines local entropy and the average similarity of objects to 
identify clusters as “coarse”, “dense” and “not suitable”, and then merges them 
into a single cluster. Two types of pheromones, the object and cluster 
pheromone, guide loaded ants towards a cluster position and unloaded ants to an 
position of an isolated object in a certain area [9]. ACCM also offers an initial 
architecture based on IDS using multi-agents [14]. 

 
Figure 3 Architecture of agents in a node [15]. 

We use an agent architecture consisting of several modules (Figure 3) [15], 
namely: (1) the perception module (PM), which is responsible for audit and 
network data collection in subnets where the agent is located; (2) the 
deliberation module (DM), which is responsible for the extraction and selection 
of features that are collected by the PM so that the agent can perform the task of 
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recognizing an attack using the ACC algorithm and updating knowledge in the 
monitored subnet; (3) the communication module (CM), which facilitates the 
agent in communicating the detection results to other agents on the same subnet 
or other agents in different subnets; (4) the action module (AM), which takes 
appropriate steps when an attack is successfully recognized and reaches the 
threshold of an attack; it will send an alert and communicate it to the system 
administrator; (5) the supervisor module (SM), which is responsible as the 
central module that organizes tasks and interactions between modules. 

We also use 3 types of agents and the ways they communicate with each other 
(Figure 4) [15] by adding ACC engine as knowledge basis for detecting an 
intrusion. First, the supervisory agent system (SAS), which is assigned to 
collect, prepare and disseminate attack specification data; when there is demand 
it immediately implements the data collection process. Second, supervisory 
agent attacks (SAA), which utilizes the data released by SAS and other SAAs. 
Each SAA uses an ACC algorithm to build attack knowledge (cluster models) 
in order to recognize an attack on the host and then updates the knowledge 
about attacks that have been built utilizing data from other SAAs. Third, the 
agent register (AR), which manages the registry of every SAS and SAA for the 
management of controlled variables and uses it to find the name and location of 
other agents and the data of interest of other agents using the interest 
mechanism. 

 

Figure 4 Communication between supervisory agent system (SAS) and 
supervisory agent attacks (SAA) through agent register (AR) [15]. 

2.3 Developing Single IDS into Distributed IDS 
At first, IDSs were placed in a single host (host-based IDS). They monitored the 
operating system logs and performed simple pattern matching to a small set of 
signatures [16]. The sensor and detector components of a host-based IDS are 
placed in the same host. Then the attacks developed, as well as the components 
of detectors and detection methods. Networking technologies were developed 
that make data location distributed over networks, as well as sensors that 
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transmit data to a central node and perform a centralized hierarchical detection 
method, the so-called host-based IDS using distributed sensors. 

Sending large volumes of data and high complexity sensor data to the 
centralized node may leave the door open and cause vulnerability of the huge 
amount of network data and the system itself. Hence, IDS evolved into 
distributed IDS (DIDS), meaning the detectors as well as the sensors are 
distributedly placed over a network but still in a centralized hierarchy. Our 
proposed architecture consisting of multi-agents is shown in Figure 5. 

 
Figure 5 Illustration of our proposed agents in a network. 

2.4 Selecting Features Based on PCA 
Principal component analysis (PCA), also called Hotelling transformation, is a 
classical technique in statistics for data analysis, feature extraction and data 
reduction [17]. PCA performs a linear combination of correlated features, 
transforms them into a lower dimensional space and makes them uncorrelated. 
Highly correlated data indicate information redundancy, so PCA will reduce the 
redundancy by removing correlations and minimize information loss due to the 
decrease in size. This means that PCA is able to transform and reduce the initial 
features’ dimension while maintaining a maximum of original information and 
identifying the structure of relationships between variables that contribute 
predominantly to the variable transformation results. 

