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Introducing motion sensors into smartphones contributed to a wide 
range of applications in human-phone interaction, gaming, and many others. 

in sensors that detect subtle motion changes (e.g. 
accelerometers), might also reveal information about taps on touch screens

input mode. Few researchers have already demonstrated the idea of 
exploiting motion sensors as side-channels into inferring keystrokes. Taken at 
most as initial explorations, much research is still needed to analyze the 
practicality of the new threat and examine various aspects of its implementation. 
One important aspect affecting directly the attack effectiveness is the selection of 
the right combination of sensors, to supply inference data. Although other 
aspects also play crucial role (e.g. the features set), we start in this paper by 
focusing on the comparison of different available sensors, in terms of the 
inference accuracy. We consider individual sensors shipped on Android phones, 
and study few options of preprocessing their raw datasets as well as fu

readings. Our results indicate an outstanding performance of the 
gyroscope, and the potential of sensors data fusion. However, it seems that 
sensors with magnetometer component or the accelerometer alone have less 

xt of the adverted attack. 
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Key logging attacks have been, and continue to be, a major security concern in 
traditional computing platforms. PC operating systems like Windows allow 
system message interception, thereby enabling background applications to 
capture and log the key strokes of active applications in the foreground. Such 
Trojan applications are very common in traditional PCs, and although usually 
called keyloggers, many are capable of capturing more information than mere 
keyboard input, such as screenshots and mouse clicks. Even when keyloggers 
are not easy to install or hide, hardware keyboards allow for backdoor channels 
that could be resorted to in order to guess the actual input. Such channels are 
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commonly termed side channels, and include physical phenomena like 
electromagnetic and acoustics emanations. 
 
Moving to smartphones, the situation is quite different. Smartphone OSes, like 
Android, restrict the interception of keystrokes to the current view that has the 
focus, and no direct method can be used by Trojan apps to log user taps (but for 
a workaround example, see [1]). Moreover, the lack of physical keyboards 
limits side channel avenues at the disposal of attackers. For instance, the rich 
heritage of research on electromagnetic and acoustic emanations is not 
applicable on smartphones. Yet, innovative side channels to sniff on user input 
have been proposed in the literature, including the analysis of finger smudges 
left on the touch screen surface [2], employing the dial tone sounds [3] that 
resembles more traditional acoustic emanations attacks, and even the old-school 
low-tech shoulder-surfing [4].  
 
Embedding sensors into smartphones had made them an unprecedented 
platform, combining communications, computing and sensing capabilities. User 
interface, gaming, and healthcare are but a few domains in which sensors found 
instant applications [5], and a key idea around which many more applications 
evolve is context awareness. On the flip side, sensors bring along many serious 
implications, especially related to user privacy. Researchers have studied the 
potential threat of more traditional sensors, namely, GPS, camera and recorder, 
on user privacy and/or security (e.g. [6]). Less traditional sensors, such as 
motion sensors (e.g. accelerometers and gyroscopes), have received little 
attention, until recently. The key observation that moved motion sensors into 
the threat spot is the correlation between user taps on touch screen and 
vibrations or motion changes to the body of the smartphone itself. 
Accelerometers, for example, can sense the linear acceleration caused by the 
force of user taps, while gyroscopes can measure angular velocities around 
specific axes. Obviously, the original benign purpose of theses sensors are far 
from such vicious uses and that makes them a surreptitious side channels. 
 
Few authors in academia have demonstrated the feasibility of such a side 
channel attack, dealing with the task as a classification problem to map sensors 
reading into key labels. Section 3 presents a brief survey of these works. The 
availability of several sensors on consumers electronics devices, in particular 
smartphones, raises a seemingly interesting question of which sensor, or 
collection of sensors thereof, is of greater potential in the context of the new 
threat. In this paper, we set off to experiment with the performance of different 
sensors that are supported by Android operating system, and integrated in most 
Android-powered phones. Section 2 explains shortly the considered sensors, 
and how it is possible to capture their data with Android help. For the purpose 
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of the comparison, we actually implemented the attack collecting sensors data 
through an Android app. Details of the experiment are given in section 4.  
 
It is important to notice that the aim of this paper is not to improve the accuracy 
of the attack, or evaluate its practicality, but is more about comparing the 
performance of sensors under the same conditions, which are well-controlled. 
Our experiment in this light could focus on the relative performance between 
different datasets on the same setting, rather than looking for the best among 
several settings. The latter is the focus of most recent works discussed in section 
3, while the early works were concerned with the bare feasibility of the attack.  

