

J. ICT Res. Appl., Vol. 8, No. 3, 2015, 213-233

 213

Received December 30th, 2014, Revised February 12th, 2015, Accepted for publication March 4th, 2015.
Copyright © 2015 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2015.8.3.3

DIDS Using Cooperative Agents Based on Ant Colony
Clustering

Muhammad N. Abdurrazaq, Bambang Riyanto Trilaksono & Budi Rahardjo

School of Electrical Engineering and Informatics,
Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia

Email: oliverazaq@gmail.com

Abstract. Intrusion detection systems (IDS) play an important role in
information security. Two major problems in the development of IDSs are the
computational aspect and the architectural aspect. The computational or
algorithmic problems include lacking ability of novel-attack detection and
computation overload caused by large data traffic. The architectural problems are
related to the communication between components of detection, including
difficulties to overcome distributed and coordinated attacks because of the need
of large amounts of distributed information and synchronization between
detection components. This paper proposes a multi-agent architecture for a
distributed intrusion detection system (DIDS) based on ant-colony clustering
(ACC), for recognizing new and coordinated attacks, handling large data traffic,
synchronization, co-operation between components without the presence of
centralized computation, and good detection performance in real-time with
immediate alarm notification. Feature selection based on principal component
analysis (PCA) is used for dimensional reduction of NSL-KDD. Initial features
are transformed to new features in smaller dimensions, where probing attacks
(Ra-Probe) have a characteristic sign in their average value that is different from
that of normal activity. Selection is based on the characteristics of these factors,
resulting in a two-dimensional subset of the 75% data reduction.

Keywords: ACC; agent; ant colony clustering; distributed; IDS; intrusion detection
system; PCA; principal component analysis.

1 0BIntroduction
Monitoring activities that occur in a computer system or network and analyzing
them to recognize signs of an attack, identifying it as an attempt that endangers
confidentiality, integrity and availability of the computer system or network or
breaks through the security mechanism, is known as intrusion detection [1].
Signature-based detection capabilities rely on attack pattern information that has
been collected in a database. A deficiency of this method lies in the inability to
detect new patterns that do not exist in the database. Anomaly detection uses a
history of normal patterns and detects deviations from these patterns.

214 Muhammad N. Abdurrazaq, et al.

Intrusion detection systems (IDS) can run in real-time or offline, using a
centralized or distributed architecture. Centralized architectures are widely used
to identify attacks on a single system that is being monitored. Distributed and
coordinated attacks, such as DDoS, using many machines as attackers or
victims, are likely to increase. Analysis based only one source location has
difficulty to identify this type of attack. To overcome this, a distributed
intrusion detection system (DIDS) is needed.

Problems on attack detection can be reduced to problems of classification and
clustering. Methods that have been developed in the direction of its application
provide high quality results quickly and efficiently [2]. A clustering algorithm
can be based on partitional or hierarchical clustering. Basic partitional
clustering algorithms have a linear running time and some are able to handle
large amounts of data, such as k-means clustering, but they still have
shortcomings in terms of dependence on initial conditions and the results of
initiation tending towards a local minimum [3].

Swarm intelligence techniques aim to solve complicated problems through the
development of simple agents working together without supervision to achieve
the optimal solution through a mechanism of direct or indirect communication,
where agents are constantly exploring the search space. The agents are used to
complete the difficult task of finding the classification rules for signature-based
detection and finding clusters for anomaly-based detection. They have the
ability to organize themselves (self-organization), which is used to divide the
problem into simpler subproblems that are given to different agents. This
capability has the potential to make the IDS autonomous, able to adapt, parallel,
self-organized and efficient [2].

The ant colony clustering (ACC) algorithm from the field of swarm
intelligence, inspired by ant-colony intelligence, is a Lumer-Faieta (LF) model
that combines hierarchical-based and partitional-based clustering without
requiring initiation of the number of clusters. In hierarchical clustering, the
object is initially regarded as a cluster and it is iteratively merged through a
comparison of attributes to assess dissimilarity. In partitional clustering (a) the
object comparisons are made with the mean (centroid) in the cluster, and (b)
cluster membership can be moved [4].

ACC was inspired by two behaviors of ant colonies, firstly brood care
performed by the colony, each individual ant working independently without
receiving orders from others in a higher hierarchical position. For example, in
the nest, the eggs, larvae and food are not scattered around randomly, but follow
spatial patterns. Secondly, the behavior of cemetery organization with which
the colony deals with dead members. Each individual ant shows funereal

 DIDS Using Cooperative Agents Based on ACC 215

behavior by randomly moving around to collect the remains of dead ants and
arrange them in the form of clusters. Both of these behaviors are based on the
ability of ants to compare objects that are encountered when exploring the
search space [4].

Two major problems in the development of an ACC-based IDS are the
algorithmic aspect of detection (computational) and the communication between
components of detection (architectural). From the computational point of view,
the ability of novel-attack detection is lacking, detection rate (DR) and false
alarm rate (FAR) are not ideal, large data traffic leads to burdensome
computation, detection through real-time data analysis while a session is
running and immediate alarm notification are difficult. Issues from the
architectural point of view are: difficulty to overcome distributed and
coordinated attacks because this requires large amounts of distributed
information, the synchronization of information between distributed
components of detection is difficult, the network traffic due to the distribution
of large amounts of information between components is burdening, cooperation
between components of detection is lacking, and the centralized hierarchical
structure between components allows attackers to cut off the lines of
communication and command the central node.

The aim of this research was to develop an architecture of distributed IDS that
implements an ACC detection algorithm that is able to recognize new attacks
and coordinated attacks, handle huge data and traffic, has synchronization
capabilities, has the ability of cooperation between components without the
presence of centralized computing components, execute detection in real-time
and send an alarm notification immediately.