The process of singular value decomposition (SVD) can be made into a 
correlation matrix S for the determination of the eigenvalues (λi) in diagonal 
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matrix Λ and eigenvectors in matrix U. Diagonal matrix Λ values on the 
diagonal are eigenvalues λi (for i = 1,2,.. p). Eigenvalues λi are the variance for 
each direction indicated by the eigenvectors ui, while λ1 is the maximum 
variance direction indicated by the eigenvectors u1. The eigenvectors form the 
new axes (dimensions) of the new feature. The dimensional reduction from the 
initial dimension of standardized value ZXi creates a new dimension k, where 
k < p, using a percentage of variance explained by each eigenvalue determined 
by 

1

i
p

i
i

ic λ

λ
=

=
∑

. k is determined by using: (a) the Kaiser criteria by looking at 

eigenvalues ≥ 1, (b) the decrease of the value of ci in scree plot which is quite 
steep and (c) any other important aspects related to the intended use.    

3 Methodology 

3.1 NSL-KDD Dataset 
In the evaluation study of IDS, the NSL-KDD dataset was the standard 
benchmark [18] as an improvement of dataset KDD1999. It is widely used in 
anomaly detection [19]. The data were produced by processing the tcpdump of 
the DARPA1998 IDS evaluation data from the MIT Lincoln Laboratory under 
DARPA sponsorship [20]. NSL-KDD consists of 43 variables that are classified 
into basic features, content and traffic (Table 2). 

KDDTrain+ and KDDTest+ as subsets of NSL-KDD were prepared as a source 
of data for preparation, analysis and testing. Preparation consisted of the 
following steps: (a) selecting normal activity and probing activity (nmap, 
ipsweep, portsweep, and satan) from KDDTrain+ for training data; (b) selecting 
normal activity and probing activity (nmap, ipsweep, portsweep, satan, and 
added two new probing activities, saint and mscan) of KDDTest+ for data 
testing; and (c) selecting features in KDDTrain+ and KDDTest+. 

The analysis stage utilized KDDTrain+NP and performed the following steps: 
(a) standardizing the values of the features; (b) performing data exploration to 
assess the feasibility of assumptions such as the relationship between variables 
and the nature of the identity correlation matrix; (c) extracting the correlation 
matrix and its singularity; (d) analyzing the diversity of the data (univariate and 
multivariate) to see differences in the characteristics of the objects observed 
(normal and probing activity); (e) performing PCA to reduce high dimension of 
data, determining the main components or factors (FAC), and determining the 
dominant variables in each factor; (f) identifying the grouping variable to study 
the characteristics of the probing activity and create a new data subset by 
grouping results; (g) selecting the subset for testing purposes. 
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Table 2 Features list in the dataset NSL-KDD. 
 

Feature Description Type 
X1 duration  
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co
nn
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tio

ns
 

length (number of seconds) of the connection  C 
X2 protocol_type  type of the protocol, e.g. tcp, udp, etc.  D 
X3 service  network service on the destination, e.g., http, telnet, etc.  D 
X4 flag  number of data bytes from source to destination  C 
X5 src_bytes  number of data bytes from destination to source  C 
X6 dst_bytes  normal or error status of the connection  D 
X7 land  1 if connection is from/to the same host/port; 0 otherwise  D 
X8 wrong_fragment  number of ``wrong'' fragments  C 
X9 urgent  number of urgent packets  C 
X10 hot  

C
on

te
nt

 fe
at

ur
es

  
w

ith
in

 a
 c

on
ne

ct
io

n 

number of ``hot'' indicators C 
X11 num_failed_logins  number of failed login attempts  C 
X12 logged_in  1 if successfully logged in; 0 otherwise  D 
X13 num_compromised  number of ``compromised'' conditions  C 
X14 root_shell  1 if root shell is obtained; 0 otherwise  D 
X15 su_attempted  1 if ``su root'' command attempted; 0 otherwise  D 
X16 num_root  number of ``root'' accesses  C 
X17 num_file_creations  number of file creation operations  C 
X18 num_shells  number of shell prompts  C 
X19 num_access_files  number of operations on access control files  C 
X20 num_outbound_cmds number of outbound commands in an ftp session  C 
X21 is_hot_login  1 if the login belongs to the ``hot'' list; 0 otherwise  D 
X22 is_guest_login  1 if the login is a ``guest''login; 0 otherwise  D 
X23 count  
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number of connections to the same host  (IP) as the current connection in the past two 
seconds  

