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Abstract. Transmission lines are utilized in many applications to convey energy 
as well as information. Nonuniform transmission lines (NTLs) are obtained 
through variation of the characteristic quantities along the axial direction. Such 
NTLs can be used to design network elements, like matching circuits, delay 
equalizers, filters, VLSI interconnections, etc. In this work, NTLs were analyzed 
with a numerical method based on the implementation of method of moment. In 
order to approximate the voltage and current distribution along the transmission 
line, a sum of basis functions with unknown amplitudes was introduced. As basis 
function, a constant function was used. In this work, we observed several cases 
such as lossless and lossy uniform transmission lines with matching and arbitrary 
load. These cases verified the algorithm developed in this work. The second 
example consists of nonuniform transmission lines in the form of abruptly 
changing transmission lines. This structure was used to design a Chebychev’s 
low pass filter. The calculated reflection and transmission factors of the filters 
showed some coincidences with the measurements. 

Keywords: filter; lossy line; method of moment; nonuniform transmission lines; 
standing wave; VSWR. 

1 Introduction 
Transmission lines are the most used components in electrical engineering. In 
many applications, transmission lines are utilized to convey energy and 
information from one position to another. At higher frequencies, radio 
frequency or microwave applications, they are exploited as network elements; 
they are designed as signal processing components, for example as filters. In the 
theory of transmission lines several characteristic quantities (R', L', C’ and G’) 
are defined. Nonuniform transmission lines, which have position varying 
quantities, can be used to design a matching circuit [1], a delay equalizer [2], 
filters [3], wave shaping [4], processing of analog signals [5], and VLSI 
interconnections [6]. 

From the theory of transmission lines, two coupled differential equations of the 
first order can be derived from the circuit model. These equations give the 
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relationship between voltage and current. Eliminating one of these electric 
quantities leads to a differential equation of the second order. This differential 
equation for nonuniform cases can be solved analytically without approximation 
just for a few special types of NTLs: linear [7], exponential [8], power-law [9, 
10], binomial [11], exponential power law [12], and hermite [13] types. For 
other general varying characteristic quantities, approximation methods are 
introduced. These methods are based on the expansion of some describing 
functions with unknown amplitudes, i.e. expansion of Taylor’s series [14], 
expansion of Fourier series [15], and application of numerical computations, 
such as method of moment [16] and finite element method [17].  

In this work we implement the same approach as described in [16]. Method of 
moment is a numerical approach for solving an integral equation in which we 
have an unknown integrand. In method of moment, the unknown function is 
approximated by a series of simple basis functions with unknown amplitudes. 
By sampling the equation in several positions, the integral equation can be 
converted into a system of linear equations. By inverting this matrix we can get 
the distribution of voltage and current along the transmission line. In this work, 
we observe several simple cases, such as lossless and lossy uniform 
transmission lines with matching and arbitrary load. These canonical cases 
should verify the algorithm developed in this work. The second example 
concerns NTLs in the form of abruptly changing transmission lines. This 
structure was used to design a low pass filter. A computer code based on 
MATLAB was developed to calculate the reflection and transmission factors of 
such NTLs. 

2 Related Works on Nonuniform Transmission Lines 
In [1] Khalaj-Amirhosseini introduced a method to synthesize microstrip NTLs 
for matching two arbitrary complex frequency-dependent impedances in a 
wideband or multi-band frequency range. In synthesizing the structure, he used 
a Fourier series [8]. The characteristic impedance function of the microstrip 
NTL was expanded by means of a truncated Fourier series. The unknown 
coefficients were obtained by optimizing certain frequency responses for the 
matching circuit. The usefulness of the proposed method was verified using 
wideband and dual-band matching between resistors and capacitors. It was 
observed that the solutions yielded a good impedance matching and as the 
length of the matcher was chosen larger its efficiency was increased. 

In [18], formulations for reflection and transmission factors of NTLs with 
unequal reference impedances have been proposed. By using the ABCD matrix, 
the reflection and transmission factors were expressed as polynomial ratios in Z 
transforms. These formulations, in conjunction with techniques in digital signal 
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processing (autoregressive moving average process) and a reconstruction 
method, lead to the realization of nonuniform lines that satisfy prescribed 
scattering characteristics in the frequency domain. A predefined low pass filter 
with a step-wise transmission factor was designed and verified by 
measurements. 

