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processor cores in a reconfigurable system for embedded applications. A 
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processors in a shared memory system optimized for stream
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based stochastic tool, which is used to analyze memory contention in the shared 
memory architecture, and to predict the performance increase (speed of 
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1 Introduction 

A custom multiprocessor development environment would provide added 
benefit to a developer by providing optional selectable features, frameworks, 
and tools, such as: architectural frameworks for specific classes of applications; 
predefined memory configurati
specification of task allocation; and
selected features. For instance, a framework for a particular class of applications 
could be invoked from a menu item and automati
specified parameters. However, the choice of the parameters may not be a 
simple matter, because of the design trade
architectural parameters with consideration of economic constraints may not 
yield the expected performance increase. Lacking predictive tools, a developer 
would need to build, run and test the system
mance requirements. Indeed, this could be a long, iterative, and tedious process. 
Such a development environment would benefit well by having design time 
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This paper presents a method to predict performance of multiple 
processor cores in a reconfigurable system for embedded applications. A 
multiprocessor framework is developed with the capability of reconfigurable 
processors in a shared memory system optimized for stream-oriented data and 

ng applications. The framework features a discrete time Markov 
based stochastic tool, which is used to analyze memory contention in the shared 
memory architecture, and to predict the performance increase (speed of 
execution) when the number of processors is varied. Performance predictions for 
variations of other system parameters, such as different task allocations and the 

of pipeline stages are possible as well. The results of the prediction tool 
were verified by experimental results of a green screen application developed 
and run on a Xilinx Virtex-II Pro FPGA with MicroBlaze soft processors. 
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could be invoked from a menu item and automatically built with developer
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performance prediction tools, which would complement the selectable features 
and framework building tools. 

An important parameter to consider in designing custom multiprocessor systems 
is the number of concurrent processors. For industrial applications, one must 
weigh the cost of adding processors to a design against the expected 
improvement of execution times. One may conjecture that increasing the 
number of concurrent processors will result in faster application execution 
times. However, increasing the number of processors in a multiprocessor 
system with global memory will result in an increased probability of memory 
contention. More memory conflicts will result in longer processor waiting 
times, more processor idle time, and longer task execution time. Indeed, adding 
additional processors to a system may result in more tasks executed in parallel, 
but each of the tasks may take longer to execute. Consequently, it is not always 
clear whether adding more processors will result in enough improved 
performance to justify the cost of the additional processors. A prediction tool is 
required. This paper proposes such a performance prediction tool. 

The remainder of this paper is organized as follows. Section 2 discusses 
motivation and previous work that has been done in this area. Section 3 details 
the proposed solution to the problem. Section 4 compares the predictions of the 
proposed analysis method with experimental measurements obtained from a 
multiprocessor system implemented within an FPGA, and with the waiting time 
prediction of a simple analysis method. Also, simulations of larger numbers of 
processors were performed and compared. The proposed analysis method agrees 
with the experimental results. Finally, the conclusions are given in Section 5. 

2 Motivation and Related Work 

Historically, architectural frameworks for multiprocessor systems have been 
developed to fit as many applications as possible by accommodating widely 
differing requirements. This is because the effort of developing application 
specific architectures was prohibitive and not cost effective. Current 
developments in technologies, such as soft processors within FPGA, have 
decreased the effort and cost of developing custom multiprocessor systems [1], 
[2]-[4]. However, while the cost and effort have decreased, application specific 
solutions are still not economically viable. A compromise is a multiprocessor 
system that is tailored to a particular class of problems, which is defined by a 
common computing model. This can result in a solution that is more 
computationally efficient than a general solution, and more flexible than an 
application specific solution. Narrowing the analysis of a multiprocessing 
system to consider only problems well-suited to a particular computing model 
can allow for better analysis results, since the computing model provides 
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additional information compared to general parallel processing problems. This 
paper develops a multiprocessor system framework for a stream-oriented class 
of embedded applications, with analytical performance prediction tools. 