C 

X24 srv_count  number of connections to the same service (port) and same host (IP) as the current 
connection in the past two seconds  

C 

X25 serror_rate  % of connections that have ``SYN'' errors to the same host during aggregation on 
X23 

C 

X26 srv_serror_rate % of connections that have ``SYN'' errors to the same service during aggregation on 
X24 

C 

X27 rerror_rate  % of connections that have ``REJ'' errors  to the same host during aggregation on 
X23 

C 

X28 srv_rerror_rate  % of connections that have ``REJ'' errors to the same service during aggregation on 
X24 

C 

X29 same_srv_rate  % of connections to the same service and the same host during aggregation on X23 C 
X30 diff_srv_rate  % of connections to different services and the same host during aggregation on X23 C 
X31 srv_diff_host_rate  % of connections to different hosts and the same service during aggregation on X24 C 
X32 dst_host_count 
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number of connections to the same host (IP) in the last hundred connection C 
X33 dst_host_srv_count number of connections to the same service (port) in the last hundred connection C 
X34 dst_host_same_ 

srv_rate 
% of connections to the same service and the same host during aggregation on X32 C 

X35 dst_host_diff_ srv_rate % of connections to different services and the same host during aggregation on X32 C 
X36 dst_host_same_ 

src_port_rate 
% of connections from the same service during aggregation on X33 C 

X37 dst_host_srv_diff_ 
host_rate 

% of connections to different hosts during aggregation on X33 C 

X38 dst_host_serror_rate % of connections that have ``SYN'' errors to the same host during aggregation on 
X32 

C 

X39 dst_host_srv_ 
serror_rate 

% of connections that have ``SYN'' errors to the same service during aggregation on 
X33 

C 

X40 dst_host_rerror_rate % of connections that have ``REJ'' errors  to the same host during aggregation on 
X32 

C 

X41 dst_host_ 
srv_error_rate 

% of connections that have ``REJ'' errors to the same service during aggregation on 
X33 

C 

Y1 attack_type Label DoS attack (back,land, neptune, pod, smurf, teardrop), Probe attack (ipsweep, nmap, 
portsweep, satan), R2L attack (ftp_write, guess_passwd, imap, multihop, phf, spy), 
U2R attack (warezclient, warezmaster, buffer_overflow, loadmodule, perl, rootkit) 

D 

Notes: C = continous; D = discrete 
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4 Experiment Results and Analysis 

4.1 Selecting Features Based on PCA 
KDDTrain+ and KDDTest+ are subsets of NSL-KDD containing normal 
activities and nmap, ipsweep, portsweep, and satan probing activities. The 
KDDTrain+ subset contained 78.999 row data, consisting of 67.343 normal 
activities (85.25%) and 11.656 probing activities (14.75%), and was 
subsequently called KDDTrain+NP, with a ratio of 5:1 between normal and 
probing activities.  KDDTest+NP was prepared for testing purposes, containing 
normal activities and nmap, ipsweep, portsweep, and satan probing activities, 
and two new types of probing were added that were not contained in 
KDDTrain+NP, namely mscan and saint. It contained 12.132 row data, 
consisting of 9.711 normal (80%) and 2.421 probing activities (20%).  

All 78.999 data in KDDTrain+NP had 32 features with numerical variables. 
There were two features that did not have variablity in value, i.e. 
wrong_fragment (X8), which indicates the number of packets containing a bad 
checksum in each of the connections, and num_outbound_cmds (X20), which 
indicates the number of orders outside the network segment (outbound) in an 
FTP session. Meanwhile in KDDTest+NP, which contained 12.132 activities, 
there were three features that had no variance: urgent (X9), num_shell (X18) and 
num_outbound_cmds (X20). The no-variance condition excluded these features 
from further processing.  

