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Abstract. Introducing motion sensors into smartpes contributed to a wic
range of applications in hum-phone interaction, gaming, and many oth
However, builtin sensors that detectsubtle motion changes (e.
accelerometers), might also reveal information altaps on touch scree: the
main userinput modi.. Few researchers have already demonstrated theoit
exploiting motion sensors as s-channels into inferring keystrokes. Taker
most as initial explorations, much research isl stdeded to analyze tt
practicality of the new threat anxamine various aspects of its implementat
One important aspeaffecting directly the attack effectivendsghe selection ¢
the right combination of sensorto supply inference data. Although oth
aspects also play crucial role (ethe features sgtwe start in this paper
focusing on the comparison of different availabEnsors, in terms of tr
inference accuracy. We consider individual sensbigped on Android phone
and study few options of preprocessing their rawaskts as well as sing
several sensorgtading. Our results indicate an outstanding performaridhe
gyroscope, and the potentiof sensors data fusion. Howeyét seems the
sensors with magnetometer component or the acecedten alone have le
benefit in the contd of the adverted attac

Keywords: android; motion sensors; sensor-based attack; siti@nnel attack
smartphone securityguchscreen taps inferer.

1 Introduction

Key logging attacks have been, and continue tabmajor security concern
traditional computing platforms. PC operating syselike Windows allov
system message interception, thereby enabling bawgkd applications t
capture and log the key stro of active applications in the foreground. Si
Trojan applications are very common in traditioR&s, and although usua
called keyloggers, many are capable of capturingenmaformation than met
keyboard input, such as screenshots and mouses.civen when keyloggel
are not easy to install or hide, hardware keyboalldsv for backdoor channe
that could be resorted to in order to guess theahahput. Such channels ¢
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commonly termed side channels, and include physmatnomena like
electromagnetic and acoustics emanations.

Moving to smartphones, the situation is quite défé. Smartphone OSes, like
Android, restrict the interception of keystrokesthe current view that has the
focus, and no direct method can be used by Trgjas o log user taps (but for
a workaround example, see [1]). Moreover, the latkphysical keyboards

limits side channel avenues at the disposal otledts. For instance, the rich
heritage of research on electromagnetic and acowstianations is not

applicable on smartphones. Yet, innovative sidenchE to sniff on user input
have been proposed in the literature, includingahalysis of finger smudges
left on the touch screen surface [2], employing died tone sounds [3] that
resembles more traditional acoustic emanationskattand even the old-school
low-tech shoulder-surfing [4].

Embedding sensors into smartphones had made thenunprecedented
platform, combining communications, computing aadsing capabilities. User
interface, gaming, and healthcare are but a fewadtmsrin which sensors found
instant applications [5], and a key idea aroundctvhinany more applications
evolve is context awareness. On the flip side, @snsring along many serious
implications, especially related to user privaces®archers have studied the
potential threat of more traditional sensors, ngm8PS, camera and recorder,
on user privacy and/or security (e.g. [6]). Lesaditiional sensors, such as
motion sensors (e.g. accelerometers and gyroscopeske received little
attention, until recently. The key observation thaived motion sensors into
the threat spot is the correlation between uses tap touch screen and
vibrations or motion changes to the body of the rgph@ne itself.
Accelerometers, for example, can sense the lineegleration caused by the
force of user taps, while gyroscopes can measugelan velocities around
specific axes. Obviously, the original benign pupof theses sensors are far
from such vicious uses and that makes them a gitivep side channels.

Few authors in academia have demonstrated thebiiggisof such a side

channel attack, dealing with the task as a clasdiéin problem to map sensors
reading into key labels. Section 3 presents a Isuefey of these works. The
availability of several sensors on consumers alaats devices, in particular
smartphones, raises a seemingly interesting quesifo which sensor, or

collection of sensors thereof, is of greater paatmh the context of the new
threat. In this paper, we set off to experimenhwite performance of different
sensors that are supported by Android operatingesysand integrated in most
Android-powered phones. Section 2 explains shdfily considered sensors,
and how it is possible to capture their data witidéid help. For the purpose
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of the comparison, we actually implemented theckt@ollecting sensors data
through an Android app. Details of the experimeatgiven in section 4.