2 Technical background 

Android supports a variety of sensors, of which the relevant to the current attack 
are motion and position sensors. Table 1 lists the supported motion sensors, as 
of Android 4.2.2. Besides those sensors, Android also provides a synthetic 
sensor based on the values from the accelerometer and magnetometer, through a 
method call in its sensors API (getOrientation()). Accelerometer raw data 
contains both gravity acceleration (due to the earth's gravity force) and linear 
acceleration (due to the linear motion of the phone body). The former is more of 
a bias to our experiment as we do not consider here the inclination of the phone 
with respect to the earth surface, and therefore both raw accelerometer's data as 
well as gravity sensor's data are excluded, as the linear accelerometer can take 
their role. 

Table 1 Motion sensors that are supported on Android platforms (source [7]). 

Sensor Description Units of 
measurement 

TYPE_ACCELEROMETER Acceleration force along the x, y and z axes 
(including gravity). m/s2 

TYPE_GRAVITY Force of gravity along the x, y and z axes m/s2 

TYPE_LINEAR_ACCELEROMETER Acceleration force along the x, y and z axes 
(excluding gravity). 

m/s2 

TYPE_GYROSCOPE Rate of rotation around the x, y and z axes rad/s 

TYPE_ROTATION_VECTOR Rotation vector component along the x, y 
and z axes (axis * sin (θ/2)). 

Unit-less 

 
Motion sensor readings are expressed with reference to a 3-axis coordinate 
system. This coordinate system is defined relative to the device's screen when 
the device is held in its default orientation (Figure 1): the x axis is horizontal 
and points to the right, the y axis is vertical and points up, and the z axis points 
toward the outside of the screen face. This coordinate system is not with 
reference to the earth's frame, and hence does not change irrespective of the 
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device orientation. For example, if the phone is laid horizontally on a table with 
its screen surface to the sky, a motion towards the left would generate negative 
readings along the x axis. If the phone is lifted horizontally, the z axis's readings 
are positive. 
 
Android OS provides a sensors programming framework, composing a set of 
classes and interfaces that could be used to access the sensors and read their raw 
data. Basic tasks accomplished by that API include detection of available 
sensors on a device, determining their capabilities (e.g., maximum range, power 
requirements, and resolution), reading raw sensor data, defining the minimum 
rate at which to acquire sensor data, and to register/unregister sensor event 
listeners that monitor sensor changes. 

 
Figure 1 Coordinate system of the motion sensors. 

Sensor values are obtained through an object, SensorEvent, in a multi-
dimensional array named values[]. Elements of the array correspond to sensor 
readings along each of the three coordinate axes. For example, values[0] might 
convey the acceleration force along the x axis while values[1] contains the 
acceleration force along the y axis, and so forth. Acceleration forces reflect the 
change in velocity along the axes due to user motion (e.g. walking) or due to 
direct user input (e.g. tapping on the device). Raw acceleration data, represented 
by the accelerometer sensor includes the acceleration due to gravity force. 
Android provides also filtered linear acceleration that can be formulated as 

 Linear acceleration = raw acceleration – gravity acceleration 

Theoretically, accelerometer data could be integrated twice to obtain the 
distance of motion. However, the result of this process is prone to much error in 
practice, which leaves very little benefit considering the tiny differences in 
displacement of different keys on the touch screen. It could also be argued that 
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displacement is proportional to the force by which the user taps on the device, 
the same as the acceleration itself, and therefore there is really no specific value 
in taking the additional double integration step. The tilt of the device, however, 
is another path to consider, utilizing the accelerometer, which we leave for 
future work. 
 
Gyroscope readings reflect the rate of rotation (i.e. angular velocity) around the 
three axes, and ideally measure zero when the device is at rest. Again, it is 
possible to calculate the angle of rotation via integrating the gyroscope data. 
Similar argument to the case of accelerometers could be made, though we 
actually consider this option in one of our experiments. Gyroscopes data are 
known to suffer from a drift in the reported values when integrated, because of 
the accumulated measurement errors over time (i.e. noise plus initial offset). 
Typically, data from other sensors are utilized to compensate for such errors. In 
our case, a keystroke on the device is short enough to justify neglecting 
accumulated drift and compute the integration of just the few readings during a 
single keystroke anew with each tap. 
 
The rotation vector represents the orientation of the device as a combination of 
an angle and an axis, in which the device has rotated through an angle θ around 
an axis (x, y, or z) [7]. It is a synthetic sensor that maps the device coordinate 
system to the global coordinate system using the accelerometer, magnetometer, 
and the gyroscope. In the global coordinate system, the x axis points to the east, 
the y axis points to the north, while the z axis points to the sky away from the 
surface of the earth. 
 