Juric-Grgic, et al. in [19] present a finite-element frequency domain model for 
numerical solution of the coupled nonuniform transmission line problem. Based 
on the finite-element method, a novel numerical procedure for solution of a 
system of the nonuniform multi-conductor transmission line equations in the 
frequency domain was presented. The results obtained by the proposed method 
were compared to the analytical solution. 

Khalaj-Amirhosseini has proposed a method for the analysis of arbitrarily 
loaded lossy and dispersive single or coupled nonuniform transmission lines 
(NTLs) [16]. In this work, based on the available differential equations for the 
voltage and current, the governing integral equations for the NTLs were derived 
and solved using the method of moments. It was assumed that per-unit-length 
matrices are known along the whole length or at some positions of the coupled 
NTLs. The method of moment in this work used rectangular pulse function 
expansion with point matching. A coupled transmission line pair was observed 
and the calculated voltage distribution along the excited line and along the 
unexcited line was compared with the exact results. 

Lu [7] has given the analytical solution of an ideal linear varied NTL (LNTL), 
including the exact linear two-port ABCD matrix of the LNTL. Based on this 
result, he cascaded the LNTL sections to approximate an arbitrary characteristic 
impedance profile and presented a technique for analyzing an arbitrary NTL. 
The technique is better than the conventional technique in terms of 
computational accuracy and intensity since it uses a piecewise linear 
characteristic impedance profile in place of the stepped profile used by the 
conventional technique. 

In other publications [20,21] NTLs were used for designing dual-band and 
multiband power dividers. In this paper, the NTLs were subdivided into small 
sections, described by ABCD matrices and the ABCD matrix of the whole 
structure could be obtained just by multiplication of all sub ABCD matrices. For 
modeling the normalized characteristic impedance, the truncated Fourier series 
expansion was used. The optimum values of the Fourier coefficients could be 
obtained through minimization of a certain error function, which quantifies the 
difference between the obtained ABCD matrix and desired ones. The Wilkinson 
power dividers designed here can be set to work in dual band or multiband, 
depending on the ABCD matrix target. 
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3 Wave Equation of Nonuniform Transmission Lines and Its 
Solution 

In two-conductor transmission lines the voltage and current can be defined 
uniquely. If the cross-section of the transmission lines is small enough 
compared to the wavelength, the voltage and current are related to each other by 
the following equations 

 𝑑𝑑(𝑧)
𝑑𝑧

= −𝑍′(𝑧)𝐼(𝑧) (1) 

 𝑑𝑑(𝑧)
𝑑𝑧

= −𝑌′(𝑧)𝑉(𝑧) (2) 

with arbitrarily position-varying parameters Z’(z) = R’(z) + jωL’(z) and Y’(z) = 
G’(z) + jωC’(z), and z is the direction of the propagation. R’, L’, G’ and C’ are 
the primary parameters of the transmission lines. 

By eliminating the current, Eqs. (1) and (2) lead to a nonhomogeneous 
differential equation of the second order, 

 𝑑2𝑑(𝑧)
𝑑𝑧2

− 𝑓(𝑧) 𝑑𝑑(𝑧)
𝑑𝑧

− 𝛾2(𝑧)𝑉(𝑧) = 0 (3) 

with f (z) = (dZ’/dz) Z’ and γ2 = Z’Y’.  

The solution of Eq. (3) is not simple and is available analytically only for some 
special functions of Z’ and Y’. To give a solution for the problem, this paper 
takes the integrals of Eqs. (1) and (2) with respect to z leading to 

 𝑉(𝑧) = −∫ 𝑍′(𝑧′)𝐼(𝑧′)𝑑𝑧′ + 𝐶1
𝑧
0  (4) 

 𝐼(𝑧) = −∫ 𝑌′(𝑧′)𝑉(𝑧′)𝑑𝑧′ + 𝐶2
𝑧
0  (5) 

The integration constants, C1 and C2, can be derived from the boundary 
conditions given in Figure 1, which are,  