It is important to notice that the aim of this pagenot to improve the accuracy
of the attack, or evaluate its practicality, butn®re about comparing the
performance of sensors under the same conditiohighvware well-controlled.
Our experiment in this light could focus on theat®le performance between
different datasets on the same setting, rather lihaking for the best among
several settings. The latter is the focus of mesemnt works discussed in section
3, while the early works were concerned with theelfaasibility of the attack.

2 Technical background

Android supports a variety of sensors, of whichrdevant to the current attack
are motion and position sensors. Table 1 listsstigported motion sensors, as
of Android 4.2.2. Besides those sensors, Androgb glrovides a synthetic
sensor based on the values from the acceleromeilenagnetometer, through a
method call in its sensors APpdtOrientation(). Accelerometer raw data
contains both gravity acceleration (due to thehéagravity force) and linear
acceleration (due to the linear motion of the phioody). The former is more of
a bias to our experiment as we do not consider theréclination of the phone
with respect to the earth surface, and therefotl taaw accelerometer's data as
well as gravity sensor's data are excluded, adirtbar accelerometer can take
their role.

Tablel Motion sensors that are supported on Android platéo(source [7]).

Sensor Description Units of
measur ement

TYPE_ACCELEROMETER Acceleration force along the x, yand z a m/<
(including gravity).

TYPE_GRAVITY Force of gravity along the x, y and z axes m/s

TYPE_LINEAR_ACCELEROMETER Acceleration force along the x, y andzes m/&
(excluding gravity).

TYPE_GYROSCOPE Rate of rotation around the x, y and z axes  rad/s

TYPE_ROTATION_VECTOR Rotation vector component along the x Unit-less

and z axes (axis * si®/)).

Motion sensor readings are expressed with referémca 3-axis coordinate
system. This coordinate system is defined relaivéhe device's screen when
the device is held in its default orientation (Figd): the x axis is horizontal
and points to the right, the y axis is vertical quaihts up, and the z axis points
toward the outside of the screen face. This coatdirsystem is not with
reference to the earth's frame, and hence doeshamige irrespective of the
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device orientation. For example, if the phone id keorizontally on a table with
its screen surface to the sky, a motion towarddetievould generate negative
readings along the x axis. If the phone is liftedizontally, the z axis's readings
are positive.

Android OS provides a sensors programming framewooknposing a set of
classes and interfaces that could be used to atteesensors and read their raw
data. Basic tasks accomplished by that API incldééection of available
sensors on a device, determining their capabil{ges., maximum range, power
requirements, and resolution), reading raw senata, dlefining the minimum
rate at which to acquire sensor data, and to egisiregister sensor event
listeners that monitor sensor changes.

Figurel Coordinate system of the motion sensors.

Sensor values are obtained through an object, Heveat, in a multi-
dimensional array named values|[]. Elements of thayacorrespond to sensor
readings along each of the three coordinate ax@seXample, values[0] might
convey the acceleration force along the x axis eviihlues[1l] contains the
acceleration force along the y axis, and so fokttteleration forces reflect the
change in velocity along the axes due to user magog. walking) or due to
direct user input (e.g. tapping on the device). Raeeleration data, represented
by the accelerometer sensor includes the acceleratiie to gravity force.
Android provides also filtered linear acceleratibat can be formulated as

Linear acceleration = raw acceleration — gravitycateration

Theoretically, accelerometer data could be integratwice to obtain the
distance of motion. However, the result of thisgess is prone to much error in
practice, which leaves very little benefit considgrthe tiny differences in
displacement of different keys on the touch scréecould also be argued that
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displacement is proportional to the force by whilcl user taps on the device,
the same as the acceleration itself, and theré¢fere is really no specific value
in taking the additional double integration stepeTilt of the device, however,

is another path to consider, utilizing the accefester, which we leave for

future work.