Finally, Android also provides a method called getOrientation() that takes as 
input a rotation matrix. The rotation matrix might be generated using data from 
both the accelerometer and the magnetometer. The output of the 
getOrientation() method is the rotation around the x (pitch), y (roll), and z (yaw) 
axes. The coordinate system of this method is similar to the global coordinate 
system described in the previous paragraph, except that the x and z axes are 
inverted. However, it is worthy to mention that nearby magnets can largely 
affect magnetometer data, leading to less accurate results. 

3 Related work 

Authors in [8] suggested first the use of motion sensors to infer keystrokes on 
touch screens. They developed an Android application, named TouchLogger, to 
demonstrate the attack. The application used numbers-only soft keypad in the 
landscape mode. TouchLogger utilized the synthetic Orientation sensor, which 
relies on accelerometer and magnetometer hardware sensors. Orientation sensor 
was deprecated in Android 2.2 (API level 8). 
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Following was another work [9], where an Android application, ACCessory, 
was built to evaluate a predictive model, trained only on acceleration 
measurements. ACCessory attempted to infer area zones on the screen as well 
as character sequences (to construct typed passwords). 
 
The next work [10] adopted an online processing, where the training and 
classification were performed on the smartphone itself through a Trojan 
application ,TapLogger, to stealthily monitor the movement changes of the 
device and try to log the number pad passwords and screen lock PINs. Two 
sensors were used: the accelerometer for taps detection, and the Orientation 
sensor for tap positions inference. 
 
The same authors of TouchLogger published another work again [11]. The 
purpose of the study was to provide a more thorough investigation on the 
practicality of such an attack, and to compare the performance of different 
classification schemes, and the impact of different devices, screen dimensions, 
keyboard layouts or keyboard types. This paper examined the use of gyroscopes 
output on mobile devices for the attack, and indicated that inference based on 
the gyroscope is more accurate than that based on the accelerometer. 
 
TapPrints [12], the framework presented in another paper was evaluated across 
several platforms including different operating systems (iOS and Android) and 
form factors (smartphones and tablets). It also showed a combined approach 
that uses both the accelerometer and gyroscope for achieving better accuracy. 
Finally, and most recently, the authors of [13] focused solely on the 
accelerometer sensor to further investigate the practicality of sensors side 
channels in inferring Android four-digit PINs and password pattern (swiping). 
Contrary to previous last two works, they found that accelerometer based 
techniques perform nearly as well, or better, than gyroscopic based techniques. 
 
To the best of our knowledge, no previous study addressed the relative 
performance of all relevant Android sensors in conducting the inference attack. 
In addition, we also consider fusing the data from more than one sensor for that 
matter. In a preliminary version of our study, we started by evaluating sensors 
performance on only a single Android smartphone [14]. In this paper, we 
augment the analysis with sensors from another more recent device, and include 
more variations in the data preprocessing and fusion options, as well as in the 
feature set of the sensors data. 
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4 Methodology 

Keystrokes inference can be viewed as a machine learning problem, in 
particular, a classification task that maps collected patterns of raw sensor signals 
data into corresponding key classes. Abiding by typical machine learning 
process sequence, raw data are collected from the source, and pre-processed, 
and then features are selected. Part of the resulting dataset is labeled with the 
correct class to form a training examples subset, and the rest is reserved for 
evaluation purposes as a test subset. In the following subsections we present 
those steps in more detail. 
 

 
(a) 

 
(b) 

Figure 2 Experiment settings (a) Hardware specs and (b) user typing profile. 
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4.1 Data Collection 

An application was built for the purpose of acquiring sensors data out of an 
Android smartphone. Our raw data are the readings of four sensors, two of 
which are synthetic sensors, derived from a combination of up to three hardware 
sensors, as noted in section 2. A set of two devices was used in the experiment: 
a Galaxy S2 and a Galaxy S3, both are of different screen sizes and sensors 
specs. One user was utilized to type all data sets to ensure consistent typing and 
holding style factors that could affect the inference performance. Figure 2(a) 
lists the main hardware specifications of the devices and their built-in sensors, 
while Figure 2(b) shows the typing profile of the user throughout the 
experiment. 
  