There have been several studies in the past that have analyzed memory 
interference in shared memory multiprocessor systems. However, these studies 
did not use a computing model to constrain the design. Consequently, the 
analysis methods were applied to a wider range of problems, but at the cost of a 
less accurate analysis. Since the model of computing was not considered in 
these studies, assumptions could not be made about the contents of global 
shared memory, and therefore it had to be assumed that the global shared 
memory must contain both data and instructions. In the case where global 
memory contains data and instructions, a single bus global memory 
multiprocessor system is inefficient because there is a very high probability of 
memory interference, which counteracts the benefits of executing tasks in 
parallel. Therefore, in these studies more complex architectures were leveraged 
to reduce memory interference, such as cache systems and multiprocessor 
systems with multiple memories, either connected in a crossbar network ([5]-
[9]), or with multiple buses ([2],[6],[10]). 

Previous studies assumed that all processors requested access to shared memory 
with the same probability throughout all execution. Therefore, memory requests 
were often modeled as a Bernoulli process with a fixed probability for discrete 
time analysis ([5]-[7],[9],[11]), or as a Poisson process with a fixed probability 
for continuous time analysis [8]. This paper takes a different approach, because, 
in the stream-oriented data and signal processing computing model, the shared 
memory contains only data and not instructions. This means that the probability 
of requesting access to shared memory depends on the specific task being 
executed, since the function of a task will determine the frequency and size at 
which data in shared memory needs to be accessed. In this paper each task has 
its own probability of accessing global memory. As a result, a novel feature of 
the multiprocessor framework presented in this paper is that the probability of a 
memory request is allowed to change for a particular processor as the processor 
switches from executing one task to another. 

This paper also differs from previous work in how memory service time is 
modeled. Most of the previous studies assumed that the memory service time is 
constant ([5],[7],[9],[11],[12]]). Furthermore, some researchers assumed a 
Bernoulli process [6] or Poisson process [8] for memory service. In these 
studies, the type of memory used in the system was abstracted and encapsulated 
within the hardware architecture. This paper recognizes that the memory service 
time is dependent on the specific memory type used, and not on the hardware 
architecture itself. Therefore, the memory service time is represented by a phase 
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type distribution that can be adjusted to fit the characteristics of the specific 
memory used in an application. 

In summary, the main contributions of this paper are: 

1. A statistical measuring tool to measure the expected performance increase 
with an increase in the number of processors in a multiprocessor system. 

2. A method of determining the expected additional execution time for each 
task due to memory waiting time for analyzing the benefits of adding more 
processors to a multiprocessor system. 

3. By limiting the analysis to consider only a computing model that is specific 
to stream-oriented data and signal processing, the statistical analysis method 
produces more accurate results than more general analysis methods. 

4. A task dependent, memory-request probability model is developed. 
5. A phase type distribution that can be adjusted to specifically fit the 

characteristics of the memory technology is developed. 

3 Solution Strategy 

The goal of the analysis is to determine the expected amount of time a processor 
must wait to access data memory, when another processor has access to the 
memory. From this information the execution time of the task can be extended 
to represent the average execution time when considering the time waiting for 
memory access. This allows for the tools to compare different implementations 
of the system, such as different numbers of processors. 

3.1 Partitioning the Processing Period 

One of the difficulties encountered in the analysis was that each processor could 
execute several different tasks in a processing period, and each task generally 
could have different and independent memory request probabilities (αi). The 
difficulty was in dealing with a variable number of memory request 
probabilities in a processing period. Further compounding the problem was that 
the time at which a processor switches from one task to another task is 
independent from that of other processors in the system. To work around this 
difficulty, the processing period was partitioned into windows, where each 
window was chosen so that, within a window, the set of tasks being executed 
did not change for all processors. The analysis was performed on each window, 
and after the analysis of a window, the resulting memory access waiting times 
for the tasks in that window were used to adjust the processing period. This was 
continued for all windows in the processing period. 

