

J. ICT Res. Appl., Vol. 7, No. 2, 2013, 1

Received September 19th, 2013,
Copyright © 2013 Published by ITB Journal Publisher, ISSN: 2337

Keystrokes Inference Attack on Android: A Comparative
Evaluation of Sensors and Their Fusion

Ahmed Al-

Department of Electrical, Electronic & Systems
Faculty of Engineering

46300 UKM Bangi

Abstract. Introducing motion sensors into smartphon
range of applications in human
However, built-in sensors that detect
accelerometers), might also reveal information about taps on touch screens
main user input mode
exploiting motion sensors as side
most as initial explorations, much research is still needed to analyze the
practicality of the new threat and e
One important aspect
the right combination of sensors,
aspects also play crucial role (e.g.
focusing on the comparison of different available sensors, in terms of the
inference accuracy. We consider individual sensors shipped on Android phones,
and study few options of preprocessing their raw datasets as well as fu
several sensors' readings
gyroscope, and the potential
sensors with magnetometer component or the accelerometer alone have less
benefit in the context of the adverted attack.

Keywords: android; m
smartphone security;touchscreen taps inference

1 Introduction

Key logging attacks have been, and continue to be, a major security concern in
traditional computing platforms. PC operating systems like Windows allow
system message interception, thereby enabling background applications to
capture and log the key strokes
Trojan applications are very common in traditional PCs, and although usually
called keyloggers, many are capable of capturing more information than mere
keyboard input, such as screenshots and mouse clicks. E
are not easy to install or hide, hardware keyboards allow for backdoor channels
that could be resorted to in order to guess the actual input. Such channels are

J. ICT Res. Appl., Vol. 7, No. 2, 2013, 117-136

2013, Revised October 25th, 2013, Accepted for publication November 25
ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2013.7.2.2

Keystrokes Inference Attack on Android: A Comparative
Evaluation of Sensors and Their Fusion

-Haiqi, Mahamod Ismail & Rosdiadee Nordin

Department of Electrical, Electronic & Systems Engineering,
Faculty of Engineering & Built Environment, National University of Malaysia

46300 UKM Bangi, Selangor, Malaysia
Email: ahmadalhaiqi@gmail.com

Introducing motion sensors into smartphones contributed to a wide
range of applications in human-phone interaction, gaming, and many others.

in sensors that detect subtle motion changes (e.g.
accelerometers), might also reveal information about taps on touch screens

input mode. Few researchers have already demonstrated the idea of
exploiting motion sensors as side-channels into inferring keystrokes. Taken at
most as initial explorations, much research is still needed to analyze the
practicality of the new threat and examine various aspects of its implementation.
One important aspect affecting directly the attack effectiveness is the selection of
the right combination of sensors, to supply inference data. Although other
aspects also play crucial role (e.g. the features set), we start in this paper by
focusing on the comparison of different available sensors, in terms of the
inference accuracy. We consider individual sensors shipped on Android phones,
and study few options of preprocessing their raw datasets as well as fu

readings. Our results indicate an outstanding performance of the
gyroscope, and the potential of sensors data fusion. However, it seems that
sensors with magnetometer component or the accelerometer alone have less

xt of the adverted attack.

motion sensors; sensor-based attack; side-channel attack;
ouchscreen taps inference.

Key logging attacks have been, and continue to be, a major security concern in
traditional computing platforms. PC operating systems like Windows allow
system message interception, thereby enabling background applications to
capture and log the key strokes of active applications in the foreground. Such
Trojan applications are very common in traditional PCs, and although usually
called keyloggers, many are capable of capturing more information than mere
keyboard input, such as screenshots and mouse clicks. Even when keyloggers
are not easy to install or hide, hardware keyboards allow for backdoor channels
that could be resorted to in order to guess the actual input. Such channels are

117

pted for publication November 25th, 2013.
14/itbj.ict.res.appl.2013.7.2.2

Keystrokes Inference Attack on Android: A Comparative

alaysia,

es contributed to a wide
phone interaction, gaming, and many others.

motion changes (e.g.
accelerometers), might also reveal information about taps on touch screens: the

. Few researchers have already demonstrated the idea of
channels into inferring keystrokes. Taken at

most as initial explorations, much research is still needed to analyze the
xamine various aspects of its implementation.

is the selection of
inference data. Although other

), we start in this paper by
focusing on the comparison of different available sensors, in terms of the
inference accuracy. We consider individual sensors shipped on Android phones,
and study few options of preprocessing their raw datasets as well as fusing

. Our results indicate an outstanding performance of the
, it seems that

sensors with magnetometer component or the accelerometer alone have less

channel attack;

Key logging attacks have been, and continue to be, a major security concern in
traditional computing platforms. PC operating systems like Windows allow
system message interception, thereby enabling background applications to

of active applications in the foreground. Such
Trojan applications are very common in traditional PCs, and although usually
called keyloggers, many are capable of capturing more information than mere

ven when keyloggers
are not easy to install or hide, hardware keyboards allow for backdoor channels
that could be resorted to in order to guess the actual input. Such channels are

118 Ahmed Al-Haiqi, et al.

commonly termed side channels, and include physical phenomena like
electromagnetic and acoustics emanations.