The UI of the application, depicted in Figure 3, allows for the selection of the 
sensor in each session, and a layout similar to the dialing soft keypad of 
Android 4.0.3 is presented to the user, where he was asked to key in almost the 
same set of around 300 keys in each session. The key set covers uniformly the 
ten digits of the numbers soft keypad. For each device, two datasets were 
generated from the same linear accelerometer, but distinct by the use of high 
pass filtering, an option that the user can choose by selecting a checkbox on the 
screen. Filtering is one of the common techniques to mitigate noise in sensors 
data, and in that context, low pass filters are more useful. However, high pass 
filters can extract the most fluctuating components, in which we are more 
interested. The interface also includes an option for fusing the data, upon which 
all four sensors are registered with Android, and the readings from all sensors 
are recorded in the same session. This is useful to inspect the case when the 
feature vector of a dataset example comprises components from different 
sensors together. 
 

 
Figure 3 User Interface of the Android app used to collect the data. 
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4.2  Pre-processing 

Raw sensors data usually need to be processed before feeding into a learning 
system. One of the most important steps in the context of the current attack is 
the detection, and extraction of the signal segments that correspond to key 
strokes from the continuous stream of sensors reading. This step could form a 
separate research task, and several approaches might be followed. Some of the 
previous works on this attack regard this task as a straightforward anomaly 
detection problem [9], or a simple classification problem [12], while others treat 
it as a significant part of their whole system [10]. Figure 4 illustrates the signals 
collected from the gyroscope and the accelerometer along the x, y and z axes 
while dialing the phone number “0123034880” using the screen shown in 
Figure 3. It could be seen from the distinct spikes corresponding to the 
individual key taps, that the task of isolating keystrokes is conceivably doable. 
Yet, some authors leave this step as a separate undertaking that lies on the 
shoulder of the attacker, and assumes knowledge of the keystrokes delimitations 
[13]. We followed the same suit, as the course of extracting this knowledge is 
independent of the eventual performance, assuming consistency among all 
datasets. We isolated the keystrokes sensors data by matching their timestamps 
to the start and end time of each button click event, which we also collect during 
the experiment using Android-provided motion events, namely the “onTouch” 
method. This method was implemented as per the onTouchListener interface 
requirement. It is these events that supply the experiment with the labels 
necessary for the training examples. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Readings from the (a) gyroscope and (b) accelerometer while dialing 
the number “0123034880”. 

Other pre-processing techniques are also possible and usually crucial for 
successful learning, including normalization and calibration. Normalization is 
needed when different features of input data belong to different scales of several 

(b) (a) 
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order of magnitude discrepancies. Rescaling might be necessary to ensure that 
no single feature has influence that may not reflect their real relative importance 
in deciding the outcome. In our case, all sensors reading in all three axes are of 
the same or only one order of magnitude variance. Calibration is usually also 
needed, for example, to remove the projection of Earth gravity from 
accelerometer data and initial orientation from gyroscope data. Using the linear 
accelerometer in our experiment ensures the already gravity-less acceleration 
measurements, while initial bias in other sensors are not of much concern since 
the whole experiment is conducted under the exact same conditions, including 
any initial biases. 
 
In our data sets we have encountered no missing values, as we have collected all 
the data ourselves programmatically. Very few outliers could be seen, probably 
because of abrupt unintended motion of the user hands. We simply got rid of 
those outliers, as they play no representative role in the input data. We also did 
not need any dimensionality reduction techniques, as our data are already of 
relatively low dimension (18, in most cases, except when applying sensors 
fusion, where every sensor contributes 18 features, and when integrating 
gyroscope data, where three more features, the derived rotation angles along the 
three axes, are added). 
 
Another significant pre-processing we applied, besides keystrokes extraction, is 
the aggregation of sensors data by each key, as explained in the next section, to 
create the features. Some works in the literature had to normalize the sampling 
rate of sensors, termed de-jittering in [11], to compensate for non-uniform 
sensors sample intervals. However, this is basically needed for the purpose of 
standard signal analysis methods, whereas our features are mainly simple 
statistics that use aggregation of few samples per each key, as discussed later, 
and no de-jittering was applied. 
 