2 Related Work
ACC has evolved into two different directions, namely models without
communication mechanism and models using indirect communication.
Pheromones are used in the communication mechanisms of ant colonies in
search for food sources to determine the shortest path toward a food source
(foraging behavior). ACC models in the first group include: (a) basic models
[5], (b) Lumer-Faieta (LF) models [6] and (c) ATTA models [7]. The second
group uses pheromones as communication mechanism, for example: (a)
ANTIDS models [8], (b) ACCM models [9], (c) hybrid ACC and C4.5 models
[10], and (d) ACCA-IDS models [11].

216 Muhammad N. Abdurrazaq, et al.

2.1 ACC without Direct Communication
The ACC basic model (BM) was first proposed by Deneubourg, et al. [5] and
applied in so-called ant-like robots (ALR) or robot-like ants (RLA), performing
simulation of ant behavior in clustering and sorting objects. A number of robots
moves around randomly, without direct communication with each other,
without having any hierarchy in their organization and without knowing any
global mapping. They are only able to see objects in front of them and to
distinguish between two or more different types of objects with a certain error
rate [5].

The assumptions of BM were: (a) all objects and RLAs are placed randomly in
a 2D grid space, (b) only one object can be placed in one position of the grid,
(c) RLAs randomly move one step at each iteration (Figure 1).

 (a) (b) (c)

Figure 1 (a) 2D grid space for ants and objects placed randomly at the first
iteration (b) four possible directions for ants moving randomly, and (c)
conditions for an ant to pick up an object it found or dropping the object it was
carrying.

If at some location there is an object as well as an RLA in unloaded condition,
then the probability of the RLA taking the object is: 2

pick

pick

k
pick kP λ+

 =  
, where λ is the

proportion of the number of objects (n) found by the RLA at the T last steps. T
is determined using the short-term memory (m) of the RLA. For example, if m =
3 is the short-term memory at the 5th step (10111), then n is determined only at
the three last steps (111) of the 5 steps that have been taken by the RLA. In
loaded condition, the probability of the RLA dropping the object at a given
location is: 2

dropdrop kP λ
λ+

 =  
, where kpick is a constant value for ppick and kdrop for

pdrop.

The Lumer-Faieta (LF) model is a modified BM making it able to handle
numerical data, improving the quality of solutions and the convergence time
[12]. Its function f(i) (1), which identifies conditions in the environment using
the dissimilarity between individuals data δ(i,j), is defined as:

 DIDS Using Cooperative Agents Based on ACC 217

 𝑓(𝑖) = �
1
𝜎2
∑ �1 − 𝛿(𝑖,𝑗)

𝛼
� ,𝑗 𝑖𝑓 𝑓(𝑖) > 0

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

where δ(i,j) is the dissimilarity function between objects oi and oj in the data
space using the Euclidian distance, α∈[0,1] is a scaling parameter of the data,
and σ2∈{9,25} is the size of the local environment around the RLA. The
environment around the RLA is a square grid, so the radius of perception (σ) is

1
2

σ − . While moving randomly in the 2D grid, the unloaded-RLA decides to take
action (pick up or drop oi) when it finds an object oi in a location, using the
average similarity between oi and all oj in local environment σ2 (Figure 2). Thus
f(i) aggregates the RLA’s environment, where empty locations will not
contribute to the function.

Figure 2 An ant in a 2D-grid space finds an object oi at a position, then moves
using the average similarity between oi and all oj in local environment σ = 3.

Short-term memory for keeping information about the location of the last
dropped object was also introduced in LF. After picking up oi, it compares
dissimilarity δ(i,j) between oi and oj in its memory, chooses the most similar one
and then jumps to the location of oj. LF also introduced non-homogeneous
colonies using velocity v to distinguish slower RLAs that are more selective in
performing the pick up or drop action and fast-moving RLAs that form clusters.

There are shortcomings of the LF model in terms of convergence. While the
number of data increases, the clustering process produces many small clusters
of similar objects that are not visible and will be merged with enough
computing time. LF proposed a switching behavioral mechanism for the RLAs
to change the behavior of building clusters into destroying clusters during
phases of stagnancy [12].

The adaptive time-dependent transporter ants (ATTA) model [12] proposes two
modifications for function f(i). Firstly, an empty location or loose cluster will
not contribute to the function other than locations filled with an object or dense

clusters, and secondly it uses the restriction of 0),(1 >





 −∀

α
δ ji

j for the case

of high dissimilarity leading to spatial separation between clusters in the 2D

218 Muhammad N. Abdurrazaq, et al.

grid space. Four other changes are also included in ATTA. Firstly, too many
idle phases because of objects not being found while the RLAs move around
randomly (in BM and LF) causes a significant increase in iterations, so eager
ants were introduced. The RLA contributes to the clustering process when it
finds oi on the grid. It is then set to go to the location of another object for
picking it up directly. Secondly, ATTA also uses jump ants. If the step size
value is large in LF, the RLA is able to jump directly to another location that
contains a small cluster of objects of the same type to be merged, resulting in a
time reduction of the iteration process. Thirdly, α-adaptation was introduced as
an adaptation scheme of α in order to cluster data. And fourthly, control of
stagnation was introduced to avoid blockage by RLAs dropping the object they
carry because of outlier values in the data. If the iteration number is high and
the RLA does not drop the object, then it drops deterministically [12].

2.2 ACC with Indirect Communication Using Pheromones
Investigation of an ACC-based IDS using pheromone mechanisms for indirect
communication was first conducted by Ramos and Abraham through the
ANTIDS model [8], by Tsang and Kwong through the ACCM model [9],[13], a
hybrid model through ACC and C4.5 [10], and the ACCA-IDS model [11].
ANTIDS proposed an algorithm similar to the algorithm of LF against the
KDD1999 dataset. ACCM featured several improvements of LF.

Table 1 Detection accuracy (%) between ACC-Based IDS using KDD1999.