𝐶1 = 𝑍𝐿
𝑍𝑖+𝑍𝐿

𝑉𝑆 + 𝑍𝑖
𝑍𝑖+𝑍𝐿

∫ [𝑍′(𝑧′)𝐼(𝑧′) − 𝑍𝐿𝑌′(𝑧′)𝑉(𝑧′)]𝑑𝑧′𝑑
0   

𝐶2 = 1
𝑍𝑖+𝑍𝐿

𝑉𝑆 −
1

𝑍𝑖+𝑍𝐿
∫ [𝑍′(𝑧′)𝐼(𝑧′) − 𝑍𝐿𝑌′(𝑧′)𝑉(𝑧′)]𝑑𝑧′𝑑
0   

If we set as value for z = 0 in Eq. (4), the integral vanishes and the equation 
becomes V (z = 0) = C1. Physically this means that C1 is the voltage measured at 
position z = 0 and analogous, if Eq. (5) is used for z = 0, it leads to I (z = 0) = 
C2, so C2 is the current at position z = 0.   
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Figure 1 Nonuniform transmission line of length d with source VS and internal 
impedance Zi and load ZL. 

Eqs. (4) and (5) are integrals of unknown current and voltage along the 
transmission line. These equations are coupled to each other, so that solving the 
problem must include the equations simultaneously. In order to approximate the 
unknown voltage and current distribution, it is worthy to express the voltage 
and current as a linear combination of the so-called basis functions with 
unknown amplitudes, 

 𝑉(𝑧) = ∑ 𝑉𝑛 𝑓𝑛(𝑧)𝑁
𝑛=1  (6) 

 𝐼(𝑧) = ∑ 𝐼𝑛 𝑓𝑛(𝑧)𝑁
𝑛=1  (7) 

fn are simple known basis functions, Vn and In are the unknown constants, and N 
is the number of approximating functions. In this case, we have 2 × N 
unknowns. 

Inserting Eqs. (6) and (7) into Eqs. (4) and (5) we get,  

�𝑉𝑛  �𝑓𝑛 +
𝑍𝑖𝑍𝐿
𝑍𝑖 + 𝑍𝐿

� 𝑌′𝑓𝑛𝑑𝑧′
𝑑

0

�
𝑁

𝑛=1

+ �𝐼𝑛 ��𝑍′𝑓𝑛𝑑𝑧′
𝑧

0

−
𝑍𝑖

𝑍𝑖 + 𝑍𝐿
�𝑍′𝑓𝑛𝑑𝑧′
𝑑

0

� 
𝑁

𝑛=1

=
𝑍𝐿

𝑍𝑖 + 𝑍𝐿
𝑉𝑆 

and, 

�𝑉𝑛  ��𝑌′𝑓𝑛𝑑𝑧′
𝑧

0

−
𝑍𝐿

𝑍𝑖 + 𝑍𝐿
�𝑌′𝑓𝑛𝑑𝑧′
𝑑

0

�
𝑁

𝑛=1

+ �𝐼𝑛 �𝑓𝑛 +
1

𝑍𝑖 + 𝑍𝐿
�𝑍′𝑓𝑛𝑑𝑧′
𝑑

0

� 
𝑁

𝑛=1

=
𝑉𝑆

𝑍𝑖 + 𝑍𝐿
 

These equations can be given in a compact matrix form as follows, 
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 �𝑨 𝑩
𝑪 𝑫��

𝑽
𝑰� = 𝑑𝑆

𝑍𝑖+𝑍𝐿
�𝑍𝐿1 � (8) 

where V = [V1  V2  … VN]T and I = [I1  I2  … IN]T  are the unknown vectors and 
four known 1 × N matrices A, B, C and D, whose elements are, 

 𝐴𝑛(𝑧) = 𝑓𝑛(𝑧) + 𝑍𝑖𝑍𝐿
𝑍𝑖+𝑍𝐿

∫ 𝑌′(𝑧′)𝑓𝑛(𝑧′)𝑑𝑧′𝑑
0  (9) 

 𝐵𝑛(𝑧) = ∫ 𝑍′(𝑧′)𝑓𝑛(𝑧′)𝑑𝑧′𝑧
0 − 𝑍𝑖

𝑍𝑖+𝑍𝐿
∫ 𝑍′(𝑧′)𝑓𝑛(𝑧′)𝑑𝑧′𝑑
0  (10) 