Moving to smartphones, the situation is quite different. Smartphone OSes, like
Android, restrict the interception of keystrokes to the current view that has the
focus, and no direct method can be used by Trojan apps to log user taps (but for
a workaround example, see [1]). Moreover, the lack of physical keyboards
limits side channel avenues at the disposal of attackers. For instance, the rich
heritage of research on electromagnetic and acoustic emanations is not
applicable on smartphones. Yet, innovative side channels to sniff on user input
have been proposed in the literature, including the analysis of finger smudges
left on the touch screen surface [2], employing the dial tone sounds [3] that
resembles more traditional acoustic emanations attacks, and even the old-school
low-tech shoulder-surfing [4].

Embedding sensors into smartphones had made them an unprecedented
platform, combining communications, computing and sensing capabilities. User
interface, gaming, and healthcare are but a few domains in which sensors found
instant applications [5], and a key idea around which many more applications
evolve is context awareness. On the flip side, sensors bring along many serious
implications, especially related to user privacy. Researchers have studied the
potential threat of more traditional sensors, namely, GPS, camera and recorder,
on user privacy and/or security (e.g. [6]). Less traditional sensors, such as
motion sensors (e.g. accelerometers and gyroscopes), have received little
attention, until recently. The key observation that moved motion sensors into
the threat spot is the correlation between user taps on touch screen and
vibrations or motion changes to the body of the smartphone itself.
Accelerometers, for example, can sense the linear acceleration caused by the
force of user taps, while gyroscopes can measure angular velocities around
specific axes. Obviously, the original benign purpose of theses sensors are far
from such vicious uses and that makes them a surreptitious side channels.

Few authors in academia have demonstrated the feasibility of such a side
channel attack, dealing with the task as a classification problem to map sensors
reading into key labels. Section 3 presents a brief survey of these works. The
availability of several sensors on consumers electronics devices, in particular
smartphones, raises a seemingly interesting question of which sensor, or
collection of sensors thereof, is of greater potential in the context of the new
threat. In this paper, we set off to experiment with the performance of different
sensors that are supported by Android operating system, and integrated in most
Android-powered phones. Section 2 explains shortly the considered sensors,
and how it is possible to capture their data with Android help. For the purpose

 Sensors in Keystrokes Inference Attack on Android 119

of the comparison, we actually implemented the attack collecting sensors data
through an Android app. Details of the experiment are given in section 4.

It is important to notice that the aim of this paper is not to improve the accuracy
of the attack, or evaluate its practicality, but is more about comparing the
performance of sensors under the same conditions, which are well-controlled.
Our experiment in this light could focus on the relative performance between
different datasets on the same setting, rather than looking for the best among
several settings. The latter is the focus of most recent works discussed in section
3, while the early works were concerned with the bare feasibility of the attack.

2 Technical background

Android supports a variety of sensors, of which the relevant to the current attack
are motion and position sensors. Table 1 lists the supported motion sensors, as
of Android 4.2.2. Besides those sensors, Android also provides a synthetic
sensor based on the values from the accelerometer and magnetometer, through a
method call in its sensors API (getOrientation()). Accelerometer raw data
contains both gravity acceleration (due to the earth's gravity force) and linear
acceleration (due to the linear motion of the phone body). The former is more of
a bias to our experiment as we do not consider here the inclination of the phone
with respect to the earth surface, and therefore both raw accelerometer's data as
well as gravity sensor's data are excluded, as the linear accelerometer can take
their role.

Table 1 Motion sensors that are supported on Android platforms (source [7]).

Sensor Description Units of
measurement

TYPE_ACCELEROMETER Acceleration force along the x, y and z axes
(including gravity). m/s2

TYPE_GRAVITY Force of gravity along the x, y and z axes m/s2

TYPE_LINEAR_ACCELEROMETER Acceleration force along the x, y and z axes
(excluding gravity).

m/s2

TYPE_GYROSCOPE Rate of rotation around the x, y and z axes rad/s

TYPE_ROTATION_VECTOR Rotation vector component along the x, y
and z axes (axis * sin (θ/2)).

Unit-less

Motion sensor readings are expressed with reference to a 3-axis coordinate
system. This coordinate system is defined relative to the device's screen when
the device is held in its default orientation (Figure 1): the x axis is horizontal
and points to the right, the y axis is vertical and points up, and the z axis points
toward the outside of the screen face. This coordinate system is not with
reference to the earth's frame, and hence does not change irrespective of the

120 Ahmed Al-Haiqi, et al.

device orientation. For example, if the phone is laid horizontally on a table with
its screen surface to the sky, a motion towards the left would generate negative
readings along the x axis. If the phone is lifted horizontally, the z axis's readings
are positive.