Statistical values show the use of different scales on these features. The next 
stage calculates the ZXij value by subtracting each observation Xij with the 
average xi and then divides the result by their standard deviation (si). This 
standardization will produce transformation data that have a distribution of 
values between -1 to 1 and are centered around a value of 0. This process is 
expected to show a pattern of differences between normal and probing 
activities. An average value and a very high diversity were seen in some 
features, such as X1 (duration), X5 (src_bytes), and X6 (dst_bytes). Descriptive 
statistics of 28 standardized values showed an average value of 0 and standard 
deviation 1. Although 28 features had a size and spread of the same 
concentration, they still had a different range in sizes.   

4.1.1 Dimensional Reduction 
Most correlations between ZXi and ZXj (for i ≠ j) showed significant values in 
correlation matrix S. The values of the partial correlation coefficient indicated a 
partial linkage between some of the features. Small values or values close to 
zero can cause S to become an identity matrix with the one diagonal is 1, while 
the other is zero, so we tested under null hypothesis how small those values 
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were. The Kaiser-Meyer-Olkin (KMO) test under null hypothesis verifies how 
small the correlation coefficient in matrix S is and the Bartlett test under null 
hypothesis verifies if S is an identity matrix. These two tests showed a 
significance level of 0. It showed empirically that no null hypothesis was true 
and that the correlation coefficient cannot be regarded as small and S was not an 
identity matrix. 

Rejection of the null hypothesis means that PCA is suitable for transforming 
and reducing the initial dimension, while maintaining a maximum of original 
information and can identify the structure of relationships between variables 
that contribute predominantly to the variable transformation results. The SVD 
process of correlation matrix S resulted 28 eigenvalues (λi). The value of λi is 
the variance for each direction indicated by the eigenvectors ui and the first 
eigenvalue λ1 is the maximum variance direction indicated by the first 
eigenvector u1. The eigenvector form the new features or axes (dimensions) that 
are called by a factor (FAC). Table 3 shows all 28 eigenvalues (λi). 

Table 3 List of 28 eigenvalues. 

The dimensional reduction process from p = 28 (ZXi) creates a new dimension 
k < 28 using percentage of variance, explained by each eigenvalue determined 
by 28

1

i

i
i

ic λ

λ
=

=
∑

. Using the Kaiser criteria eigenvalues ≥ 1 and looking at the 

decreased value of ci in scree plot, a value of k = 14 (50% reduction) is selected. 
The eigenvalues λi (for i = 1,2, ... 14) and the cumulative percentage of variance 
can be extracted from the initial data’s ZXi of 86.61%.    

4.1.2 Relationship between Initial and New Features from PCA 
The component matrix of factor loadings consists of coefficients in the 
eigenvector that indicate the direction of the axis on the new dimension (FAC) 
and are affected by the values of ZXi. For example, for the first eigenvector (u1) 

i λi 
ci 

(%) 
% 

Cum. i λi 
ci 

(%) 
% 

Cum. i λi 
ci 

(%) 
% 

Cum. 
1 5.769 20.605 20.605 10 1.000 3.570 74.078 20 0.376 1.342   97.368 
2 2.881 10.289 30.893 11 0.994 3.552 77.630 21 0.193 0.689   98.057 
3 2.437 8.703 39.596 12 0.985 3.517 81.147 22 0.162 0.578   98.635 
4 2.176 7.771 47.367 13 0.791 2.824 83.970 23 0.123 0.438   99.073 
5 1.740 6.213 53.580 14 0.739 2.638 86.608 24 0.096 0.343   99.416 
6 1.441 5.147 58.727 15 0.722 2.580 89.189 25 0.084 0.300   99.715 
7 1.258 4.494 63.221 16 0.561 2.005 91.193 26 0.066 0.237   99.952 
8 1.038 3.706 66.927 17 0.475 1.696 92.889 27 0.013 0.045   99.997 
9 1.003 3.582 70.509 18 0.454 1.622 94.511 28 0.001 0.003 100.000 

    19 0.424 1.515 96.026     
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as an FAC_1 axis the coefficient of ZX27, ZX28, ZX35, ZX40 and ZX41 is large 
enough (more than 0.7) or small enough (ZX34 less than -0.7). Eigenvector u1 
can be said to be influenced by ZX27, ZX28, ZX35, ZX40 and ZX41 which have a 
positive effect (increase), and ZX34, which has a negative influence (reduce). 
The relationship reveals a hidden factor that is influenced by the initial features 
in the original dimensional space. The relationship between the initial features 
ZXi and factor (FAC) is shown in Table 4. 