 𝐶𝑛(𝑧) = ∫ 𝑌′(𝑧′)𝑓𝑛(𝑧′)𝑑𝑧′𝑧
0 − 𝑍𝐿

𝑍𝑖+𝑍𝐿
∫ 𝑌′(𝑧′)𝑓𝑛(𝑧′)𝑑𝑧′𝑑
0  (11) 

 𝐷𝑛(𝑧) = 𝑓𝑛(𝑧) + 1
𝑍𝑖+𝑍𝐿

∫ 𝑍′(𝑧′)𝑓𝑛(𝑧′)𝑑𝑧′𝑑
0  (12) 

Evaluation of the integrals in Eqs. (9) to (12) can be performed effectively in 
the computer by dividing the transmission line into small segments, i.e. the 
transmission line is discretized into N segments. In case of uniform 
discretization, the segment length Δz is equal to d/N. The complexity of the 
integral calculation can be substantially reduced if we use as the basis function a 
constant function in each segment, i.e., 

 𝑓𝑛 = �1 for (𝑛 − 1)∆𝑧 ≤ 𝑧 ≤ 𝑛∆𝑧 
0 otherwise                             

 (13) 

The choice of the basis function in Eq. (13) leads to simplification of the 
integral along 0 to d and along 0 to z. For example, the integral in Eq. (9) 
delivers results different than zero just along the small segment (𝑛 − 1)∆𝑧 ≤
𝑧 ≤ 𝑛∆𝑧. Furthermore, if the transmission line is discretized fine enough, i.e. N 
is large, Δz becomes small enough, then we can approximate the integration just 
by a simple multiplication between the segment length Δz and the mean value 
of Z’ or Y’, or by just taking the value of Z’ or Y’ at the midpoint of the segment 
zn. These results are valid for all 0 ≤ z ≤ d. However, in order to solve the 
problem with 2 × N unknowns uniquely, we must choose N special positions to 
get in total 2 × N equations. These special positions are called testing points. A 
simple procedure is to use the collocation method. In this method, we choose 
the middle point of each segment zm, so that the approximate values of An, Bn, 
Cn and Dn at the position zm become, 

 𝐴𝑛(𝑧𝑚) = 𝛿𝑚𝑛 + 𝑍𝑖𝑍𝐿
𝑍𝑖+𝑍𝐿

𝑌′(𝑧𝑛)∆𝑧 (14) 

 𝐵𝑛(𝑧𝑚) = 𝑍′(𝑧𝑛)𝑈𝑚𝑛∆𝑧 −
𝑍𝑖

𝑍𝑖+𝑍𝐿
𝑍′(𝑧𝑛)∆𝑧 (15) 
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 𝐶𝑛(𝑧𝑚) = 𝑌′(𝑧𝑛)𝑈𝑚𝑛∆𝑧 −
𝑍𝐿

𝑍𝑖+𝑍𝐿
𝑌′(𝑧𝑛)∆𝑧 (16) 

 𝐷𝑛(𝑧𝑚) = 𝛿𝑚𝑛 + 1
𝑍𝑖+𝑍𝐿

𝑍′(𝑧𝑛)∆𝑧 (17) 

δmn is the Kronecker function and, 

𝑈𝑚𝑛 = �
1 for 𝑚 > 𝑛

1/2 for 𝑚 = 𝑛
0 for 𝑚 < 𝑛

  

Which means that if the observation position is on the right side of the 
integration boundary (m > n), we get the full integration. If the observation 
position is located exactly at the middle of the integration range, it yields half of 
the result. And if the observation position is on the left side of the integration 
range (m < n), the integration gives the value zero. 

The collocation method is a type of method of moment, whose basis function 
uses pulse function and as test function a delta function is used.  

From the information on the voltage distribution along the structure, we can 
extract the standing wave along the connecting line on the source side, from 
which we can calculate the voltage standing wave ratio by, 

 𝑉𝑉𝑉𝑉 = 𝑑𝑚𝑚𝑚
𝑑𝑚𝑖𝑚

 (18) 

Vmax and Vmin are the maximal and minimal value of the voltage along that 
connecting line, respectively. From these values, we can calculate the reflection 
factor S11 and incident as well as reflected voltages. 

From the voltage distribution along the connecting line on the load side, we can 
also obtain the transmitted voltage. By dividing this value by the incident 
voltage, we can calculate the transmission factor S21. 