Android OS provides a sensors programming framework, composing a set of
classes and interfaces that could be used to access the sensors and read their raw
data. Basic tasks accomplished by that API include detection of available
sensors on a device, determining their capabilities (e.g., maximum range, power
requirements, and resolution), reading raw sensor data, defining the minimum
rate at which to acquire sensor data, and to register/unregister sensor event
listeners that monitor sensor changes.

Figure 1 Coordinate system of the motion sensors.

Sensor values are obtained through an object, SensorEvent, in a multi-
dimensional array named values[]. Elements of the array correspond to sensor
readings along each of the three coordinate axes. For example, values[0] might
convey the acceleration force along the x axis while values[1] contains the
acceleration force along the y axis, and so forth. Acceleration forces reflect the
change in velocity along the axes due to user motion (e.g. walking) or due to
direct user input (e.g. tapping on the device). Raw acceleration data, represented
by the accelerometer sensor includes the acceleration due to gravity force.
Android provides also filtered linear acceleration that can be formulated as

 Linear acceleration = raw acceleration – gravity acceleration

Theoretically, accelerometer data could be integrated twice to obtain the
distance of motion. However, the result of this process is prone to much error in
practice, which leaves very little benefit considering the tiny differences in
displacement of different keys on the touch screen. It could also be argued that

 Sensors in Keystrokes Inference Attack on Android 121

displacement is proportional to the force by which the user taps on the device,
the same as the acceleration itself, and therefore there is really no specific value
in taking the additional double integration step. The tilt of the device, however,
is another path to consider, utilizing the accelerometer, which we leave for
future work.

Gyroscope readings reflect the rate of rotation (i.e. angular velocity) around the
three axes, and ideally measure zero when the device is at rest. Again, it is
possible to calculate the angle of rotation via integrating the gyroscope data.
Similar argument to the case of accelerometers could be made, though we
actually consider this option in one of our experiments. Gyroscopes data are
known to suffer from a drift in the reported values when integrated, because of
the accumulated measurement errors over time (i.e. noise plus initial offset).
Typically, data from other sensors are utilized to compensate for such errors. In
our case, a keystroke on the device is short enough to justify neglecting
accumulated drift and compute the integration of just the few readings during a
single keystroke anew with each tap.

The rotation vector represents the orientation of the device as a combination of
an angle and an axis, in which the device has rotated through an angle θ around
an axis (x, y, or z) [7]. It is a synthetic sensor that maps the device coordinate
system to the global coordinate system using the accelerometer, magnetometer,
and the gyroscope. In the global coordinate system, the x axis points to the east,
the y axis points to the north, while the z axis points to the sky away from the
surface of the earth.

Finally, Android also provides a method called getOrientation() that takes as
input a rotation matrix. The rotation matrix might be generated using data from
both the accelerometer and the magnetometer. The output of the
getOrientation() method is the rotation around the x (pitch), y (roll), and z (yaw)
axes. The coordinate system of this method is similar to the global coordinate
system described in the previous paragraph, except that the x and z axes are
inverted. However, it is worthy to mention that nearby magnets can largely
affect magnetometer data, leading to less accurate results.

3 Related work

Authors in [8] suggested first the use of motion sensors to infer keystrokes on
touch screens. They developed an Android application, named TouchLogger, to
demonstrate the attack. The application used numbers-only soft keypad in the
landscape mode. TouchLogger utilized the synthetic Orientation sensor, which
relies on accelerometer and magnetometer hardware sensors. Orientation sensor
was deprecated in Android 2.2 (API level 8).

122 Ahmed Al-Haiqi, et al.

Following was another work [9], where an Android application, ACCessory,
was built to evaluate a predictive model, trained only on acceleration
measurements. ACCessory attempted to infer area zones on the screen as well
as character sequences (to construct typed passwords).

The next work [10] adopted an online processing, where the training and
classification were performed on the smartphone itself through a Trojan
application ,TapLogger, to stealthily monitor the movement changes of the
device and try to log the number pad passwords and screen lock PINs. Two
sensors were used: the accelerometer for taps detection, and the Orientation
sensor for tap positions inference.

The same authors of TouchLogger published another work again [11]. The
purpose of the study was to provide a more thorough investigation on the
practicality of such an attack, and to compare the performance of different
classification schemes, and the impact of different devices, screen dimensions,
keyboard layouts or keyboard types. This paper examined the use of gyroscopes
output on mobile devices for the attack, and indicated that inference based on
the gyroscope is more accurate than that based on the accelerometer.