The relationship can be either positive or negative. FAC_1 is positively 
associated with features such as rerror_rate, srv_rerror_rate, 
dst_host_diff_srv_rate, dst_host_rerror_rate and dst_host_srv_rerror_rate. 
Negative association occurs between FAC_1 and dst_host_same_srv_rate.  
FAC_1 seems a representation of SYN error and REJ error when connecting to 
the same IP and destination port, and to the same IP on different services.   

Table 4 Relationship between ZXi with factors (FAC). 

Factor 
Positive 
Effects 

(loading ≥ 0.7) 
Related Features Negative Effects 

(loading ≤ -0.7) 
Related 
Features 

Interpretation of 
Factor 

FAC_1 ZX27 
ZX28  
ZX35 
 
ZX40 
 
ZX41 

rerror_rate 
srv_rerror_rate 
dst_host_diff_ 
srv_rate 
dst_host_ rerror_rate 
dst_host_srv_ 
rerror_rate 

ZX34 
 

dst_hos
t_ 
same_s
rv_rate 

SYN error and REJ error 
factor when connecting 
to the same IP and the 
destination port and 
connections to the same 
IP on different services 

FAC_2 ZX25 
ZX26 
ZX39 

serror_rate 
sev_serror_rate 
dst_host_srv_serror_r
ate 

-  SYN error factor when 
the connection to the IP 
and port number the same 
purpose in time-
windowing 2 seconds and 
the connection-
windowing 100 
connections 

FAC_4 ZX13 
ZX16 

num_compromised 
num_root 

-  the emergence of a factor 
"not found" error and the 
operation as root 

FAC_8 ZX17 num_file_creations -  factors that created the 
file 

FAC_9 ZX5 src_bytes -  factor data (bytes) sent 
from the IP source when 
the connection takes 
place 

FAC_10 ZX6 dst_bytes -  factor of data (bytes) 
received during the 
connection 

FAC_11 ZX11 num_failed_login   factor that related to the 
error log occur when the 
connection 

FAC_13 ZX19 num_access_files -  factor controlling the 
files when the connection 
takes place 
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The relation between FAC_2 with serror_rate, sev_serror_rate, and 
dst_host_srv_serror_rate shows a representation of SYN error when connecting 
to the same IP and port number in 2 seconds of time-windowing and 100 
connections of connection-windowing. FAC_4 is closely associated with 
num_root and num_compromised, which indicates the emergence of a “not 
found” error factor and the operation as root. FAC_8 related with 
num_file_creations shows the presence of a factor that created a file. The 
relation between FAC_9 with src_bytes indicates the presence of data (bytes) 
sent from the IP source when the connection takes place. FAC_10 associated 
with dst_bytes shows a factor of data (bytes) received during the connection. 
The relation between FAC_11 with num_failed_login shows the presence of a 
factor that is related to the error log occuring when the connection takes place. 
Meanwhile, FAC_13 associated with num_access_files indicates the presence of 
a factor controlling the files when the connection takes place. Extraction FACij 
scores for each value of ZXij observations is performed using a regression 
method and produces a major component score coefficient matrix. A single 
value score is a representation of an observation on the new dimension. 