Gyroscope readings reflect the rate of rotatiaa @ngular velocity) around the
three axes, and ideally measure zero when the eleviat rest. Again, it is
possible to calculate the angle of rotation viagmnating the gyroscope data.
Similar argument to the case of accelerometersdcbel made, though we
actually consider this option in one of our expemis. Gyroscopes data are
known to suffer from a drift in the reported valugisen integrated, because of
the accumulated measurement errors over timenaise plus initial offset).
Typically, data from other sensors are utilized¢donpensate for such errors. In
our case, a keystroke on the device is short endagfustify neglecting
accumulated drift and compute the integration ef fhe few readings during a
single keystroke anew with each tap.

The rotation vector represents the orientatiorhefdevice as a combination of
an angle and an axis, in which the device hasewttirough an angkearound
an axis (x, y, or z) [7]. It is a synthetic senffuait maps the device coordinate
system to the global coordinate system using tleelemmeter, magnetometer,
and the gyroscope. In the global coordinate systieenx axis points to the east,
the y axis points to the north, while the z axi;nfmto the sky away from the
surface of the earth.

Finally, Android also provides a method called g&t6tation() that takes as
input a rotation matrix. The rotation matrix midig generated using data from
both the accelerometer and the magnetometer. Thiputouof the
getOrientation() method is the rotation aroundxtgpitch), y (roll), and z (yaw)
axes. The coordinate system of this method is aintd the global coordinate
system described in the previous paragraph, exbeptthe x and z axes are
inverted. However, it is worthy to mention that rimamagnets can largely
affect magnetometer data, leading to less accteatsts.

3 Rdated work

Authors in [8] suggested first the use of motionsses to infer keystrokes on
touch screens. They developed an Android applicatiamed TouchLogger, to
demonstrate the attack. The application used nwwlrdy soft keypad in the
landscape mode. TouchLogger utilized the synthetientation sensor, which
relies on accelerometer and magnetometer hardwasos. Orientation sensor
was deprecated in Android 2.2 (API level 8).
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Following was another work [9], where an Androidpligation, ACCessory,
was built to evaluate a predictive model, trainedlyoon acceleration
measurements. ACCessory attempted to infer areaszom the screen as well
as character sequences (to construct typed password

The next work [10] adopted an online processingemhthe training and
classification were performed on the smartphonelfitthrough a Trojan
application ,TapLogger, to stealthily monitor theowvement changes of the
device and try to log the number pad passwordssaneen lock PINs. Two
sensors were used: the accelerometer for tapstideteand the Orientation
sensor for tap positions inference.

The same authors of TouchLogger published anottek vagain [11]. The
purpose of the study was to provide a more thoroigestigation on the
practicality of such an attack, and to compare gheormance of different
classification schemes, and the impact of diffedmtices, screen dimensions,
keyboard layouts or keyboard types. This paper éxeghthe use of gyroscopes
output on mobile devices for the attack, and ingdahat inference based on
the gyroscope is more accurate than that basdaecsctelerometer.

TapPrints [12], the framework presented in anofiagrer was evaluated across
several platforms including different operatingteyss (iOS and Android) and
form factors (smartphones and tablets). It alsovgllba combined approach
that uses both the accelerometer and gyroscogfoeving better accuracy.
Finally, and most recently, the authors of [13] Used solely on the
accelerometer sensor to further investigate thetipedity of sensors side
channels in inferring Android four-digit PINs andgsword pattern (swiping).
Contrary to previous last two works, they foundttl&celerometer based
techniques perform nearly as well, or better, tipnoscopic based techniques.

To the best of our knowledge, no previous studyresked the relative
performance of all relevant Android sensors in eaatithg the inference attack.
In addition, we also consider fusing the data fimoore than one sensor for that
matter. In a preliminary version of our study, warted by evaluating sensors
performance on only a single Android smartphone].[14 this paper, we
augment the analysis with sensors from another msment device, and include
more variations in the data preprocessing and fuspions, as well as in the
feature set of the sensors data.
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4 Methodology