TapPrints [12], the framework presented in another paper was evaluated across
several platforms including different operating systems (iOS and Android) and
form factors (smartphones and tablets). It also showed a combined approach
that uses both the accelerometer and gyroscope for achieving better accuracy.
Finally, and most recently, the authors of [13] focused solely on the
accelerometer sensor to further investigate the practicality of sensors side
channels in inferring Android four-digit PINs and password pattern (swiping).
Contrary to previous last two works, they found that accelerometer based
techniques perform nearly as well, or better, than gyroscopic based techniques.

To the best of our knowledge, no previous study addressed the relative
performance of all relevant Android sensors in conducting the inference attack.
In addition, we also consider fusing the data from more than one sensor for that
matter. In a preliminary version of our study, we started by evaluating sensors
performance on only a single Android smartphone [14]. In this paper, we
augment the analysis with sensors from another more recent device, and include
more variations in the data preprocessing and fusion options, as well as in the
feature set of the sensors data.

 Sensors in Keystrokes Inference Attack on Android 123

4 Methodology

Keystrokes inference can be viewed as a machine learning problem, in
particular, a classification task that maps collected patterns of raw sensor signals
data into corresponding key classes. Abiding by typical machine learning
process sequence, raw data are collected from the source, and pre-processed,
and then features are selected. Part of the resulting dataset is labeled with the
correct class to form a training examples subset, and the rest is reserved for
evaluation purposes as a test subset. In the following subsections we present
those steps in more detail.

(a)

(b)

Figure 2 Experiment settings (a) Hardware specs and (b) user typing profile.

124 Ahmed Al-Haiqi, et al.

4.1 Data Collection

An application was built for the purpose of acquiring sensors data out of an
Android smartphone. Our raw data are the readings of four sensors, two of
which are synthetic sensors, derived from a combination of up to three hardware
sensors, as noted in section 2. A set of two devices was used in the experiment:
a Galaxy S2 and a Galaxy S3, both are of different screen sizes and sensors
specs. One user was utilized to type all data sets to ensure consistent typing and
holding style factors that could affect the inference performance. Figure 2(a)
lists the main hardware specifications of the devices and their built-in sensors,
while Figure 2(b) shows the typing profile of the user throughout the
experiment.

The UI of the application, depicted in Figure 3, allows for the selection of the
sensor in each session, and a layout similar to the dialing soft keypad of
Android 4.0.3 is presented to the user, where he was asked to key in almost the
same set of around 300 keys in each session. The key set covers uniformly the
ten digits of the numbers soft keypad. For each device, two datasets were
generated from the same linear accelerometer, but distinct by the use of high
pass filtering, an option that the user can choose by selecting a checkbox on the
screen. Filtering is one of the common techniques to mitigate noise in sensors
data, and in that context, low pass filters are more useful. However, high pass
filters can extract the most fluctuating components, in which we are more
interested. The interface also includes an option for fusing the data, upon which
all four sensors are registered with Android, and the readings from all sensors
are recorded in the same session. This is useful to inspect the case when the
feature vector of a dataset example comprises components from different
sensors together.

Figure 3 User Interface of the Android app used to collect the data.

 Sensors in Keystrokes Inference Attack on Android 125

4.2 Pre-processing

Raw sensors data usually need to be processed before feeding into a learning
system. One of the most important steps in the context of the current attack is
the detection, and extraction of the signal segments that correspond to key
strokes from the continuous stream of sensors reading. This step could form a
separate research task, and several approaches might be followed. Some of the
previous works on this attack regard this task as a straightforward anomaly
detection problem [9], or a simple classification problem [12], while others treat
it as a significant part of their whole system [10]. Figure 4 illustrates the signals
collected from the gyroscope and the accelerometer along the x, y and z axes
while dialing the phone number “0123034880” using the screen shown in
Figure 3. It could be seen from the distinct spikes corresponding to the
individual key taps, that the task of isolating keystrokes is conceivably doable.
Yet, some authors leave this step as a separate undertaking that lies on the
shoulder of the attacker, and assumes knowledge of the keystrokes delimitations
[13]. We followed the same suit, as the course of extracting this knowledge is
independent of the eventual performance, assuming consistency among all
datasets. We isolated the keystrokes sensors data by matching their timestamps
to the start and end time of each button click event, which we also collect during
the experiment using Android-provided motion events, namely the “onTouch”
method. This method was implemented as per the onTouchListener interface
requirement. It is these events that supply the experiment with the labels
necessary for the training examples.

Figure 4 Readings from the (a) gyroscope and (b) accelerometer while dialing
the number “0123034880”.

Other pre-processing techniques are also possible and usually crucial for
successful learning, including normalization and calibration. Normalization is
needed when different features of input data belong to different scales of several

(b) (a)

126 Ahmed Al-Haiqi, et al.

order of magnitude discrepancies. Rescaling might be necessary to ensure that
no single feature has influence that may not reflect their real relative importance
in deciding the outcome. In our case, all sensors reading in all three axes are of
the same or only one order of magnitude variance. Calibration is usually also
needed, for example, to remove the projection of Earth gravity from
accelerometer data and initial orientation from gyroscope data. Using the linear
accelerometer in our experiment ensures the already gravity-less acceleration
measurements, while initial bias in other sensors are not of much concern since
the whole experiment is conducted under the exact same conditions, including
any initial biases.