Attack
Category
on KDD1999

Winner on
KDD1999

[14]

K-Means
Clustering

[14]

ACC-Based IDS using KDD1999
ANTIDS

[8]
ACCM

[9]
ACC-C4.5

[10]
ACCA-IDS

[11]
Normal 99.50 96.20 99.73 98.80 95.42 -
Probe 83.30 86.90 99.86 87.50 99.70 99.40
DoS 97.10 94.20 99.97 97.30 99.35 99.20
U2R 13.20 27.40 68.00 30.70 73.20 99.70
R2L 8.40 6.50 99.47 12.60 71.10 99.50

Detection accuracy of ANTIDS and ACCM was tested on KDD1999, showing
results beyond the k-means winner on KDD1999 (Table 1), especially in user-
to-root (U2R) and remote-to-local (R2L) attacks that appeared in the testing
dataset compared to the training dataset. This shows that methods based on
colony intelligence, such as ACC, are adaptive and are able to recognize new
types of attacks more easily.

Some of the advantages offered by ANTIDS (ANT colony-based IDS) [8]:
detection is done online and in real-time because it is distributed. In contrast,
DT, SVM, LGP and SOM are not able to classify new data or new categories
and visualize them continuously or in a self-organized way. Also, repetition of

 DIDS Using Cooperative Agents Based on ACC 219

the learning process is done from the beginning. Handling new classes can be
done without retraining. The stigmergy mechanism in the colony is relevant to
aspects of flexibility when environmental changes occur due to interference
from outside of the system, so members of the colony can respond appropriately
to disturbances as if environmental modifications are made by the ants
collectively, using the same behavior. A colony is able to work either
unsupervised or supervised by adding classification results using k-NNR and
marking them using the training data. ANTIDS self-organized nature makes it a
potential distributed IDS.

According to Tsang and Kwong [13], large and high dimension data are known
as a feature of IDSs. There are two inefficiencies in LF. First, a number of
homogeneous clusters is formed that are difficult to combine when they are
separated in a large search area. Second, it measures the intensity of an object’s
similarity, directs the formation of clusters in dense areas locally but also
distinguishes objects that are not intensively similar. Therefore, object A and
object B which are close to a dense cluster, will tend to remain isolated and
separated [13]. Hence, the authors proposed the ant colony clustering model
(ACCM), which combines local entropy and the average similarity of objects to
identify clusters as “coarse”, “dense” and “not suitable”, and then merges them
into a single cluster. Two types of pheromones, the object and cluster
pheromone, guide loaded ants towards a cluster position and unloaded ants to an
position of an isolated object in a certain area [9]. ACCM also offers an initial
architecture based on IDS using multi-agents [14].

Figure 3 Architecture of agents in a node [15].

We use an agent architecture consisting of several modules (Figure 3) [15],
namely: (1) the perception module (PM), which is responsible for audit and
network data collection in subnets where the agent is located; (2) the
deliberation module (DM), which is responsible for the extraction and selection
of features that are collected by the PM so that the agent can perform the task of

Deliberation
Module

Extraction features
Selection features

Identifying an attack
using ACC algorithm
Updating knowledge

in the monitored
subnet

Supervisor Module
Central module that organize

tasks and interactions between
modules

Perception
Module

Collection the network data
in subnet

Action Module
Take action

Turn on alarm
Inform the system

administrator

Communication
Module

Facilitates agent in
communicating the

detection results to the
other in other hosts on

the same subnet, or
other agents in

different subnets

220 Muhammad N. Abdurrazaq, et al.

recognizing an attack using the ACC algorithm and updating knowledge in the
monitored subnet; (3) the communication module (CM), which facilitates the
agent in communicating the detection results to other agents on the same subnet
or other agents in different subnets; (4) the action module (AM), which takes
appropriate steps when an attack is successfully recognized and reaches the
threshold of an attack; it will send an alert and communicate it to the system
administrator; (5) the supervisor module (SM), which is responsible as the
central module that organizes tasks and interactions between modules.

We also use 3 types of agents and the ways they communicate with each other
(Figure 4) [15] by adding ACC engine as knowledge basis for detecting an
intrusion. First, the supervisory agent system (SAS), which is assigned to
collect, prepare and disseminate attack specification data; when there is demand
it immediately implements the data collection process. Second, supervisory
agent attacks (SAA), which utilizes the data released by SAS and other SAAs.
Each SAA uses an ACC algorithm to build attack knowledge (cluster models)
in order to recognize an attack on the host and then updates the knowledge
about attacks that have been built utilizing data from other SAAs. Third, the
agent register (AR), which manages the registry of every SAS and SAA for the
management of controlled variables and uses it to find the name and location of
other agents and the data of interest of other agents using the interest
mechanism.

Figure 4 Communication between supervisory agent system (SAS) and
supervisory agent attacks (SAA) through agent register (AR) [15].

2.3 Developing Single IDS into Distributed IDS
At first, IDSs were placed in a single host (host-based IDS). They monitored the
operating system logs and performed simple pattern matching to a small set of
signatures [16]. The sensor and detector components of a host-based IDS are
placed in the same host. Then the attacks developed, as well as the components
of detectors and detection methods. Networking technologies were developed
that make data location distributed over networks, as well as sensors that

Data
Collection

Agent Register

(AR)

Supervisory
Agent System

(SAS)

ACC
Engine

Supervisory
Agent Attack

(SAA)

Agent Communication

register register

Agent
search

Cluster
Model

 DIDS Using Cooperative Agents Based on ACC 221

transmit data to a central node and perform a centralized hierarchical detection
method, the so-called host-based IDS using distributed sensors.

Sending large volumes of data and high complexity sensor data to the
centralized node may leave the door open and cause vulnerability of the huge
amount of network data and the system itself. Hence, IDS evolved into
distributed IDS (DIDS), meaning the detectors as well as the sensors are
distributedly placed over a network but still in a centralized hierarchy. Our
proposed architecture consisting of multi-agents is shown in Figure 5.

Figure 5 Illustration of our proposed agents in a network.