Keystrokes inference can be viewed as a machinmihga problem, in

particular, a classification task that maps codidgpatterns of raw sensor signals
data into corresponding key classes. Abiding byicglpmachine learning

process sequence, raw data are collected fromainees and pre-processed,
and then features are selected. Part of the negudtitaset is labeled with the
correct class to form a training examples subsad, the rest is reserved for
evaluation purposes as a test subset. In the folpwubsections we present

those steps in more detalil.
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Min
Sensor Name delay vendor
(ps)
ROTATION VECTOR MPL rotation 10000 Invensense
Phone Samsun - vector Technology
GalaxyS2 || |NEAR_ACCELEROMETER |MPLlinearaccl 10000 |MVensense
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Gyroscope sensor
LSM330DLC 3-axi
. ACCELEROMETER @15 | 10000 |STMicroelectronics
Android 412 Accelerometer
version MAGNETIC FIELD 5K8975Magnet|c 10000 As.athascT.\l
- field sensor Microdevices
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Figure2 Experiment settings (a) Hardware specs and (b)typerg profile.
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4.1 Data Collection

An application was built for the purpose of acquirisensors data out of an
Android smartphone. Our raw data are the readifigow sensors, two of
which are synthetic sensors, derived from a conticinaf up to three hardware
sensors, as noted in section 2. A set of two dewvias used in the experiment:
a Galaxy S2 and a Galaxy S3, both are of diffesenéen sizes and sensors
specs. One user was utilized to type all datatsetgsure consistent typing and
holding style factors that could affect the infaverperformance. Figure 2(a)
lists the main hardware specifications of the dewviand their built-in sensors,
while Figure 2(b) shows the typing profile of theseu throughout the
experiment.

The Ul of the application, depicted in Figure 3pwak for the selection of the
sensor in each session, and a layout similar todibéng soft keypad of
Android 4.0.3 is presented to the user, where reasled to key in almost the
same set of around 300 keys in each session. Theetecovers uniformly the
ten digits of the numbers soft keypad. For eachicdeMvwo datasets were
generated from the same linear accelerometer, ibtihat by the use of high
pass filtering, an option that the user can chdiysselecting a checkbox on the
screen. Filtering is one of the common techniqoesiitigate noise in sensors
data, and in that context, low pass filters areemgseful. However, high pass
filters can extract the most fluctuating compongits which we are more
interested. The interface also includes an optioriusing the data, upon which
all four sensors are registered with Android, amel teadings from all sensors
are recorded in the same session. This is usefinlsfmect the case when the
feature vector of a dataset example comprises coemts from different
sensors together.

100l 17:40

. Number to Sensor

t |-/ HP Filter?

7 8 9

| Write Values to Files l

Figure3 User Interface of the Android app used to colleetdata.
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4.2 Pre-processing

Raw sensors data usually need to be processedetefeding into a learning
system. One of the most important steps in theesdrf the current attack is
the detection, and extraction of the signal segméhat correspond to key
strokes from the continuous stream of sensors mgadihis step could form a
separate research task, and several approachesbmidgbllowed. Some of the
previous works on this attack regard this task adraightforward anomaly

detection problem [9], or a simple classificatianlgem [12], while others treat
it as a significant part of their whole system [llBigure 4 illustrates the signals
collected from the gyroscope and the acceleronaterg the x, y and z axes
while dialing the phone number “0123034880” usitg tscreen shown in
Figure 3. It could be seen from the distinct spikesresponding to the
individual key taps, that the task of isolating &&gkes is conceivably doable.
Yet, some authors leave this step as a separatertakichg that lies on the
shoulder of the attacker, and assumes knowledteedéeystrokes delimitations
[13]. We followed the same suit, as the coursextrfaeting this knowledge is
independent of the eventual performance, assumarsistency among all

datasets. We isolated the keystrokes sensors gatatching their timestamps
to the start and end time of each button click ewghich we also collect during
the experiment using Android-provided motion evenemely the “onTouch”

method. This method was implemented as per the wiilastener interface

requirement. It is these events that supply theeemmnt with the labels

necessary for the training examples.
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Figure4 Readings from the (a) gyroscope and (b) acceleemvetile dialing
the number0123034880.

Other pre-processing techniques are also possifie wsually crucial for
successful learning, including normalization antibcation. Normalization is
needed when different features of input data betordifferent scales of several
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order of magnitude discrepancies. Rescaling mighhécessary to ensure that
no single feature has influence that may not refleeir real relative importance
in deciding the outcome. In our case, all senseaging in all three axes are of
the same or only one order of magnitude varianedib@tion is usually also
needed, for example, to remove the projection ofthEagravity from
accelerometer data and initial orientation fromoggiope data. Using the linear
accelerometer in our experiment ensures the alrgaalyity-less acceleration
measurements, while initial bias in other sensoesnat of much concern since
the whole experiment is conducted under the exatiesconditions, including
any initial biases.