4 Simulation Results 
In this work, firstly we observed uniform transmission lines with matching and 
arbitrary loadings. As additional parameter we used lossless and lossy 
transmission lines. We designed and analyzed two low pass filters as practical 
implementation of NTLs. 
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4.1 Voltage Distribution along Uniform Transmission Lines 
A 60 cm length uniform transmission line was observed. The transmission line 
had a constant capacitance per unit length C’ = 66.7 pF/m and inductance per 
unit length L’ = 0.167 μH/m. By ignoring any losses, a wave impedance of 
about Zo = 50 Ω for the lossless case was obtained independent of frequency. 
The transmission line was connected with a load of ZL = 50 Ω and excited by a 
voltage source VS = 1 V with a frequency of f = 1 GHz and an internal 
impedance of Zi = 50 Ω. In this example, we set G’ = 0 and make a variation on 
the resistance per unit length R’. 

Figure 2 shows the voltage distribution along the transmission line for different 
losses. For the lossless case, we see a constant curve, which means there is no 
standing wave. The value of voltage standing wave ratio (VSWR) is 1, which 
means we do not have any reflected waves. For lossy cases (R’ > 0), the 
propagating waves experience attenuation along the transmission line. Figure 2 
illustrates that the larger the resistance per unit length, the smaller the amplitude 
of the voltage apart from the source. Interestingly, in case of higher losses, for 
this ‘matching’ condition, we observe a standing wave in the form of small 
ripples. Such ripples must originate from superposition between incident and 
reflected waves. In this case, reflection indeed happens. With losses (R’≠0), the 
value of the wave impedance is no longer 50 Ω. For example, with R’ = 250 
Ω/m, we get a complex wave impedance of (50.3864 - j5.9196) Ω. This yields 
together with the load ZL = 50 Ω a reflection factor of |r| = 0.059, or a VSWR of 
1.1254. 

 

Figure 2 Voltage distribution along transmission line with matching loading in 
dependence on resistance per unit length R’. 
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In order to study the effect of losses on the standing wave, we now replaced the 
load by an impedance ZL = 20 Ω. Connecting this load to a transmission line 
with a wave impedance of 50 Ω leads to a reflection factor r = −0.4286 or 
VSWR= 2.5. For the lossless case in Figure 3, the standing wave pattern does 
not change along the transmission line. The maximal voltage of Vmax = 0.7143 V 
and the minimal voltage of Vmin = 0.2857 V can be read, whose ratio is exactly 
equal to the value of VSWR given above. At the load position, we have a 
minimum, because the load impedance is smaller than the wave impedance of 
the transmission line, as verified by the theory.  
 

 

 

 

 

 

 

Figure 3 Voltage distribution along transmission line with ZL = 20 Ω in 
dependence on resistance per unit length R’. 

By including losses in the calculation, the standing wave pattern changes along 
the structure substantially. We observe smaller VSWR at positions near to the 
source than near to the load. From the theory of lossy transmission lines, we 
have learnt that the incident wave from the source to the load is attenuated and 
after being reflected by the load back to the source, the reflected wave is 
attenuated again. This makes the contribution of the reflected wave to the 
standing wave pattern near the source small as compared to the lossless case. 
Hence, for very lossy cases, near to the source the value of Vmax is practically 
equal to the value of Vmin and any reflections, even total reflection, can be 
neglected. 

4.2 Chebychev’s Low Pass Filters based on Stepwise Nonuniform 
Transmission Lines 

Microwave filters play a significant role in modern communication systems 
[22]. Designing microwave filters is an interesting combination between 
creativity and possibility. One of the most basic design procedures is 
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approximating the ideal characteristics of low pass filters with Chebychev’s 
functions. Approximation of filtering characteristics with Chebychev’s 
functions relies on the number of components used, i.e. the order of the filter N 
and on the ripple allowed in the pass band. Figure 4 shows the generic form of a 
low pass filter designed by this approximation. 

 

 

 

 

 

 

Figure 4 Generic form of low pass filter approximated by polynomial 
functions. 

The value of each component in Figure 4 can be obtained in many textbooks, 
which is given in tabularized form in Table 1. The data given in this table is the 
standard information valid for any reference impedance and frequency. For 
special load or internal impedance, for example 50 Ω and a special reference 
frequency, for example ωc = 2π . 109 rad/s, we must multiply the inductance 
value by the impedance and divide by the radial frequency ωc, and divide the 
capacitance value by the impedance and again by the radial frequency.  