In our data sets we have encountered no missing values, as we have collected all
the data ourselves programmatically. Very few outliers could be seen, probably
because of abrupt unintended motion of the user hands. We simply got rid of
those outliers, as they play no representative role in the input data. We also did
not need any dimensionality reduction techniques, as our data are already of
relatively low dimension (18, in most cases, except when applying sensors
fusion, where every sensor contributes 18 features, and when integrating
gyroscope data, where three more features, the derived rotation angles along the
three axes, are added).

Another significant pre-processing we applied, besides keystrokes extraction, is
the aggregation of sensors data by each key, as explained in the next section, to
create the features. Some works in the literature had to normalize the sampling
rate of sensors, termed de-jittering in [11], to compensate for non-uniform
sensors sample intervals. However, this is basically needed for the purpose of
standard signal analysis methods, whereas our features are mainly simple
statistics that use aggregation of few samples per each key, as discussed later,
and no de-jittering was applied.

Finally, we also included the option of integrating the gyroscope data before
training. The purpose is to experiment with the gyroscopic data as a source on
angular displacement rather than angular speed. Taken as a rate of change in
angular shift, gyroscope data could be integrated based on basic calculus to
obtain the distance traveled, in this case the shift angle. Despite the fact that
integration often introduces drift to the gyroscope readings, we neglect this error
as the integration is performed for each set of readings associated with one
keystroke. In this way, we ensure a sort of reset action per every key tap, and
the time intervals to accumulate noise errors are very short.

 Sensors in Keystrokes Inference Attack on Android 127

4.3 Feature Selection

For the purpose of classification, the input dataset is a set of examples. Each
example is a features vector (collection of features or attributes), which is fed to
the classifier and mapped collectively to a pre-set output label (a digit key, in
our case). Previous works on the keystrokes inference attack vary greatly in the
set of features employed for classification, and there is no obvious evidence of
which set is better, indicating an open research area in this direction. For our
experiment, we have chosen to apply simple statistics on sensors data from the
time domain only, though some authors include also frequency domain signal
features.

The output of our application is a set of files, each recording a continuous
stream of readings from one sensor, or the combination of sensors in case of
data fusion. In addition, one file always contains the touch events information,
namely the start time, end time, and the particular tapped key. For each sensor,
there is a corresponding output file in every session. This file contains all the
collected sensor's readings during the session, a reading per line. Each sample
reading is a quadruple, {x, y, z, t} for the sensor's output along the three axes,
plus a timestamp in milliseconds. Likewise, in every respective session, the
other file records each touch event (a keystroke) with the corresponding interval
in milliseconds. One touch event normally spans several sensor samples. In our
experiment, a key tap takes on average 80 ms, and the sampling rate of the
sensors is, at most, 100 samples per second in theory, except for the gyroscope
in Galaxy S3 phone, where the minimum delay is around 5000 microsecond,
which represents a frequency of 200 samples per second. This means around 10
samples per key in the best case, excluding the case of the STMicroelectronics
gyroscope where the available samples per key are more, and hence the
expected performance is better in general. In practice, however, we found that
each key corresponds to an average of 5 sensor samples (15 samples for Galaxy
S3 gyroscope).

Individual samples are meaningless relative to a key tap, and so we aggregate
the samples for each key, i.e. combine all the samples that span the period of a
key tap producing simple standard statistics of min, max, mean (µ), median
(M), standard deviation (σ) and skewness (3*(µ–M)/σ). In this manner, for a
dataset of 300 keys, for instance, we obtain 300 examples, each of which
comprises 18 features, plus the class label (the key symbol itself). Each example
is written to a line in a CSV file, which is used as the final input dataset for the
learning process. All the motion sensors generate three components of the
physical quantity they measure; one component along each of the three
coordinates axes. Therefore, out of the six statistics the result is 18 different
values where each statistic is computed for every axis. For instance, one

128 Ahmed Al-Haiqi, et al.

example in the training dataset would comprise the attributes XminA, YminA,
ZminA, XmaxA, YmaxA, ZmaxA, XmeanA, and so forth. The first letter in the
attribute name refers to the axis to which the feature value belongs, and the last
letter refers to the sensor from which the dataset was driven. In the case of this
example, the sensor is the accelerometer. The middle part of the attribute name
tells the particular statistic constituting the feature. The last attribute would be
the particular keystroke for which the time interval matched the interval of the
aggregated sensor data. Note that every keystroke spans several sensor readings.
In our dataset, each value is taken to be a feature to characterize a keystroke.