In our data sets we have encountered no missingsahs we have collected all
the data ourselves programmatically. Very few euslicould be seen, probably
because of abrupt unintended motion of the usedshawe simply got rid of
those outliers, as they play no representativeirotee input data. We also did
not need any dimensionality reduction techniquaspar data are already of
relatively low dimension (18, in most cases, excepen applying sensors
fusion, where every sensor contributes 18 featuaesl when integrating
gyroscope data, where three more features, theedierotation angles along the
three axes, are added).

Another significant pre-processing we applied, tesikeystrokes extraction, is
the aggregation of sensors data by each key, daiexg in the next section, to
create the features. Some works in the literatageth normalize the sampling
rate of sensors, termed de-jittering in [11], tanpensate for non-uniform
sensors sample intervals. However, this is bagicakded for the purpose of
standard signal analysis methods, whereas our résatare mainly simple
statistics that use aggregation of few samplesepeh key, as discussed later,
and no de-jittering was applied.

Finally, we also included the option of integratitite gyroscope data before
training. The purpose is to experiment with theoggopic data as a source on
angular displacement rather than angular speecernTak a rate of change in
angular shift, gyroscope data could be integratesedd on basic calculus to
obtain the distance traveled, in this case the sim§le. Despite the fact that
integration often introduces drift to the gyroscopadings, we neglect this error
as the integration is performed for each set oflireg associated with one
keystroke. In this way, we ensure a sort of resgbm per every key tap, and
the time intervals to accumulate noise errors arg short.
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4.3 Feature Selection

For the purpose of classification, the input ddtése set of examples. Each
example is a features vector (collection of featwreattributes), which is fed to
the classifier and mapped collectively to a preeeput label (a digit key, in
our case). Previous works on the keystrokes intererttack vary greatly in the
set of features employed for classification, aretehis no obvious evidence of
which set is better, indicating an open researela an this direction. For our
experiment, we have chosen to apply simple stedigth sensors data from the
time domain only, though some authors include &lsquency domain signal
features.

The output of our application is a set of filescleaecording a continuous

stream of readings from one sensor, or the combmalf sensors in case of
data fusion. In addition, one file always contdime touch events information,

namely the start time, end time, and the partictapped key. For each sensor,
there is a corresponding output file in every sessihis file contains all the

collected sensor's readings during the sessioeading per line. Each sample
reading is a quadruple, {x, y, z, t} for the sersautput along the three axes,
plus a timestamp in milliseconds. Likewise, in gveespective session, the
other file records each touch event (a keystrok#) the corresponding interval

in milliseconds. One touch event normally spanesd\sensor samples. In our
experiment, a key tap takes on average 80 ms, lmmdampling rate of the

sensors is, at most, 100 samples per second inytheaept for the gyroscope
in Galaxy S3 phone, where the minimum delay is @do&000 microsecond,

which represents a frequency of 200 samples pended his means around 10
samples per key in the best case, excluding the althe STMicroelectronics

gyroscope where the available samples per key aee,mand hence the

expected performance is better in general. In m®achowever, we found that

each key corresponds to an average of 5 sensotesg(ip samples for Galaxy
S3 gyroscope).

Individual samples are meaningless relative toyatke, and so we aggregate
the samples for each key, i.e. combine all the $srihat span the period of a
key tap producing simple standard statistics of, miax, mean (1), median
(M), standard deviationo] and skewness (3*(u—My). In this manner, for a
dataset of 300 keys, for instance, we obtain 308mgkes, each of which
comprises 18 features, plus the class label (thesmbol itself). Each example
is written to a line in a CSV file, which is usesl the final input dataset for the
learning process. All the motion sensors generateet components of the
physical quantity they measure; one component aleagh of the three
coordinates axes. Therefore, out of the six stagighe result is 18 different
values where each statistic is computed for evedig. &or instance, one
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example in the training dataset would compriseditebutes XminA, YminA,
ZminA, XmaxA, YmaxA, ZmaxA, XmeanA, and so forthh& first letter in the
attribute name refers to the axis to which theuieatvalue belongs, and the last
letter refers to the sensor from which the dataset driven. In the case of this
example, the sensor is the accelerometer. The enltltt of the attribute name
tells the particular statistic constituting thettea. The last attribute would be
the particular keystroke for which the time intdruatched the interval of the
aggregated sensor data. Note that every keystpadessseveral sensor readings.
In our dataset, each value is taken to be a fetdurkaracterize a keystroke.