Table 1 Element Values for Chebychev Low Pass Prototype for Normed 
Impedance Zi = 1, Frequency Ω = 1 and Ripple 0.3 dB for Filter Order up to 5.  

N g1 g2 g3 g4 g5 g6 
1 0.5349 1.0000     
2 1.1805 0.6957 1.6967    
3 1.3713 1.1378 1.3713 1.0000   
4 1.4457 1.2537 2.1272 0.8521 1.6967  
5 1.4817 1.2992 2.3095 1.2992 1.4817 1.0000 

In this study, a low pass filter with order N = 3 and ripple 0.3 dB was designed 
with fc = 1 GHz and reference impedance of Z0 = 50 Ω. The element values 
given in Table 1 become the following values of inductances and capacitances, 

 g1 = 1.3713   L1 = 10.91 nH 
 g2 = 1.1378   C2 = 3.6219 pC 
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 g3 = 1.3713   L3 = 10.91 nH 

In microstrip technology, inductances can be modeled by a high impedance 
microstrip line (Z0L > Z0) and capacitances by a low impedance microstrip line 
(Z0C < Z0). The choice of the impedance values Z0L and Z0C are rather arbitrary, 
however, restrictions are that the value of Z0L may not be too high, which could 
yield a very thin strip line that is difficult to be fabricated, and that the value of 
Z0C may not be too low, which leads to a wide strip line that can cause a 
transversal wave propagation in this microstrip segment. Here, a TMM10 
substrate [23] with a relative permittivity of 9.2, a tangent loss of 0.0022 and a 
thickness of 2.54 mm was used. Table 2 gives an overview of the relationship 
between the set impedance values and the widths of the microstrip lines, which 
were designed by the standard design equation given as an example in [24]. 

Table 2 Design Data for Low Pass Filter. 

Z0 [Ω] W [mm] εr,eff λg at fo= 1 GHz [mm] 

50 2.62 6.31 119.345 

86.7 0.64 5.79 124.627 

30 6.34 6.94 113.806 

In order to get each value of inductance and capacitance given above, the 
microstrip lines must have certain lengths, which fulfill the following equations 
[24], 

 2𝜋𝑓𝑜𝐿 = 𝑍0𝐿 sin �2𝜋𝑙𝐿
𝜆𝑔𝐿

� +𝑍0𝐶 tan �𝜋𝑙𝐶
𝜆𝑔𝐶

� (19) 

 2𝜋𝑓𝑜𝐶 = 1
𝑍0𝐶

sin�2𝜋𝑙𝐶
𝜆𝑔𝐶

� + 2
𝑍0𝐿

tan �𝜋𝑙𝐿
𝜆𝑔𝐿
� (20) 

Applying these coupled equations and the data given in Table 1 with an iterative 
method, we get the values lL = 15.00 mm and lC = 10.63 mm. Figure 5 shows a 
microstrip circuit for this low pass filter.  

 
Figure 5 Low pass filter of order N = 3 with two 50 Ω feeding lines. 
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On the source and load sides, two connecting transmission lines with a wave 
impedance of 50 Ω were connected and we connected an internal impedance ZS 
= 50 Ω and a load impedance ZL = 50 Ω, so that both sides were in matching 
condition. In order to extract the voltage distribution along the connecting lines, 
we used 150 mm and 10 mm long lines on the source and load sides, 
respectively. Our target here was to analyze the low pass filter structure in the 
frequency range between 100 MHz and 1.5 GHz. We calculated the reflection 
factor (S11) and transmission factor (S21) of the filter. The reflection emerges not 
due to the load, but rather due to the nonuniform structure of the transmission 
line used (causing abrupt changes of the impedance). It could be verified later if 
we had a constant voltage distribution along the connecting line on the load 
side. It was indeed, because there is just a wave propagating to the load. 
However, along the connecting line on the source side, we expected a standing 
wave pattern, having a maximum and minimum voltage. From this pattern we 
could calculate the VSWR and then the reflection factor. 