4.1.3 New Features Characteristics 
Using the score values, further testing was performed to see the differences 
between the two types of activities in the new dimension. This revealed some 
interesting patterns. The average value of normal activities had a negative sign 
(≤ 0), as opposed to probing activities, which had a positive sign (≥ 0) on 
FAC_1, FAC_3, FAC_6, FAC_7, FAC_9, FAC_13 and FAC_14. The opposite 
occured in dimension FAC_2, FAC_4, FAC_5, FAC_8, FAC_10, FAC_11, and 
FAC_12, seeing the value of the average normal activity was positive, while 
compared the average value of probing activities was marked otherwise. This  
 

Table 5 Two groups of new features based on different signs class average. 

Subset New Features Normal Probe t-Test 
Average Average Significant 

Subset1 FAC_1 -0.2513 1.4518 0.0000 
FAC_3 -0.1254 0.7242 0.0079** 
FAC_6 -0.1188 0.6862 0.0000 
FAC_7 -0.0870 0.5024 0.0000 
FAC_9 -0.0044 0.0252 0.0000 
FAC_13 -0.0029 0.0165 0.0000 
FAC_14 -0.0112 0.0644 0.0000 

Subset2 FAC_2 0.0071 -0.0412 0.0000 
FAC_4 0.0264 -0.1526 0.1413** 
FAC_5 0.0583 -0.3369 0.9730** 
FAC_8 0.0078 -0.0449 0.2549** 
FAC_10* 0.0001 -0.0003 0.6933** 
FAC_11* 0.0017 -0.0097 0.0000 
FAC_12 0.0011 -0.0062 0.0000 
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revealed two groups of factors based on a significant difference between normal 
and probing activity (Table 5).   

4.2 Experiment on ACC Algorithm 
1000 data records from NSL-KDD that contained normal activities and probe 
attacks were prepared. Each data included 42 features with a label for normal 
activity or probe attack. The environment for the experiment and parameter 
settings were as follows: (1) processor: @2.0 GHZ Intel Core2Duo T6400; (2) 
memory: 3 GB DDR2; (3) operating system: Windows XP; (4) the attacks to be 
detected mainly belonged to the probe category.  
 

 
           (a)                                                             (b) 

 
                                          (c)                                                                 (d) 

Figure 6 ACC basic model simulation, (a) RLA (black) and objects (light gray) 
at t = 0; (b) The objects in clusters at t = 100000; (c) RLA (black) and objects 
(white and light gray) in the first iteration; and (d) the current t = 570000, 
unloaded-RLA is black and loaded-RLA is dark gray. 

A simulation of RLA using BM in a 2D-grid is shown in Figure 6(a) and Figure 
6(b) for one type of object, and Figure 6(c) and Figure 6(d) for two types of 
objects. Experiments (a) and (b) used a parameter grid size of 290×200, number 
of objects = 1500, the number of RLA = 100, k1 = 0.1, k2 = 0.3 and memory m 
= 50, while (c) and (d) for the two types of objects (white and light gray) with 
80×49 grid size, the number of white and light gray objects = 200 for each type, 
RLA = 20, k1 = 0.1, k2 = 0.3 and memory m = 15. Figure 7 shows ppick and pdrop 
for different memory lengths. The RLA memory size that was used to 
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remember the T last steps and count the number of encountered objects, affected 
ppick and pdrop values. For m = 10, kpick = 0.1 and kdrop = 0.3 it was shown ppick 
decreased significantly and pdrop rose sharply. Small changes in the number of 
objects found by RLA (n) on the T last steps caused large changes in ppick and 
pdrop. 

    
(a)                                                                       (b) 

Figure 7 The number of objects found in the T last steps and their probability 
on different values of k with the memory size (a) m = 50 and (b) m = 10. 

 
                           (a)                                                                             (b) 

Figure 8 LF simulation with two types of objects, normal (white) and attack 
(light gray), (a) at t = 0 and (b) at t = 100000, unloaded-RLA (black) and 
loaded-RLA (dark gray). 