The aggregation could be accomplished using angranoming language or
computational package (e.g. MATLAB or Octave), thouve have written
simple scripts in the R language to match sensuiskay data, and perform the
statistical calculations. Figure 5 shows one oséhscripts for the accelerometer
data, where the steps of aggregating sensors ddtpraducing the features are
detailed.

key <- read.csv("itb/acctrue_10_11/key_10 11.csv")

acc <- read.csv("itb/acctrue_10_11/acctrue_10_11.csv")

keyAcc <- key;

for (i in 1:nrow(key)) {

keyAccSXminAli] <- min(accSX[accSTime >= keySDownTimel[i] & accSTime <=

keySEventTimelil]);

6. keyAccSYminAli] <- min(accSY[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimelil]);

7. keyAccSZminAl[i] <- min(acc$Z[accSTime >= keySDownTime[i] & accSTime <=

keySEventTimel[i]l);

vk wN e

8. keyAccSXmaxAli] <- max(accSX[accSTime >= keySDownTimel[i] & acc$Time <=
keySEventTimelil]);

9. keyAccSYmaxAl[i] <- max(accSY[accSTime >= keySDownTime[i] & accSTime <=
keySEventTimel[i]l);

10. keyAccSZmaxA[i] <- max(accSZ[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimelil]);

11. keyAcc$SXmeanAl[i] <- mean(acc$X[accSTime >= keySDownTimel[i] & acc$Time <=
keySEventTimeli]]);

12. keyAccSYmeanA[i] <- mean(accSY[accSTime >= keySDownTime[i] & accSTime <=
keySEventTimel[i]l);

13. keyAcc$ZmeanAli] <- mean(accSZ[accSTime >= keySDownTimel[i] & acc$Time <=
keySEventTimeli]]);

14. keyAccSXmedianA[i] <- median(accSX[accSTime >= keySDownTimeli] & accSTime <=
keySEventTimel[i]l);

Figure5 An R script that aggregates accelerometer data poduces the
features set.
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15. keyAccSYmedianAl[i] <- median(acc$Y[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimeli]]);

16. keyAccSZmedianAl[i] <- median(accSZ[accSTime >= keySDownTimeli] & accSTime <=
keySEventTimel[i]l);

17. keyAccSXsdA[i] <- sd(accSX[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimelil]);

18. keyAccSYsdA[i] <- sd(accSY[accSTime >= keySDownTime[i] & accSTime <=
keySEventTimel[i]l);

19. keyAccSZsdA[i] <- sd(accSZ[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimeli]]);

20. keyAccSXskewA[i] <- 3*(mean(accSX[accSTime >= keySDownTime[i] & accSTime <=
key$SEventTimeli]]) - median(accSX[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimel[i]])) / sd(accSX[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimel[i]l);

21. keyAccSYskewAli] <- 3*(mean(acc$Y[accSTime >= keySDownTime[i] & accSTime <=
keySEventTimeli]]) - median(accSY[accSTime >= keySDownTimeli] & accSTime <=
keySEventTimel[i]])) / sd(accSY[accSTime >= keySDownTime[i] & accSTime <=
keySEventTimel[i]]);

22. keyAccSZskewAli] <- 3*(mean(accSZ[accSTime >= keySDownTime[i] & accSTime <=
keySEventTimeli]]) - median(accS$Z[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimeli]])) / sd(acc$Z[accSTime >= keySDownTimel[i] & accSTime <=
keySEventTimel[i]l);

23. }

24. write.table(keyAcc, "itb/acctrue_10_11/keyAcc_10_11.csv")

Figure 5 Continued. An R script that aggregates accelerometer data and
produces the features set.