The aggregation could be accomplished using any programming language or
computational package (e.g. MATLAB or Octave), though we have written
simple scripts in the R language to match sensors and key data, and perform the
statistical calculations. Figure 5 shows one of those scripts for the accelerometer
data, where the steps of aggregating sensors data and producing the features are
detailed.

1. key <- read.csv("itb/acctrue_10_11/key_10_11.csv")

2. acc <- read.csv("itb/acctrue_10_11/acctrue_10_11.csv")

3. keyAcc <- key;

4. for (i in 1:nrow(key)) {

5. keyAcc$XminA[i] <- min(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

6. keyAcc$YminA[i] <- min(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

7. keyAcc$ZminA[i] <- min(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

8. keyAcc$XmaxA[i] <- max(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

9. keyAcc$YmaxA[i] <- max(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

10. keyAcc$ZmaxA[i] <- max(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

11. keyAcc$XmeanA[i] <- mean(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

12. keyAcc$YmeanA[i] <- mean(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

13. keyAcc$ZmeanA[i] <- mean(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

14. keyAcc$XmedianA[i] <- median(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

Figure 5 An R script that aggregates accelerometer data and produces the
features set.

 Sensors in Keystrokes Inference Attack on Android 129

15. keyAcc$YmedianA[i] <- median(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

16. keyAcc$ZmedianA[i] <- median(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

17. keyAcc$XsdA[i] <- sd(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

18. keyAcc$YsdA[i] <- sd(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

19. keyAcc$ZsdA[i] <- sd(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

20. keyAcc$XskewA[i] <- 3*(mean(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]) - median(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]])) / sd(acc$X[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

21. keyAcc$YskewA[i] <- 3*(mean(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]) - median(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]])) / sd(acc$Y[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

22. keyAcc$ZskewA[i] <- 3*(mean(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]) - median(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]])) / sd(acc$Z[acc$Time >= key$DownTime[i] & acc$Time <=

key$EventTime[i]]);

23. }

24. write.table(keyAcc, "itb/acctrue_10_11/keyAcc_10_11.csv")

Figure 5 Continued. An R script that aggregates accelerometer data and
produces the features set.

4.4 Classification

The goal of the inference attack is, given a bunch of sensors samples, to map
every pattern of readings into an output class, and the percent of correct
mapping forms the accuracy of the classifier. We adopted the implementation of
classification algorithms in Weka suite of machine learning software [15].
Many classifiers are available in Weka, and choosing a particular method is not
critical for our experiment. However, our initial exploration revealed that the
ensemble learning can give better results, with implementations in “meta” Weka
package. In particular, “Bagging” classifier showed the best performance on
average (with FT base model), though we do not aim to venture any claims
related to classification algorithms performances. “Bagging” is a general
technique for improving the accuracy of a given learning algorithm. As an
ensemble learning method, it aggregates multiple learned models of the same
type (e.g. decision trees), and uses voting to combine the output of individual
models [16].

130 Ahmed Al-Haiqi, et al.

5 Evaluation and Discussion

All experiment runs were conducted under 5-folds cross-validation testing
option, and almost the same dataset size of around 300 examples. Figure 6
shows the results of classifying the datasets using Bagging ensemble learning,
with Functional Trees base model [17]. Figure 6(a) depicts the comparative
classification accuracy of all the sensors options in the first device, while Figure
6(b) presents the same results for the second device.

(a)

(b)

Figure 6 Experimental results: classification accuracy comparison among all
sensors (a) in Galaxy S2 smartphone (b) in Galaxy S3 smartphone.

 Sensors in Keystrokes Inference Attack on Android 131

It is evident from the two graphs that the relative performances of the sensors in
both devices are similar. Because of the larger screen size of Galaxy S3, one
would expect better ability to classify different key zones. Nevertheless, its
performance is comparable or inferior to that of Galaxy S2 (at least in the many
runs of our experiments). One possible reason for this result is the observation
that the S3 phone was dressed in a thick leather case, which might contribute to
mitigate the impact of the taps force on the surface of the device.

Comparing the gyroscope performance with and without integrating its data
reveals no actual value out of integration. The graphs in Figure 7 illustrate the
accuracy of two experiments, for each of the two devices. One experiment
involves a gyroscope dataset of 18 features as usual. The second experiment
adds three more features, corresponding to the integrated sensor values per a
coordinate axis. This conclusion seems logical, as the rate of change in distance
(velocity) is proportional to the distance, and their indication is the same in the
context of our need, namely to make a distinction between different areas on the
screen. We have included the analysis of this option since gyroscope data is
typically integrated in many applications, where the need is specifically to
measure the inclination or tilt of the device over an extended period of usage
time, rather than the instant change in angular displacement. It should be noted
however that relying on the gyroscopic data for the purpose of classifying
different keystrokes bears a strong dependency on the force by which the user
taps on the screen, which might seem user or even session-dependent.
Nonetheless, what makes this task conceivable is the fact that the angular
velocity (the output of the gyroscope) is a vector quantity, and its sign depends
on the direction of rotation, making separate areas in the coordinate space
distinguishable, at least by the sign of the data.