2.4 Selecting Features Based on PCA
Principal component analysis (PCA), also called Hotelling transformation, is a
classical technique in statistics for data analysis, feature extraction and data
reduction [17]. PCA performs a linear combination of correlated features,
transforms them into a lower dimensional space and makes them uncorrelated.
Highly correlated data indicate information redundancy, so PCA will reduce the
redundancy by removing correlations and minimize information loss due to the
decrease in size. This means that PCA is able to transform and reduce the initial
features’ dimension while maintaining a maximum of original information and
identifying the structure of relationships between variables that contribute
predominantly to the variable transformation results.

The process of singular value decomposition (SVD) can be made into a
correlation matrix S for the determination of the eigenvalues (λi) in diagonal

222 Muhammad N. Abdurrazaq, et al.

matrix Λ and eigenvectors in matrix U. Diagonal matrix Λ values on the
diagonal are eigenvalues λi (for i = 1,2,.. p). Eigenvalues λi are the variance for
each direction indicated by the eigenvectors ui, while λ1 is the maximum
variance direction indicated by the eigenvectors u1. The eigenvectors form the
new axes (dimensions) of the new feature. The dimensional reduction from the
initial dimension of standardized value ZXi creates a new dimension k, where
k < p, using a percentage of variance explained by each eigenvalue determined
by

1

i
p

i
i

ic λ

λ
=

=
∑

. k is determined by using: (a) the Kaiser criteria by looking at

eigenvalues ≥ 1, (b) the decrease of the value of ci in scree plot which is quite
steep and (c) any other important aspects related to the intended use.

3 Methodology

3.1 NSL-KDD Dataset
In the evaluation study of IDS, the NSL-KDD dataset was the standard
benchmark [18] as an improvement of dataset KDD1999. It is widely used in
anomaly detection [19]. The data were produced by processing the tcpdump of
the DARPA1998 IDS evaluation data from the MIT Lincoln Laboratory under
DARPA sponsorship [20]. NSL-KDD consists of 43 variables that are classified
into basic features, content and traffic (Table 2).

KDDTrain+ and KDDTest+ as subsets of NSL-KDD were prepared as a source
of data for preparation, analysis and testing. Preparation consisted of the
following steps: (a) selecting normal activity and probing activity (nmap,
ipsweep, portsweep, and satan) from KDDTrain+ for training data; (b) selecting
normal activity and probing activity (nmap, ipsweep, portsweep, satan, and
added two new probing activities, saint and mscan) of KDDTest+ for data
testing; and (c) selecting features in KDDTrain+ and KDDTest+.

The analysis stage utilized KDDTrain+NP and performed the following steps:
(a) standardizing the values of the features; (b) performing data exploration to
assess the feasibility of assumptions such as the relationship between variables
and the nature of the identity correlation matrix; (c) extracting the correlation
matrix and its singularity; (d) analyzing the diversity of the data (univariate and
multivariate) to see differences in the characteristics of the objects observed
(normal and probing activity); (e) performing PCA to reduce high dimension of
data, determining the main components or factors (FAC), and determining the
dominant variables in each factor; (f) identifying the grouping variable to study
the characteristics of the probing activity and create a new data subset by
grouping results; (g) selecting the subset for testing purposes.

 DIDS Using Cooperative Agents Based on ACC 223

Table 2 Features list in the dataset NSL-KDD.

Feature Description Type
X1 duration

B
as

ic
 fe

at
ur

es
 o

f
in

di
vi

du
al

 T
C

P

co
nn

ec
tio

ns

length (number of seconds) of the connection C
X2 protocol_type type of the protocol, e.g. tcp, udp, etc. D
X3 service network service on the destination, e.g., http, telnet, etc. D
X4 flag number of data bytes from source to destination C
X5 src_bytes number of data bytes from destination to source C
X6 dst_bytes normal or error status of the connection D
X7 land 1 if connection is from/to the same host/port; 0 otherwise D
X8 wrong_fragment number of ``wrong'' fragments C
X9 urgent number of urgent packets C
X10 hot

C
on

te
nt

 fe
at

ur
es

w

ith
in

 a
 c

on
ne

ct
io

n

number of ``hot'' indicators C
X11 num_failed_logins number of failed login attempts C
X12 logged_in 1 if successfully logged in; 0 otherwise D
X13 num_compromised number of ``compromised'' conditions C
X14 root_shell 1 if root shell is obtained; 0 otherwise D
X15 su_attempted 1 if ``su root'' command attempted; 0 otherwise D
X16 num_root number of ``root'' accesses C
X17 num_file_creations number of file creation operations C
X18 num_shells number of shell prompts C
X19 num_access_files number of operations on access control files C
X20 num_outbound_cmds number of outbound commands in an ftp session C
X21 is_hot_login 1 if the login belongs to the ``hot'' list; 0 otherwise D
X22 is_guest_login 1 if the login is a ``guest''login; 0 otherwise D
X23 count

Tr
af

fic
 fe

at
ur

es
 c

om
pu

te
d

us
in

g
a

tw
o-

se
co

n

tim
e

w
in

do
w

(ti

m
e-

ba
se

d
tr

af
fic

)

number of connections to the same host (IP) as the current connection in the past two
seconds

C

X24 srv_count number of connections to the same service (port) and same host (IP) as the current
connection in the past two seconds

C

X25 serror_rate % of connections that have ``SYN'' errors to the same host during aggregation on
X23

C

X26 srv_serror_rate % of connections that have ``SYN'' errors to the same service during aggregation on
X24

C

X27 rerror_rate % of connections that have ``REJ'' errors to the same host during aggregation on
X23

C

X28 srv_rerror_rate % of connections that have ``REJ'' errors to the same service during aggregation on
X24

C

X29 same_srv_rate % of connections to the same service and the same host during aggregation on X23 C
X30 diff_srv_rate % of connections to different services and the same host during aggregation on X23 C
X31 srv_diff_host_rate % of connections to different hosts and the same service during aggregation on X24 C
X32 dst_host_count

Tr
af

fic
 fe

at
ur

es
 c

om
pu

te
d

us
in

g

a
hu

nd
re

d
co

nn
ec

tio
n

w
in

do
w

(c

on
ne

ct
io

n-
ba

se
d

 tr
af

fic
)

number of connections to the same host (IP) in the last hundred connection C
X33 dst_host_srv_count number of connections to the same service (port) in the last hundred connection C
X34 dst_host_same_

srv_rate
% of connections to the same service and the same host during aggregation on X32 C