4.4 Classification

The goal of the inference attack is, given a buoickensors samples, to map
every pattern of readings into an output class, Hral percent of correct
mapping forms the accuracy of the classifier. Wepaed the implementation of
classification algorithms in Weka suite of machilearning software [15].
Many classifiers are available in Weka, and chapsimparticular method is not
critical for our experiment. However, our initiak@oration revealed that the
ensemble learning can give better results, witHementations in “meta” Weka
package. In particular, “Bagging” classifier showthe best performance on
average (with FT base model), though we do not @menture any claims
related to classification algorithms performanc&8agging” is a general
technique for improving the accuracy of a givenrd@gy algorithm. As an
ensemble learning method, it aggregates multipdenkd models of the same
type (e.g. decision trees), and uses voting to aventhe output of individual
models [16].
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5 Evaluation and Discussion

All experiment runs were conducted under 5-foldessfvalidation testing
option, and almost the same dataset size of ar@dddexamples. Figure 6
shows the results of classifying the datasets uBamgging ensemble learning,
with Functional Trees base model [17]. Figure G{apicts the comparative
classification accuracy of all the sensors optiorthe first device, while Figure
6(b) presents the same results for the secondelevic
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Figure6 Experimental results: classification accuracy corigpa among all
sensors (a) in Galaxy S2 smartphone (b) in Gal&grB8artphone.
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It is evident from the two graphs that the relapesformances of the sensors in
both devices are similar. Because of the largezestisize of Galaxy S3, one
would expect better ability to classify differenéyk zones. Nevertheless, its
performance is comparable or inferior to that ofa®pn S2 (at least in the many
runs of our experiments). One possible reasonhigrresult is the observation
that the S3 phone was dressed in a thick leattser, gghich might contribute to

mitigate the impact of the taps force on the serfaicthe device.

Comparing the gyroscope performance with and withintegrating its data
reveals no actual value out of integration. Thephsain Figure 7 illustrate the
accuracy of two experiments, for each of the tweidks. One experiment
involves a gyroscope dataset of 18 features asl.ufbha second experiment
adds three more features, corresponding to th@rated sensor values per a
coordinate axis. This conclusion seems logicathagate of change in distance
(velocity) is proportional to the distance, andithedication is the same in the
context of our need, namely to make a distinctietwieen different areas on the
screen. We have included the analysis of this opsioce gyroscope data is
typically integrated in many applications, where theed is specifically to
measure the inclination or tilt of the device oaer extended period of usage
time, rather than the instant change in angulgrlai®ment. It should be noted
however that relying on the gyroscopic data for fhepose of classifying
different keystrokes bears a strong dependencyeriarce by which the user
taps on the screen, which might seem user or ewssian-dependent.
Nonetheless, what makes this task conceivable asféalat that the angular
velocity (the output of the gyroscope) is a vedoantity, and its sign depends
on the direction of rotation, making separate ar@ashe coordinate space
distinguishable, at least by the sign of the data.
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Figure7 Classification accuracy of the gyroscope with artthout integration.
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Noticing the marked performance of the gyroscopdpaoked appealing to

further experiment with the features in its data$efing out separate groups of
statistics as well as few combinations of statitigroups resulted in the
performance scores shown in Figure 8. For exaniplthe specific dataset of
Figure 8, drawn from Galaxy S3 gyroscope, it appedat the minimum

statistic has the most influence in the correcigifecation of keystrokes.
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Figure8 Classification accuracy of few permutations ofapgopic statistics.

In another set of experiments, we focused on tkedwataset of sensors. In
Table 2, we present one instance of those expetdimehere the relative
performance of the individual sensors is shown nmamifest, as well as the
promising compounds of two sensors. The resultansistent with those in
Figure 6, besides the important conclusion thahecontext of this particular
attack, data from other sensors are more of a rioishe gyroscopic signals.
Still, in the absence of a gyroscope, the comlnatf accelerometer and
rotation vector data can be of utility that outpenfs their individual
performances.