Examples of the LF simulation results are shown in Figure 8, using a 80×80 
grid size, number of objects = 1000, number of RLA = 100, k1 = 0.1, k2 = 0.3 
and α = 50. Simulation of RLA using the LF algorithm with modification in 
dissimilarity using Euclidian distance measure, δ(i,j), was replaced by using 
Bray-Curtis (BC) dissimilarity, 1
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, as shown in Figure 9. The 

experiment was executed for two types of objects in a 80×80 grid size, number 
of objects = 750, number of RLA = 100, k1 = 0.1, k2 = 0.3 and α = 0.7. The LF 
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result showed that t had decreased significantly from 100000 to 10000 when the 
clusters began to form. ACC was able to cluster in a distributed manner, 
inspired by the behavior of ant colonies while taking care of their larvae. 
Although ACC seems less efficient than hierarchical sorting techniques, in a 
distributed environment it offers advantages in terms of simplicity, flexibility 
and robustness. This model can be applied to two or more types of attack 
objects in a 2D grid space by modifying the equations δ(i,j), f(i), ppick, pdrop, and 
parameters used such as α, grid size, k1, k2, etc.   

 
                                (a)                                                                           (b) 

Figure 9 Simulation of modified LF δ(i,j) with BC dissimilarity, where white is 
normal and light gray is Satan probe attack, (a) at t = 0 and (b) at t = 10000, 
unloaded-RLA (black) and loaded-RLA (dark gray). 

5 Conclusion 

5.1 Dimensional Reduction 
The use of PCA can overcome the burden of high dimensional data in the 
development of IDS to build a mechanism of detecting network probing 
activities. The initial features are transformed into new features by reducing the 
dimensions of the data in order to identify the characteristics of network probing 
activity. 

Using the sign of the average value of the PCA transformation of network 
probing activities is useful for selecting new subsets of lower dimension. The 
characteristics of the relationship between PCA transformation and the initial 
features were identified from the values of factor loading. FAC_1 represents 
SYN error and REJ error when connecting to the same IP and destination port 
or to the same IP on different services. FAC_2 represents a SYN error when 
connecting to the same IP and port number in 2 seconds of time-windowing and 
100 connections of connection-windowing.  
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FAC_4 indicates the emergence of a “not found” error and the operation as root. 
FAC_8 indicates the presence of a factor that created a file. FAC_9 indicates 
data (bytes) sent from the IP source when the connection took place. FAC_10 
shows a factor of data (bytes) received during the connection. FAC_11 shows 
an error that occurs when the connection is logged. FAC_13 indicates a 
controlling file factor during connection. 

Dimensional reduction of the data up to 75% of the initial features, using 
characteristic signs of the average value of probing activity, is perhaps able to 
improve the classification performance or clustering result. 

5.2 ACC Algorithm 
ACC as a method of attack detection is very promising. Clustering in a 2D grid 
space of large dimension data can be visualized and provides opportunities in 
controlling the process to further improve ACC performance in its application 
in a Distributed IDS. 

Metaphorically speaking, ACC’s behavior in a DIDS can be controlled and 
designed. It provides the ability to cluster data without guidance, to move in an 
unlimited 2D search space, to control the patterns of ant movement and use 
them to generate clusters of different types of data for normal and attack 
activity. 

6 Future Work 
Future work may include the following items: 

1. Testing the PCA-based feature selection and extraction mechanism for the 
next task by using the subset formed in some classifier or clustering method 
that shows better performance. 

2. Testing the performance of clustering results in a contingency table to 
determine the value of precision, recall, F-measure, and the ROC curve.   

3. Designing IDS as an agent in a distributed network environment that 
communicates using a framework of interest-driven, cooperative agents. 

4. Solving issues in combining a cluster model built by any IDS using an ACC 
algorithm in a subnet to perform the aggregated cluster model from any 
IDS.  

5. Solving issues in labeling attack and normal clusters, and labeling the attack 
clusters according to their sub-type and not just the attack label. 

6. Exploring some measurements in evaluating the quality of the clusters for 
optimizing the formed clusters with the ACC algorithm.  

7. Further exploring the ability to accept new data to do clustering without 
repeating the process from the beginning. 
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8. Demonstrating the capability and flexibility of the system’s adaptive nature 
to environmental changes. 
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