X35 dst_host_diff_ srv_rate % of connections to different services and the same host during aggregation on X32 C
X36 dst_host_same_

src_port_rate
% of connections from the same service during aggregation on X33 C

X37 dst_host_srv_diff_
host_rate

% of connections to different hosts during aggregation on X33 C

X38 dst_host_serror_rate % of connections that have ``SYN'' errors to the same host during aggregation on
X32

C

X39 dst_host_srv_
serror_rate

% of connections that have ``SYN'' errors to the same service during aggregation on
X33

C

X40 dst_host_rerror_rate % of connections that have ``REJ'' errors to the same host during aggregation on
X32

C

X41 dst_host_
srv_error_rate

% of connections that have ``REJ'' errors to the same service during aggregation on
X33

C

Y1 attack_type Label DoS attack (back,land, neptune, pod, smurf, teardrop), Probe attack (ipsweep, nmap,
portsweep, satan), R2L attack (ftp_write, guess_passwd, imap, multihop, phf, spy),
U2R attack (warezclient, warezmaster, buffer_overflow, loadmodule, perl, rootkit)

D

Notes: C = continous; D = discrete

224 Muhammad N. Abdurrazaq, et al.

4 Experiment Results and Analysis

4.1 Selecting Features Based on PCA
KDDTrain+ and KDDTest+ are subsets of NSL-KDD containing normal
activities and nmap, ipsweep, portsweep, and satan probing activities. The
KDDTrain+ subset contained 78.999 row data, consisting of 67.343 normal
activities (85.25%) and 11.656 probing activities (14.75%), and was
subsequently called KDDTrain+NP, with a ratio of 5:1 between normal and
probing activities. KDDTest+NP was prepared for testing purposes, containing
normal activities and nmap, ipsweep, portsweep, and satan probing activities,
and two new types of probing were added that were not contained in
KDDTrain+NP, namely mscan and saint. It contained 12.132 row data,
consisting of 9.711 normal (80%) and 2.421 probing activities (20%).

All 78.999 data in KDDTrain+NP had 32 features with numerical variables.
There were two features that did not have variablity in value, i.e.
wrong_fragment (X8), which indicates the number of packets containing a bad
checksum in each of the connections, and num_outbound_cmds (X20), which
indicates the number of orders outside the network segment (outbound) in an
FTP session. Meanwhile in KDDTest+NP, which contained 12.132 activities,
there were three features that had no variance: urgent (X9), num_shell (X18) and
num_outbound_cmds (X20). The no-variance condition excluded these features
from further processing.

Statistical values show the use of different scales on these features. The next
stage calculates the ZXij value by subtracting each observation Xij with the
average xi and then divides the result by their standard deviation (si). This
standardization will produce transformation data that have a distribution of
values between -1 to 1 and are centered around a value of 0. This process is
expected to show a pattern of differences between normal and probing
activities. An average value and a very high diversity were seen in some
features, such as X1 (duration), X5 (src_bytes), and X6 (dst_bytes). Descriptive
statistics of 28 standardized values showed an average value of 0 and standard
deviation 1. Although 28 features had a size and spread of the same
concentration, they still had a different range in sizes.

4.1.1 Dimensional Reduction
Most correlations between ZXi and ZXj (for i ≠ j) showed significant values in
correlation matrix S. The values of the partial correlation coefficient indicated a
partial linkage between some of the features. Small values or values close to
zero can cause S to become an identity matrix with the one diagonal is 1, while
the other is zero, so we tested under null hypothesis how small those values

 DIDS Using Cooperative Agents Based on ACC 225

were. The Kaiser-Meyer-Olkin (KMO) test under null hypothesis verifies how
small the correlation coefficient in matrix S is and the Bartlett test under null
hypothesis verifies if S is an identity matrix. These two tests showed a
significance level of 0. It showed empirically that no null hypothesis was true
and that the correlation coefficient cannot be regarded as small and S was not an
identity matrix.

Rejection of the null hypothesis means that PCA is suitable for transforming
and reducing the initial dimension, while maintaining a maximum of original
information and can identify the structure of relationships between variables
that contribute predominantly to the variable transformation results. The SVD
process of correlation matrix S resulted 28 eigenvalues (λi). The value of λi is
the variance for each direction indicated by the eigenvectors ui and the first
eigenvalue λ1 is the maximum variance direction indicated by the first
eigenvector u1. The eigenvector form the new features or axes (dimensions) that
are called by a factor (FAC). Table 3 shows all 28 eigenvalues (λi).

Table 3 List of 28 eigenvalues.

The dimensional reduction process from p = 28 (ZXi) creates a new dimension
k < 28 using percentage of variance, explained by each eigenvalue determined
by 28

1

i

i
i

ic λ

λ
=

=
∑

. Using the Kaiser criteria eigenvalues ≥ 1 and looking at the

decreased value of ci in scree plot, a value of k = 14 (50% reduction) is selected.
The eigenvalues λi (for i = 1,2, ... 14) and the cumulative percentage of variance
can be extracted from the initial data’s ZXi of 86.61%.