Finally, we also included the option of integrating the gyroscope data before 
training. The purpose is to experiment with the gyroscopic data as a source on 
angular displacement rather than angular speed. Taken as a rate of change in 
angular shift, gyroscope data could be integrated based on basic calculus to 
obtain the distance traveled, in this case the shift angle. Despite the fact that 
integration often introduces drift to the gyroscope readings, we neglect this error 
as the integration is performed for each set of readings associated with one 
keystroke. In this way, we ensure a sort of reset action per every key tap, and 
the time intervals to accumulate noise errors are very short.  
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4.3 Feature Selection 

For the purpose of classification, the input dataset is a set of examples. Each 
example is a features vector (collection of features or attributes), which is fed to 
the classifier and mapped collectively to a pre-set output label (a digit key, in 
our case). Previous works on the keystrokes inference attack vary greatly in the 
set of features employed for classification, and there is no obvious evidence of 
which set is better, indicating an open research area in this direction. For our 
experiment, we have chosen to apply simple statistics on sensors data from the 
time domain only, though some authors include also frequency domain signal 
features.  
 
The output of our application is a set of files, each recording a continuous 
stream of readings from one sensor, or the combination of sensors in case of 
data fusion. In addition, one file always contains the touch events information, 
namely the start time, end time, and the particular tapped key. For each sensor, 
there is a corresponding output file in every session. This file contains all the 
collected sensor's readings during the session, a reading per line. Each sample 
reading is a quadruple, {x, y, z, t} for the sensor's output along the three axes, 
plus a timestamp in milliseconds. Likewise, in every respective session, the 
other file records each touch event (a keystroke) with the corresponding interval 
in milliseconds. One touch event normally spans several sensor samples. In our 
experiment, a key tap takes on average 80 ms, and the sampling rate of the 
sensors is, at most, 100 samples per second in theory, except for the gyroscope 
in Galaxy S3 phone, where the minimum delay is around 5000 microsecond, 
which represents a frequency of 200 samples per second. This means around 10 
samples per key in the best case, excluding the case of the STMicroelectronics 
gyroscope where the available samples per key are more, and hence the 
expected performance is better in general. In practice, however, we found that 
each key corresponds to an average of 5 sensor samples (15 samples for Galaxy 
S3 gyroscope). 
 
Individual samples are meaningless relative to a key tap, and so we aggregate 
the samples for each key, i.e. combine all the samples that span the period of a 
key tap producing simple standard statistics of min, max, mean (µ), median 
(M), standard deviation (σ) and skewness (3*(µ–M)/σ). In this manner, for a 
dataset of 300 keys, for instance, we obtain 300 examples, each of which 
comprises 18 features, plus the class label (the key symbol itself). Each example 
is written to a line in a CSV file, which is used as the final input dataset for the 
learning process. All the motion sensors generate three components of the 
physical quantity they measure; one component along each of the three 
coordinates axes. Therefore, out of the six statistics the result is 18 different 
values where each statistic is computed for every axis. For instance, one 
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example in the training dataset would comprise the attributes XminA, YminA, 
ZminA, XmaxA, YmaxA, ZmaxA, XmeanA, and so forth. The first letter in the 
attribute name refers to the axis to which the feature value belongs, and the last 
letter refers to the sensor from which the dataset was driven. In the case of this 
example, the sensor is the accelerometer. The middle part of the attribute name 
tells the particular statistic constituting the feature. The last attribute would be 
the particular keystroke for which the time interval matched the interval of the 
aggregated sensor data. Note that every keystroke spans several sensor readings. 
In our dataset, each value is taken to be a feature to characterize a keystroke.     
 
The aggregation could be accomplished using any programming language or 
computational package (e.g. MATLAB or Octave), though we have written 
simple scripts in the R language to match sensors and key data, and perform the 
statistical calculations. Figure 5 shows one of those scripts for the accelerometer 
data, where the steps of aggregating sensors data and producing the features are 
detailed.  

1. key <- read.csv("itb/acctrue_10_11/key_10_11.csv") 

2. acc <- read.csv("itb/acctrue_10_11/acctrue_10_11.csv") 

3. keyAcc <- key; 

4. for (i in 1:nrow(key)) { 

5. keyAcc$XminA[i] <- min(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

6. keyAcc$YminA[i] <- min(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

7. keyAcc$ZminA[i] <- min(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

 
8. keyAcc$XmaxA[i] <- max(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

9. keyAcc$YmaxA[i] <- max(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

10. keyAcc$ZmaxA[i] <- max(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

 
11. keyAcc$XmeanA[i] <- mean(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

12. keyAcc$YmeanA[i] <- mean(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

13. keyAcc$ZmeanA[i] <- mean(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

14. keyAcc$XmedianA[i] <- median(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

Figure 5 An R script that aggregates accelerometer data and produces the 
features set. 
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15. keyAcc$YmedianA[i] <- median(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

16. keyAcc$ZmedianA[i] <- median(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

 
17. keyAcc$XsdA[i] <- sd(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

18. keyAcc$YsdA[i] <- sd(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

19. keyAcc$ZsdA[i] <- sd(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

 
20. keyAcc$XskewA[i] <- 3*(mean(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]) - median(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]])) / sd(acc$X[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

21. keyAcc$YskewA[i] <- 3*(mean(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]) - median(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]])) / sd(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

22. keyAcc$ZskewA[i] <- 3*(mean(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]) - median(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]])) / sd(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <= 

key$EventTime[i]]); 

23. } 

24. write.table(keyAcc, "itb/acctrue_10_11/keyAcc_10_11.csv") 

Figure 5 Continued. An R script that aggregates accelerometer data and 
produces the features set. 