Figure 6 shows the voltage distribution along the transmission line at a 
frequency of 1.5 GHz. The curve on the load side (190 mm < z < 200 mm) was 
constant; this is the voltage wave towards the load with value Vt = 0.2822 V. On 
the source side (z < 150 mm), we had a standing wave pattern with Vmax = 
0.9096 V and Vmin = 0.0904 V, which yielded a VSWR of 10.0619 or a 
reflection factor of 0.8192 (= −1.732 dB). On the source side, we could 
calculate the voltage wave propagating to the input side of the filter with Vinc = 
0.5(Vmax+Vmin) = 0.5 V, so that the transmission factor could be calculated to t = 
0.2822/0.5 = 0.5643 (= −4.970 dB). 

 
Figure 6 Voltage distribution inside the low pass filter and along its connecting 
lines at frequency 1.5 GHz.  
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In Figure 6, the maximal voltages on the source side are about 40 mm apart 
from each other, which is exactly half of the guided wavelength from the theory 
of transmission lines. 

At lower frequencies, i.e. 600 MHz, we expected the maxima to be separated by 
longer distances. With the same procedure used as for Table 2, we got a guide 
wavelength of about 199.66 mm for 600 MHz. The connecting line with a 
length of 150 mm was still enough for observing the standing wave as shown in 
Figure 7. The maximal voltage of 0.5460 V and the minimal voltage of 0.4540 
V delivered a VSWR of 1.2026 or a reflection factor of 0.092 (= −20.725 dB). 
With the voltage at the load side Vt = 0.4951 V and the incident voltage on the 
source again Vinc = 0.5(Vmax + Vmin) = 0.5 V, so that the transmission factor could 
be calculated as t = 0.4951/0.5 = 0.9901 (= −0.0863 dB). 

 

Figure 7 Voltage distribution inside the low pass filter and along its connecting 
lines at frequency 600 MHz.  

By varying the frequency from 100 MHz to 1.5 GHz, we could calculate the 
reflection and transmission factors over this frequency range. The result is 
depicted in Figure 8. For comparison purposes, a prototype of the low pass filter 
was fabricated and measured. We observed a deviation of about 0.7 dB in the 
transmission factor and some oscillation in the measured reflection factor, 
which could come from the cable of the network analyzer. We found the 
minimum of the reflection factor at about 725 MHz. In general, we saw a very 
good similarity between both results. 
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Figure 8  Scattering parameters of low pass filter N = 3. Solid lines: this work. 
Dashed lines: measured by network analyzer ZVL13. 

In order to enhance the selectivity of the filter, a second filter with N = 5 was 
considered. With the same impedance and frequency reference as the previous 
filter and the element values given in Table 1, we got the following values of 
inductance and capacitance, 

 g1 = 1.4817   L1 = 11.79 nH 
 g2 = 1.2992   C2 = 4.136 pC 
 g3 = 2.3095   L3 = 18.38 nH 
 g4 = 1.2992   C4 = 4.136 pC 
 g5 = 1.4817   L5 = 11.79 nH 

Figure 9 shows a microstrip circuit for this low pass filter of order N = 5. The 
substrate used was the same as before. The dimensions were calculated again by 
solving the nonlinear Eqs. (19) and (20) iteratively. 

 

Figure 9 Low pass filter of order N = 5 with two 50 Ω feeding lines. 
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Figure 10  Scattering parameters of low pass filter N = 5. Solid lines: this 
work. Dashed lines: measured by network analyzer ZVL13. 

The characteristic filtering is shown in Figure 10. This filter had a sharper 
curve between the pass and stop regions compared to the low pass filter with 
N = 3. The comparison of the results found here and the measurements also 
showed coincidences. The minimums of the reflection factor were observed 
at frequencies 510 MHz and 845 MHz. 

5 Conclusion 
The implementation of method of moment as solution for integral equations in 
nonuniform transmission lines yields very good results. Some canonical 
problems, such as matching and unmatched load connected to uniform 
transmission lines with and without losses, verified the computer simulation. 
The numerical results coincided with those yielded by the theoretical approach. 
Finally, abruptly changing nonuniform transmission lines, which presents itself 
as Chebychev’s low pass filters, was considered. The results were compared 
with measurements. For each filter design we observed the minimum of the 
reflection factor and a sharper transition between the pass and stop regions. In 
general, the comparison showed very good coincidences. 
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