4.1.2 Relationship between Initial and New Features from PCA
The component matrix of factor loadings consists of coefficients in the
eigenvector that indicate the direction of the axis on the new dimension (FAC)
and are affected by the values of ZXi. For example, for the first eigenvector (u1)

i λi
ci

(%)
%

Cum. i λi
ci

(%)
%

Cum. i λi
ci

(%)
%

Cum.
1 5.769 20.605 20.605 10 1.000 3.570 74.078 20 0.376 1.342 97.368
2 2.881 10.289 30.893 11 0.994 3.552 77.630 21 0.193 0.689 98.057
3 2.437 8.703 39.596 12 0.985 3.517 81.147 22 0.162 0.578 98.635
4 2.176 7.771 47.367 13 0.791 2.824 83.970 23 0.123 0.438 99.073
5 1.740 6.213 53.580 14 0.739 2.638 86.608 24 0.096 0.343 99.416
6 1.441 5.147 58.727 15 0.722 2.580 89.189 25 0.084 0.300 99.715
7 1.258 4.494 63.221 16 0.561 2.005 91.193 26 0.066 0.237 99.952
8 1.038 3.706 66.927 17 0.475 1.696 92.889 27 0.013 0.045 99.997
9 1.003 3.582 70.509 18 0.454 1.622 94.511 28 0.001 0.003 100.000

 19 0.424 1.515 96.026

226 Muhammad N. Abdurrazaq, et al.

as an FAC_1 axis the coefficient of ZX27, ZX28, ZX35, ZX40 and ZX41 is large
enough (more than 0.7) or small enough (ZX34 less than -0.7). Eigenvector u1
can be said to be influenced by ZX27, ZX28, ZX35, ZX40 and ZX41 which have a
positive effect (increase), and ZX34, which has a negative influence (reduce).
The relationship reveals a hidden factor that is influenced by the initial features
in the original dimensional space. The relationship between the initial features
ZXi and factor (FAC) is shown in Table 4.

The relationship can be either positive or negative. FAC_1 is positively
associated with features such as rerror_rate, srv_rerror_rate,
dst_host_diff_srv_rate, dst_host_rerror_rate and dst_host_srv_rerror_rate.
Negative association occurs between FAC_1 and dst_host_same_srv_rate.
FAC_1 seems a representation of SYN error and REJ error when connecting to
the same IP and destination port, and to the same IP on different services.

Table 4 Relationship between ZXi with factors (FAC).

Factor
Positive
Effects

(loading ≥ 0.7)
Related Features Negative Effects

(loading ≤ -0.7)
Related
Features

Interpretation of
Factor

FAC_1 ZX27
ZX28
ZX35

ZX40

ZX41

rerror_rate
srv_rerror_rate
dst_host_diff_
srv_rate
dst_host_ rerror_rate
dst_host_srv_
rerror_rate

ZX34

dst_hos
t_
same_s
rv_rate

SYN error and REJ error
factor when connecting
to the same IP and the
destination port and
connections to the same
IP on different services

FAC_2 ZX25
ZX26
ZX39

serror_rate
sev_serror_rate
dst_host_srv_serror_r
ate

- SYN error factor when
the connection to the IP
and port number the same
purpose in time-
windowing 2 seconds and
the connection-
windowing 100
connections

FAC_4 ZX13
ZX16

num_compromised
num_root

- the emergence of a factor
"not found" error and the
operation as root

FAC_8 ZX17 num_file_creations - factors that created the
file

FAC_9 ZX5 src_bytes - factor data (bytes) sent
from the IP source when
the connection takes
place

FAC_10 ZX6 dst_bytes - factor of data (bytes)
received during the
connection

FAC_11 ZX11 num_failed_login factor that related to the
error log occur when the
connection

FAC_13 ZX19 num_access_files - factor controlling the
files when the connection
takes place

 DIDS Using Cooperative Agents Based on ACC 227

The relation between FAC_2 with serror_rate, sev_serror_rate, and
dst_host_srv_serror_rate shows a representation of SYN error when connecting
to the same IP and port number in 2 seconds of time-windowing and 100
connections of connection-windowing. FAC_4 is closely associated with
num_root and num_compromised, which indicates the emergence of a “not
found” error factor and the operation as root. FAC_8 related with
num_file_creations shows the presence of a factor that created a file. The
relation between FAC_9 with src_bytes indicates the presence of data (bytes)
sent from the IP source when the connection takes place. FAC_10 associated
with dst_bytes shows a factor of data (bytes) received during the connection.
The relation between FAC_11 with num_failed_login shows the presence of a
factor that is related to the error log occuring when the connection takes place.
Meanwhile, FAC_13 associated with num_access_files indicates the presence of
a factor controlling the files when the connection takes place. Extraction FACij
scores for each value of ZXij observations is performed using a regression
method and produces a major component score coefficient matrix. A single
value score is a representation of an observation on the new dimension.

4.1.3 New Features Characteristics
Using the score values, further testing was performed to see the differences
between the two types of activities in the new dimension. This revealed some
interesting patterns. The average value of normal activities had a negative sign
(≤ 0), as opposed to probing activities, which had a positive sign (≥ 0) on
FAC_1, FAC_3, FAC_6, FAC_7, FAC_9, FAC_13 and FAC_14. The opposite
occured in dimension FAC_2, FAC_4, FAC_5, FAC_8, FAC_10, FAC_11, and
FAC_12, seeing the value of the average normal activity was positive, while
compared the average value of probing activities was marked otherwise. This

Table 5 Two groups of new features based on different signs class average.

Subset New Features Normal Probe t-Test
Average Average Significant

Subset1 FAC_1 -0.2513 1.4518 0.0000
FAC_3 -0.1254 0.7242 0.0079**
FAC_6 -0.1188 0.6862 0.0000
FAC_7 -0.0870 0.5024 0.0000
FAC_9 -0.0044 0.0252 0.0000
FAC_13 -0.0029 0.0165 0.0000
FAC_14 -0.0112 0.0644 0.0000

Subset2 FAC_2 0.0071 -0.0412 0.0000
FAC_4 0.0264 -0.1526 0.1413**
FAC_5 0.0583 -0.3369 0.9730**
FAC_8 0.0078 -0.0449 0.2549**
FAC_10* 0.0001 -0.0003 0.6933**
FAC_11* 0.0017 -0.0097 0.0000
FAC_12 0.0011 -0.0062 0.0000

228 Muhammad N. Abdurrazaq, et al.

revealed two groups of factors based on a significant difference between normal
and probing activity (Table 5).