4.4 Classification 

The goal of the inference attack is, given a bunch of sensors samples, to map 
every pattern of readings into an output class, and the percent of correct 
mapping forms the accuracy of the classifier. We adopted the implementation of 
classification algorithms in Weka suite of machine learning software [15]. 
Many classifiers are available in Weka, and choosing a particular method is not 
critical for our experiment. However, our initial exploration revealed that the 
ensemble learning can give better results, with implementations in “meta” Weka 
package. In particular, “Bagging” classifier showed the best performance on 
average (with FT base model), though we do not aim to venture any claims 
related to classification algorithms performances. “Bagging” is a general 
technique for improving the accuracy of a given learning algorithm. As an 
ensemble learning method, it aggregates multiple learned models of the same 
type (e.g. decision trees), and uses voting to combine the output of individual 
models [16]. 
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5 Evaluation and Discussion 

All experiment runs were conducted under 5-folds cross-validation testing 
option, and almost the same dataset size of around 300 examples. Figure 6 
shows the results of classifying the datasets using Bagging ensemble learning, 
with Functional Trees base model [17]. Figure 6(a) depicts the comparative 
classification accuracy of all the sensors options in the first device, while Figure 
6(b) presents the same results for the second device.  
 

 
(a) 

 
(b) 

Figure 6 Experimental results: classification accuracy comparison among all 
sensors (a) in Galaxy S2 smartphone (b) in Galaxy S3 smartphone. 
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It is evident from the two graphs that the relative performances of the sensors in 
both devices are similar. Because of the larger screen size of Galaxy S3, one 
would expect better ability to classify different key zones. Nevertheless, its 
performance is comparable or inferior to that of Galaxy S2 (at least in the many 
runs of our experiments). One possible reason for this result is the observation 
that the S3 phone was dressed in a thick leather case, which might contribute to 
mitigate the impact of the taps force on the surface of the device. 
  
Comparing the gyroscope performance with and without integrating its data 
reveals no actual value out of integration. The graphs in Figure 7 illustrate the 
accuracy of two experiments, for each of the two devices. One experiment 
involves a gyroscope dataset of 18 features as usual. The second experiment 
adds three more features, corresponding to the integrated sensor values per a 
coordinate axis. This conclusion seems logical, as the rate of change in distance 
(velocity) is proportional to the distance, and their indication is the same in the 
context of our need, namely to make a distinction between different areas on the 
screen. We have included the analysis of this option since gyroscope data is 
typically integrated in many applications, where the need is specifically to 
measure the inclination or tilt of the device over an extended period of usage 
time, rather than the instant change in angular displacement. It should be noted 
however that relying on the gyroscopic data for the purpose of classifying 
different keystrokes bears a strong dependency on the force by which the user 
taps on the screen, which might seem user or even session-dependent. 
Nonetheless, what makes this task conceivable is the fact that the angular 
velocity (the output of the gyroscope) is a vector quantity, and its sign depends 
on the direction of rotation, making separate areas in the coordinate space 
distinguishable, at least by the sign of the data. 

 
Figure 7 Classification accuracy of the gyroscope with and without integration. 
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Noticing the marked performance of the gyroscope, it looked appealing to 
further experiment with the features in its dataset. Trying out separate groups of 
statistics as well as few combinations of statistical groups resulted in the 
performance scores shown in Figure 8. For example, in the specific dataset of 
Figure 8, drawn from Galaxy S3 gyroscope, it appears that the minimum 
statistic has the most influence in the correct classification of keystrokes. 
 

 

Figure 8  Classification accuracy of few permutations of gyroscopic statistics. 

In another set of experiments, we focused on the fused dataset of sensors. In 
Table 2, we present one instance of those experiments where the relative 
performance of the individual sensors is shown more manifest, as well as the 
promising compounds of two sensors. The results are consistent with those in 
Figure 6, besides the important conclusion that in the context of this particular 
attack, data from other sensors are more of a noise to the gyroscopic signals. 
Still, in the absence of a gyroscope, the combination of accelerometer and 
rotation vector data can be of utility that outperforms their individual 
performances.   
 