Figure 7 Classification accuracy of the gyroscope with and without integration.

132 Ahmed Al-Haiqi, et al.

Noticing the marked performance of the gyroscope, it looked appealing to
further experiment with the features in its dataset. Trying out separate groups of
statistics as well as few combinations of statistical groups resulted in the
performance scores shown in Figure 8. For example, in the specific dataset of
Figure 8, drawn from Galaxy S3 gyroscope, it appears that the minimum
statistic has the most influence in the correct classification of keystrokes.

Figure 8 Classification accuracy of few permutations of gyroscopic statistics.

In another set of experiments, we focused on the fused dataset of sensors. In
Table 2, we present one instance of those experiments where the relative
performance of the individual sensors is shown more manifest, as well as the
promising compounds of two sensors. The results are consistent with those in
Figure 6, besides the important conclusion that in the context of this particular
attack, data from other sensors are more of a noise to the gyroscopic signals.
Still, in the absence of a gyroscope, the combination of accelerometer and
rotation vector data can be of utility that outperforms their individual
performances.

Several concluding notes are in order, based on the obtained results. It is
obvious that, confirming to [11]-[12], the gyroscope sensor alone has a superior
performance compared to all other sensors. This result is actually consistent
with the observation that rotations have more power to distinguish between
different keys than shifts. This is also the reason for the inferior accuracy of
both accelerometer variations (with and without high pass filtering), and even
the rotation vector which relies on the accelerometer as one of the components

 Sensors in Keystrokes Inference Attack on Android 133

in deriving its value. Another factor that affects the rotation vector performance
is the magnetic field sensor, which is also one of the components in calculating
the vector values. Magnetic field sensors are known for their inaccurate and
noisy outputs in current commodity smartphones, especially in the presence of
nearby metals. What supports this conclusion is that the accuracy of the rotation
vector sensor is still much better than the synthetic sensor that is based on the
getOrientation method, though both depend on the accelerometer and
magnetometer. The difference in accuracy is apparently due to the inclusion of
gyroscope into the derivation of the rotation vector.

Table 2 Classification accuracy results of different combinations of sensors.

Sensor Samsung Galaxy S2 Samsung Galaxy S3

All sensors 91.56% 93.24%
Gyroscope only 95.63% 94.12%

Accelerometer only 56.88% 63.24%

Rotation vector only 75.94% 57.35%

Gyroscope + accelerometer 93.44% 93.53%

Accelerometer + rotation vector 80.63% 71.18%

Gyroscope + rotation vector 92.19% 93.53%

It also seems that sensors fusion is not always the best option, and depends
largely on the proper selection of the ingredient sensors. Filtering also depends
on the context, and in our case, it appears that the already filtered linear
accelerometer has less performance with more filtering; the high pass filter,
despite more appropriate to extract occasional motion like keystrokes, could
leave the classifier with less than enough information to discern different keys.
Finally, it is important to note that all the results related to sensors'
performances that we reported in this paper are associated with the application
of keystroke inference attack, or similar applications that involve classification
of sensors data into discernable zones on the touch screen. This might not be the
case in more traditional applications; e.g. gaming or augmented reality.

It is worth mentioning that a key reason which makes this attack an attractive
option from a perpetrator perspective is the low requirement for conducting the
attack in terms of security permissions. Android does not impose special
permissions to access the motion sensors. This means that any Trojan
application with a convincing benign purpose has unlimited access to those
sensors. This fact has driven many researchers to advocate the enforcement of
more restrictions on sensors access through security permissions, similar to

134 Ahmed Al-Haiqi, et al.

those required to access more traditional sensors like the camera and sound
recorder.

6 Conclusions

Researchers have already started the study of the potential of integrated sensors
on modern smartphones as a privacy threat. Otherwise useful in numerous
benign applications, certain sensors could unwantedly reveal sensitive
information related to the input of the user. Accelerometers and gyroscopes in
particular, among other motion sensors, proved viable in tracking subtle
(shakes) resulting from taps or keystrokes on the smartphone touch screen.
Selecting the most appropriate sensor or combination of sensors, along with the
right features, has much left to be researched. In this paper, we reviewed only a
small set of the possible combinations of sensors data and their treatment in the
implementation of the new keystrokes inference attack, specifically on Android
platforms. The objective was to compare the relative performance of different
built-in motion sensors, with respect to this attack.