4.2 Experiment on ACC Algorithm
1000 data records from NSL-KDD that contained normal activities and probe
attacks were prepared. Each data included 42 features with a label for normal
activity or probe attack. The environment for the experiment and parameter
settings were as follows: (1) processor: @2.0 GHZ Intel Core2Duo T6400; (2)
memory: 3 GB DDR2; (3) operating system: Windows XP; (4) the attacks to be
detected mainly belonged to the probe category.

 (a) (b)

 (c) (d)

Figure 6 ACC basic model simulation, (a) RLA (black) and objects (light gray)
at t = 0; (b) The objects in clusters at t = 100000; (c) RLA (black) and objects
(white and light gray) in the first iteration; and (d) the current t = 570000,
unloaded-RLA is black and loaded-RLA is dark gray.

A simulation of RLA using BM in a 2D-grid is shown in Figure 6(a) and Figure
6(b) for one type of object, and Figure 6(c) and Figure 6(d) for two types of
objects. Experiments (a) and (b) used a parameter grid size of 290×200, number
of objects = 1500, the number of RLA = 100, k1 = 0.1, k2 = 0.3 and memory m
= 50, while (c) and (d) for the two types of objects (white and light gray) with
80×49 grid size, the number of white and light gray objects = 200 for each type,
RLA = 20, k1 = 0.1, k2 = 0.3 and memory m = 15. Figure 7 shows ppick and pdrop
for different memory lengths. The RLA memory size that was used to

 DIDS Using Cooperative Agents Based on ACC 229

remember the T last steps and count the number of encountered objects, affected
ppick and pdrop values. For m = 10, kpick = 0.1 and kdrop = 0.3 it was shown ppick
decreased significantly and pdrop rose sharply. Small changes in the number of
objects found by RLA (n) on the T last steps caused large changes in ppick and
pdrop.

(a) (b)

Figure 7 The number of objects found in the T last steps and their probability
on different values of k with the memory size (a) m = 50 and (b) m = 10.

 (a) (b)

Figure 8 LF simulation with two types of objects, normal (white) and attack
(light gray), (a) at t = 0 and (b) at t = 100000, unloaded-RLA (black) and
loaded-RLA (dark gray).

Examples of the LF simulation results are shown in Figure 8, using a 80×80
grid size, number of objects = 1000, number of RLA = 100, k1 = 0.1, k2 = 0.3
and α = 50. Simulation of RLA using the LF algorithm with modification in
dissimilarity using Euclidian distance measure, δ(i,j), was replaced by using
Bray-Curtis (BC) dissimilarity, 1

1
()

n
ik jkk

n

ik jk
k

x x
ij

x x
BC =

=

−

+

∑=
∑

, as shown in Figure 9. The

experiment was executed for two types of objects in a 80×80 grid size, number
of objects = 750, number of RLA = 100, k1 = 0.1, k2 = 0.3 and α = 0.7. The LF

230 Muhammad N. Abdurrazaq, et al.

result showed that t had decreased significantly from 100000 to 10000 when the
clusters began to form. ACC was able to cluster in a distributed manner,
inspired by the behavior of ant colonies while taking care of their larvae.
Although ACC seems less efficient than hierarchical sorting techniques, in a
distributed environment it offers advantages in terms of simplicity, flexibility
and robustness. This model can be applied to two or more types of attack
objects in a 2D grid space by modifying the equations δ(i,j), f(i), ppick, pdrop, and
parameters used such as α, grid size, k1, k2, etc.

 (a) (b)

Figure 9 Simulation of modified LF δ(i,j) with BC dissimilarity, where white is
normal and light gray is Satan probe attack, (a) at t = 0 and (b) at t = 10000,
unloaded-RLA (black) and loaded-RLA (dark gray).

5 Conclusion

5.1 Dimensional Reduction
The use of PCA can overcome the burden of high dimensional data in the
development of IDS to build a mechanism of detecting network probing
activities. The initial features are transformed into new features by reducing the
dimensions of the data in order to identify the characteristics of network probing
activity.

Using the sign of the average value of the PCA transformation of network
probing activities is useful for selecting new subsets of lower dimension. The
characteristics of the relationship between PCA transformation and the initial
features were identified from the values of factor loading. FAC_1 represents
SYN error and REJ error when connecting to the same IP and destination port
or to the same IP on different services. FAC_2 represents a SYN error when
connecting to the same IP and port number in 2 seconds of time-windowing and
100 connections of connection-windowing.

 DIDS Using Cooperative Agents Based on ACC 231

FAC_4 indicates the emergence of a “not found” error and the operation as root.
FAC_8 indicates the presence of a factor that created a file. FAC_9 indicates
data (bytes) sent from the IP source when the connection took place. FAC_10
shows a factor of data (bytes) received during the connection. FAC_11 shows
an error that occurs when the connection is logged. FAC_13 indicates a
controlling file factor during connection.

Dimensional reduction of the data up to 75% of the initial features, using
characteristic signs of the average value of probing activity, is perhaps able to
improve the classification performance or clustering result.

5.2 ACC Algorithm
ACC as a method of attack detection is very promising. Clustering in a 2D grid
space of large dimension data can be visualized and provides opportunities in
controlling the process to further improve ACC performance in its application
in a Distributed IDS.

Metaphorically speaking, ACC’s behavior in a DIDS can be controlled and
designed. It provides the ability to cluster data without guidance, to move in an
unlimited 2D search space, to control the patterns of ant movement and use
them to generate clusters of different types of data for normal and attack
activity.

6 Future Work
Future work may include the following items:

1. Testing the PCA-based feature selection and extraction mechanism for the
next task by using the subset formed in some classifier or clustering method
that shows better performance.

2. Testing the performance of clustering results in a contingency table to
determine the value of precision, recall, F-measure, and the ROC curve.

3. Designing IDS as an agent in a distributed network environment that
communicates using a framework of interest-driven, cooperative agents.

4. Solving issues in combining a cluster model built by any IDS using an ACC
algorithm in a subnet to perform the aggregated cluster model from any
IDS.

5. Solving issues in labeling attack and normal clusters, and labeling the attack
clusters according to their sub-type and not just the attack label.