Several concluding notes are in order, based on the obtained results. It is 
obvious that, confirming to [11]-[12], the gyroscope sensor alone has a superior 
performance compared to all other sensors. This result is actually consistent 
with the observation that rotations have more power to distinguish between 
different keys than shifts. This is also the reason for the inferior accuracy of 
both accelerometer variations (with and without high pass filtering), and even 
the rotation vector which relies on the accelerometer as one of the components 
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in deriving its value. Another factor that affects the rotation vector performance 
is the magnetic field sensor, which is also one of the components in calculating 
the vector values. Magnetic field sensors are known for their inaccurate and 
noisy outputs in current commodity smartphones, especially in the presence of 
nearby metals. What supports this conclusion is that the accuracy of the rotation 
vector sensor is still much better than the synthetic sensor that is based on the 
getOrientation method, though both depend on the accelerometer and 
magnetometer. The difference in accuracy is apparently due to the inclusion of 
gyroscope into the derivation of the rotation vector. 

Table 2 Classification accuracy results of different combinations of sensors. 

Sensor Samsung Galaxy S2 Samsung Galaxy S3 

All sensors 91.56% 93.24% 
Gyroscope only 95.63% 94.12% 

Accelerometer only 56.88% 63.24% 

Rotation vector only 75.94% 57.35% 

Gyroscope + accelerometer 93.44% 93.53% 

Accelerometer + rotation vector 80.63% 71.18% 

Gyroscope + rotation vector 92.19% 93.53% 

 
It also seems that sensors fusion is not always the best option, and depends 
largely on the proper selection of the ingredient sensors. Filtering also depends 
on the context, and in our case, it appears that the already filtered linear 
accelerometer has less performance with more filtering; the high pass filter, 
despite more appropriate to extract occasional motion like keystrokes, could 
leave the classifier with less than enough information to discern different keys. 
Finally, it is important to note that all the results related to sensors' 
performances that we reported in this paper are associated with the application 
of keystroke inference attack, or similar applications that involve classification 
of sensors data into discernable zones on the touch screen. This might not be the 
case in more traditional applications; e.g. gaming or augmented reality. 
 
It is worth mentioning that a key reason which makes this attack an attractive 
option from a perpetrator perspective is the low requirement for conducting the 
attack in terms of security permissions. Android does not impose special 
permissions to access the motion sensors. This means that any Trojan 
application with a convincing benign purpose has unlimited access to those 
sensors. This fact has driven many researchers to advocate the enforcement of 
more restrictions on sensors access through security permissions, similar to 
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those required to access more traditional sensors like the camera and sound 
recorder. 

6 Conclusions  

Researchers have already started the study of the potential of integrated sensors 
on modern smartphones as a privacy threat. Otherwise useful in numerous 
benign applications, certain sensors could unwantedly reveal sensitive 
information related to the input of the user. Accelerometers and gyroscopes in 
particular, among other motion sensors, proved viable in tracking subtle 
(shakes) resulting from taps or keystrokes on the smartphone touch screen. 
Selecting the most appropriate sensor or combination of sensors, along with the 
right features, has much left to be researched. In this paper, we reviewed only a 
small set of the possible combinations of sensors data and their treatment in the 
implementation of the new keystrokes inference attack, specifically on Android 
platforms. The objective was to compare the relative performance of different 
built-in motion sensors, with respect to this attack. 
  
Four sensors were compared in an experiment that implements the attack, 
namely, the linear accelerometer, gyroscope, rotation vector sensor, and the 
combined accelerometer and magnetometer synthetic sensor. Moreover, the 
option of fusing more than one sensor is examined. To enrich the discussion 
further, a couple of processing options for the accelerometer (filtering) and the 
gyroscope (integration) are considered. The results showed a greater benefit of 
exploiting the gyroscope sensor, or a fusion of several sensors (perhaps 
excluding the sensors with magnetometer component) from the perspective of 
an attacker. As discussed in the article, appealing processing in many other 
applications of sensors could fall short of serving the purpose of the attack. 
 
For a future work, we vision an integrated solution that incorporates more 
advanced processing of the accelerometer and gyroscope readings to calculate 
the resulting tilt, rather than rate of change, of the user taps. Fusing the right 
balance of these two sensors in terms of features and preprocessing has the most 
promising performance, we believe, based on the current results. 