Four sensors were compared in an experiment that implements the attack,
namely, the linear accelerometer, gyroscope, rotation vector sensor, and the
combined accelerometer and magnetometer synthetic sensor. Moreover, the
option of fusing more than one sensor is examined. To enrich the discussion
further, a couple of processing options for the accelerometer (filtering) and the
gyroscope (integration) are considered. The results showed a greater benefit of
exploiting the gyroscope sensor, or a fusion of several sensors (perhaps
excluding the sensors with magnetometer component) from the perspective of
an attacker. As discussed in the article, appealing processing in many other
applications of sensors could fall short of serving the purpose of the attack.

For a future work, we vision an integrated solution that incorporates more
advanced processing of the accelerometer and gyroscope readings to calculate
the resulting tilt, rather than rate of change, of the user taps. Fusing the right
balance of these two sensors in terms of features and preprocessing has the most
promising performance, we believe, based on the current results.

Acknowledgements

This research is supported by the Ministry of Higher Education under research
grant LRGS/TD/2011/UKM/ICT/02/02.

 Sensors in Keystrokes Inference Attack on Android 135

References

[1] International Jawsware, Interactive Overlay, available at:
http://www.jawsware.mobi/code_OverlayView/ (20 November 2013).

[2] Aviv, A.J., Gibson, K., Mossop, E., Blaze, M. & Smith, J.M., Smudge
Attacks on Smartphone Touch Screens, in Proceedings of the 4th
USENIX Conference on Offensive technologies, USENIX
Association Washington, DC, USA, 9 August 2010, pp. 1-7, 2010.

[3] Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A. &Wang, X.,
Soundcomber: A Stealthy and Context-Aware Sound Trojan for
Smartphones, in Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS), Internet Society, San Diego,
California, 6-9 February 2011, pp. 17-33, 2011.

[4] Maggi, F., Volpatto, A., Gasparini, S., Boracchi, G. & Zanero, S., A Fast
Eavesdropping Attack Against Touchscreens, in Information Assurance
and Security (IAS), 2011 7th International Conference on, Mir Labs,
Malacca, Malaysia, 5-8 December 2011, pp. 320-325, 2011.

[5] Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T. & Campbell,
A.T., A Survey of Mobile Phone Sensing, Communications Magazine,
IEEE, 48, pp. 140-150, 2010.

[6] Cai, L., Machiraju, S. & Chen, H., Defending Against Sensor-Sniffing
Attacks on Mobile Phones, in Proceedings of the 1st ACM workshop on
Networking, systems, and applications for mobile handhelds, ACM,
Barcelona, Spain, 16-21 August 2009, pp. 31-36, 2009.

[7] Motion Sensors, available at: http://developer.android.com/guide/topics/
sensors/sensors_motion.html (20 November 2013).

[8] Cai, L. & Chen, H., TouchLogger: Inferring Keystrokes on Touch Screen
from Smartphone Motion, in Proceedings of the 6th USENIX Conference
on Hot Topics in Security, pp. 9-9, 2011.

[9] Owusu, E., Han, J., Das, S., Perrig, A. & Zhang, J., Accessory: Password
Inference Using Accelerometers on Smartphones, in Proceedings of the
Twelfth Workshop on Mobile Computing Systems & Applications,
ACM, San Diego, CA, USA, 28-29 February 2012, p. 9, 2012.

[10] Xu, Z., Bai, K. & Zhu, S., Taplogger: Inferring User Inputs on
Smartphone Touchscreens Using On-Board Motion Sensors, in
Proceedings of the Fifth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, ACM, Tucson, Arizona, USA, 16-18
April 2012, pp. 113-124, 2012.

[11] Cai, L. & Chen, H., On the Practicality of Motion Based Keystroke
Inference Attack, in Trust and Trustworthy Computing, ed: Springer, pp.
273-290, 2012.

[12] Miluzzo, E., Varshavsky, A., Balakrishnan, S. & Choudhury, R.R.,
Tapprints: Your Finger Taps Have Fingerprints, in Proceedings of the

136 Ahmed Al-Haiqi, et al.

10th International Conference on Mobile Systems, Applications, and
Services, ACM, Low Wood Bay, Lake District, United Kingdom, 25-19
June 2012, pp. 323-336, 2012.

[13] Aviv, A.J., Sapp, B., Blaze, M. & Smith, J.M., Practicality of
Accelerometer Side Channels on Smartphones, in Proceedings of the 28th
Annual Computer Security Applications Conference, ACM, Orlando, FL,
USA, 03-07 December 2012, pp. 41-50, 2012.

[14] Al-Haiqi, A., Ismail, M. & Nordin, R., On the Best Sensor for Keystrokes
Inference Attack on Android, Procedia Technology, 8, pp. 947-953, 2013.

[15] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. & Witten,
I.H., The WEKA Data Mining Software: An Update, ACM SIGKDD
Explorations Newsletter, 11, pp. 10-18, 2009.

[16] Breiman, L., Bagging Predictors, Machine Learning, 24, pp. 123-140,
1996.

[17] Gama, J., Functional Trees, Machine Learning, 55, pp. 219-250, 2004.