6. Exploring some measurements in evaluating the quality of the clusters for
optimizing the formed clusters with the ACC algorithm.

7. Further exploring the ability to accept new data to do clustering without
repeating the process from the beginning.

232 Muhammad N. Abdurrazaq, et al.

8. Demonstrating the capability and flexibility of the system’s adaptive nature
to environmental changes.

References
[1] Zaman, S., A Collaborative Architecture for Distributed Intrusion

Detection System based on Lightweight Modules, PhD thesis, University
of Waterloo, Ontario, Canada, 2009.

[2] Kolias, C., Kambourakis, G. & Maragoudakis, M., Swarm Intelligence in
Intrusion Detection: A Survey, Computer & Security, 30, pp. 625-642,
2011.

[3] Furao, S. & Hasegawa, O., An Incremental Network for On-Line
Unsupervised Classification and Topology Learning, Neural Networks,
19, pp. 90-106, 2006.

[4] Bonabeau, E., Dorigo, M. & Theraulaz, G., Swarm Intelligence: From
Natural to Artificial System, New York: Oxford University Press, Inc.,
1999.

[5] Deneubourg, J.L. , Goss, S., Franks, N., Sendova-Franks, A., Detrain, C.
& Chretien, L., The Dynamics of Collective Sorting: Robot-like Ants and
Ant-like Robots, in First International Conference on Simulation of
Adaptive Behaviour: From Animals to Animats, 1, MIT Press,
Cambridge, MA, 1990.

[6] Lumer, E. & Faieta, B., Diversity and Adaptation in Populations of
Clustering Ants, in Proceedings of the Third International Conference on
Simulation of Adaptive Behaviour: From Animals to Animats, 3, MIT
Press, Cambridge, MA, 1994.

[7] Handl, J., Knowles, J. & Dorigo, M., Ant-Based Clustering and
Topographic Mapping, Artificial Life, 12, pp.35-61, 2006.

[8] Ramos, V. & Abraham, A., ANTIDS: Self Organized Ant Based
Clustering Model for Intrusion Detection System, in Proceedings of The
Fourth IEEE International Workshop on Soft Computing as
Transdisciplinary Science and Technology, Muroran, Japan, 2005.

[9] Tsang, CH. & Kwong, S., Multi-Agent Intrusion Detection System in
Industrial Network Using Ant Colony Clustering Approach and
Unsupervised Feature Extraction, in Proceedings of The IEEE
International Conference on Industrial Technology, Hong Kong, China,
2005.

[10] Prema Rajeswari, L., Kannan, A. & Baskaran, R., An Escalated
Approach to Ant Colony Clustering Algorithm for Intrusion Detection
System, in International Conference Distributed Computing and
Networking, Kolkata, India, 2008.

 DIDS Using Cooperative Agents Based on ACC 233

[11] Lingxi, M. & Guang, S., An Improved Ant Colony Clustering Method for
Network Intrusion Detection, in IEEE Eighth International Conference on
Networking, Architecture and Storage, Shaanxi, China, 2013.

[12] Handl, J., Ant-Based Methods for Tasks of Clustering and Topographic
Mapping: Extensions, Analysis and Comparison with Alternative
Methods, PhD thesis, Friedrich-Alexander-Universitat Erlangen-
Nurnberg, Germany, 2003.

[13] Tsang, CH. & Kwong, S., Ant Colony Clustering and Feature Extraction
for Anomaly Intrusion Detection, Studies in Computational Intelligence
(SCI), 34, pp.101-123, 2006.

[14] Tsang, CH., City University of Hong Kong, 2006, http://lbms03.cityu.
edu.hk/theses/c_ftt/mphil-csb21071020f.pdf (8 March 2014).

[15] Sen, J., An Agent-Based Intrusion Detection System for Local Area
Networks, International Journal of Communication Networks and
Information Security (IJCNIS), 2(2), pp.128-140, 2010.

[16] Robbins, R., Distributed Intrusion Detection Systems: An Introduction
and Review, Sans Institute, 2003.

[17] Guillamet, D., Statistical Local Appearance Models for Object
Recognition, Ph.D Thesis, Departament d’Informàtica, Universitat
Autònoma de Barcelona, http://www.tdx.cat/handle/10803/3044 (22 May
2014).

[18] Tavallaee, M., Bagheri, E., Lu, W. & Ghorbani, A., A Detailed Analysis
of the KDD CUP 99 Data Set, Proceeding of IEEE Symposium on
Computational Intelligence in Security and Defence Application
(CISDA09.), 2009, http://www.tavallaee.com/publications/CISDA.pdf
(12 April 2012).

[19] Datti, R. & Bhupendra V., Feature Reduction Using Linear Discriminat
Analysis, International Journal of Computer Science and Engineering
2(04), pp.1072-1078, 2010.

[20] Lippmann, R.P., Jumated, D.J., Graf, I., Haines, J.W., Kendall, K.R.,
McClung, D., Weber, D., Webster, S.E., Wyschogrod, D., Cunningham,
R.K. & Zissman, M.A., Evaluating Intrusion Detection Systems: The
1998 DARPA Off-Line Intrusion Detection Evaluation, IEEE Computer
Society Press., in Proceeding of the 2000 DARPA Information
Survivability Conference and Exposition (DISCEX), 2, pp.12-26, 2000.

	1 Introduction
	2 Related Work
	2.1 ACC without Direct Communication
	2.2 ACC with Indirect Communication Using Pheromones
	2.3 Developing Single IDS into Distributed IDS
	2.4 Selecting Features Based on PCA

	3 Methodology
	3.1 NSL-KDD Dataset

	4 Experiment Results and Analysis
	4.1 Selecting Features Based on PCA
	4.1.1 Dimensional Reduction
	4.1.2 Relationship between Initial and New Features from PCA
	4.1.3 New Features Characteristics

	4.2 Experiment on ACC Algorithm

	5 Conclusion
	5.1 Dimensional Reduction
	5.2 ACC Algorithm

	6 Future Work