Acknowledgements 

This research is supported by the Ministry of Higher Education under research 
grant LRGS/TD/2011/UKM/ICT/02/02. 



 Sensors in Keystrokes Inference Attack on Android 135 

 

References 

[1] International Jawsware, Interactive Overlay, available at: 
http://www.jawsware.mobi/code_OverlayView/ (20 November 2013). 

[2] Aviv, A.J., Gibson, K., Mossop, E., Blaze, M. & Smith, J.M., Smudge 
Attacks on Smartphone Touch Screens, in Proceedings of the 4th 
USENIX Conference on Offensive technologies, USENIX 
Association Washington, DC, USA, 9 August 2010, pp. 1-7, 2010. 

[3] Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A. &Wang, X., 
Soundcomber: A Stealthy and Context-Aware Sound Trojan for 
Smartphones, in Proceedings of the 18th Annual Network and Distributed 
System Security Symposium (NDSS), Internet Society, San Diego, 
California, 6-9 February 2011, pp. 17-33, 2011. 

[4] Maggi, F., Volpatto, A., Gasparini, S., Boracchi, G. & Zanero, S., A Fast 
Eavesdropping Attack Against Touchscreens, in Information Assurance 
and Security (IAS), 2011 7th International Conference on, Mir Labs, 
Malacca, Malaysia, 5-8 December 2011, pp. 320-325, 2011. 

[5] Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T. & Campbell, 
A.T., A Survey of Mobile Phone Sensing, Communications Magazine, 
IEEE, 48, pp. 140-150, 2010. 

[6] Cai, L., Machiraju, S. & Chen, H., Defending Against Sensor-Sniffing 
Attacks on Mobile Phones, in Proceedings of the 1st ACM workshop on 
Networking, systems, and applications for mobile handhelds, ACM, 
Barcelona, Spain, 16-21 August 2009,  pp. 31-36, 2009. 

[7] Motion Sensors, available at: http://developer.android.com/guide/topics/ 
sensors/sensors_motion.html (20 November 2013). 

[8] Cai, L. & Chen, H., TouchLogger: Inferring Keystrokes on Touch Screen 
from Smartphone Motion, in Proceedings of the 6th USENIX Conference 
on Hot Topics in Security, pp. 9-9, 2011. 

[9] Owusu, E., Han, J., Das, S., Perrig, A. & Zhang, J., Accessory: Password 
Inference Using Accelerometers on Smartphones, in Proceedings of the 
Twelfth Workshop on Mobile Computing Systems & Applications, 
ACM, San Diego, CA, USA, 28-29 February 2012, p. 9, 2012. 

[10] Xu, Z., Bai, K. & Zhu, S., Taplogger: Inferring User Inputs on 
Smartphone Touchscreens Using On-Board Motion Sensors, in 
Proceedings of the Fifth ACM Conference on Security and Privacy in 
Wireless and Mobile Networks, ACM, Tucson, Arizona, USA, 16-18 
April 2012, pp. 113-124, 2012. 

[11] Cai, L. & Chen, H., On the Practicality of Motion Based Keystroke 
Inference Attack, in Trust and Trustworthy Computing, ed: Springer, pp. 
273-290, 2012. 

[12] Miluzzo, E., Varshavsky, A., Balakrishnan, S. & Choudhury, R.R., 
Tapprints: Your Finger Taps Have Fingerprints, in Proceedings of the 



136 Ahmed Al-Haiqi, et al. 

10th International Conference on Mobile Systems, Applications, and 
Services, ACM, Low Wood Bay, Lake District, United Kingdom, 25-19 
June 2012, pp. 323-336, 2012. 

[13] Aviv, A.J., Sapp, B., Blaze, M. & Smith, J.M., Practicality of 
Accelerometer Side Channels on Smartphones, in Proceedings of the 28th 
Annual Computer Security Applications Conference, ACM, Orlando, FL, 
USA, 03-07 December 2012, pp. 41-50, 2012. 

[14] Al-Haiqi, A., Ismail, M. & Nordin, R., On the Best Sensor for Keystrokes 
Inference Attack on Android, Procedia Technology, 8, pp. 947-953, 2013. 

[15] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. & Witten, 
I.H., The WEKA Data Mining Software: An Update, ACM SIGKDD 
Explorations Newsletter, 11, pp. 10-18, 2009. 

[16] Breiman, L., Bagging Predictors, Machine Learning, 24, pp. 123-140, 
1996. 

[17] Gama, J., Functional Trees, Machine Learning, 55, pp. 219-250, 2004. 