Several concluding notes are in order, based onotitained results. It is
obvious that, confirming to [11]-[12], the gyros@gpensor alone has a superior
performance compared to all other sensors. Thigltrés actually consistent
with the observation that rotations have more poteedistinguish between
different keys than shifts. This is also the reagamthe inferior accuracy of
both accelerometer variations (with and withouthhjgass filtering), and even
the rotation vector which relies on the acceler@mat one of the components
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in deriving its value. Another factor that affeth® rotation vector performance
is the magnetic field sensor, which is also onthefcomponents in calculating
the vector values. Magnetic field sensors are knéovrtheir inaccurate and
noisy outputs in current commodity smartphoneseesfly in the presence of
nearby metals. What supports this conclusion isttleaccuracy of the rotation
vector sensor is still much better than the syiths#nsor that is based on the
getOrientation method, though both depend on theelemmeter and
magnetometer. The difference in accuracy is apglgrdoe to the inclusion of
gyroscope into the derivation of the rotation vecto

Table2 Classification accuracy results of different conattions of sensors.

Sensor Samsung Galaxy S2 Samsung Galaxy S3
All sensors 91.56% 93.24%
Gyroscope only 95.63% 94.12%
Accelerometer only 56.88% 63.24%
Rotation vector only 75.94% 57.35%
Gyroscope + accelerometer 93.44% 93.53%
Accelerometer + rotation vector 80.63% 71.18%
Gyroscope + rotation vector 92.19% 93.53%

It also seems that sensors fusion is not alwaysb#st option, and depends
largely on the proper selection of the ingrediarisors. Filtering also depends
on the context, and in our case, it appears thatalheady filtered linear
accelerometer has less performance with more ifilierthe high pass filter,
despite more appropriate to extract occasional anolike keystrokes, could
leave the classifier with less than enough inforomato discern different keys.
Finally, it is important to note that all the resulrelated to sensors'
performances that we reported in this paper arecadsd with the application
of keystroke inference attack, or similar appliocas that involve classification
of sensors data into discernable zones on the teerelen. This might not be the
case in more traditional applications; e.g. ganungugmented reality.

It is worth mentioning that a key reason which nzalgs attack an attractive
option from a perpetrator perspective is the logumreement for conducting the
attack in terms of security permissions. Androidesinot impose special
permissions to access the motion sensors. This snélaat any Trojan
application with a convincing benign purpose haimited access to those
sensors. This fact has driven many researcherdviocate the enforcement of
more restrictions on sensors access through sgquertmissions, similar to
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those required to access more traditional senskestthe camera and sound
recorder.

6 Conclusions

Researchers have already started the study ofotieaal of integrated sensors
on modern smartphones as a privacy threat. Otherwseful in numerous
benign applications, certain sensors could unwéntagéveal sensitive
information related to the input of the user. Aeceimeters and gyroscopes in
particular, among other motion sensors, proved lgiah tracking subtle
(shakes) resulting from taps or keystrokes on thargphone touch screen.
Selecting the most appropriate sensor or combimaticsensors, along with the
right features, has much left to be researchethignpaper, we reviewed only a
small set of the possible combinations of sensata dnd their treatment in the
implementation of the new keystrokes inferenceckftapecifically on Android
platforms. The objective was to compare the retaperformance of different
built-in motion sensors, with respect to this dttac

Four sensors were compared in an experiment thptements the attack,
namely, the linear accelerometer, gyroscope, mstatiector sensor, and the
combined accelerometer and magnetometer synthetisos. Moreover, the
option of fusing more than one sensor is examifd@denrich the discussion
further, a couple of processing options for theebmmometer (filtering) and the
gyroscope (integration) are considered. The reshitsved a greater benefit of
exploiting the gyroscope sensor, or a fusion ofesalv sensors (perhaps
excluding the sensors with magnetometer comporfent) the perspective of
an attacker. As discussed in the article, appeghimgessing in many other
applications of sensors could fall short of serimg purpose of the attack.

For a future work, we vision an integrated solutitwat incorporates more

advanced processing of the accelerometer and gyeseadings to calculate

the resulting tilt, rather than rate of changeths& user taps. Fusing the right
balance of these two sensors in terms of featurépeeprocessing has the most
promising performance, we believe, based on theegtrresults.
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