For example, a processing period with a full pipeline is shown in Figure 1. The 
first window analyzed is the largest window where a processor does not execute 
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more than one task; this is the overlapping section of tasks A, C, and D, as 
shown in Figure 1(a). The system is then analyzed to determine how much time 
those sections of A, C, and D are lengthened when the time waiting for memory 
access is considered. 

 
Figure 1 First and second windows analyzed in the processing period. 

Suppose that after analyzing the first window, the time for task A was extended 
(due to memory access time). Consequently, the processing period was now 
lengthened to compensate for Task A’s extension, as shown in Figure 1(b).It can 
be seen that the overall processing period was lengthened, because task A was 
extended; B must come after A is finished; and E must come after B is finished. 
This change would also create a gap between task G and E on Processor 3, 
which is now an additional window that must be analyzed, that was not a 
window before the first iteration. The second window that is to be analyzed is 
shown in Figure 1(b). This window consists of task Aon processor 1 and task D 
on processor 3. Processor 2 does not execute during this window, so the system 
is analyzed as if there are only two processors for this window. After the second 
window is processed the processing period may change again. This process is 
repeated until the entire processing period is analyzed, at which point the entire 
processing period will be adjusted to take into consideration the memory access 
waiting times. 

3.2 Analyzing a Partition 

In order to analyze any particular partition of the processing period to determine 
the amount of time that each processor waits for memory access while another 
processor is being served, the memory requests by each processor were modeled 
by a discrete time Markov chain. A state diagram and a transition matrix were 
used to represent the discrete time Markov chain. From the point of view of 
each processor in the system, there are four states that the memory controller 
can be in at any given time. The first state occurs when the memory controller is 
polling the current processor to see if it has a memory request. The second state 
occurs when the memory controller is in the midst of servicing a memory 
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request from the current processor. The third state occurs when the memory 
controller is servicing other processors and the current processor does not have 
a pending memory request. The fourth state occurs when the memory controller 
is servicing other processors and the current processor has a pending memory 
request. When the memory controller is servicing other processors, it is said to 
be on vacation with respect to the current processor. The third and fourth states 
represent the cases where the memory controller is on vacation, with respect to 
the current processor. The additional task-execution time due to a processor 
waiting for memory access in a multiprocessor system is determined by the 
amount of time spent in state four. Accordingly, the goal of the proposed 
analysis method is to determine the amount of time spent in state four, from 
which the effect of memory interference on the task execution time can be 
determined. Figure 2 shows the state transition diagram for processor i, with the 
probabilities of changing states shown on the transition edges. The transitions 
from state to state are defined by the probability transition matrix in Eq. (6). 

Polling:

No Memory 

Request

Servicing:

Memory 

Request

Vacation:

No Memory 

Request

Vacation:

Memory 

Request
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Figure 2 State transition diagram for processor i. 

Each memory request queue was individually modeled as a Geo/PH/1 system 
with PH vacations. This means that the arrival of the memory access requests is 
a Bernoulli process with arrival probability αi (for processor i); service is a 
negative binomial phase type with representation (β,S),k; and there are vacations 
with representation (υi, Vi),m. The υi is a vector describing the probability of 
starting in each phase of Vi; Vi represents the phases of the vacation; Vi

0 is the 
vector representing the end of the vacation; and m is the order of the square 
matrix Vi. The system is considered to be on vacation when the memory 
controller is serving other processors. 

The probability transition matrix for a processor i is represented by Eq. (1). The 
notation 0(ij) represents an i by j matrix full of zeros. Each cell in the matrix 
(Cellij, where i,j = 1..4) represents a probability of transition from one state to 
another.  
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The cells in the first row of the above matrix represent the transition 
probabilities of the memory controller transitioning from State 1 to States 1, 2, 
3, and 4, respectively. The first cell (Cell11) represents the transition probability 
of the memory controller going back into State 1, when it is currently in State 1.  
In other words, this is the probability the memory controller will check again to 
see if there is a memory requests from processor i after it has determined there 
were no memory requests by processor i. The probability of remaining in this 
state for the next time quanta is 0, because, (i) if the controller determined that 
the processor i had no memory request, then the controller will transition to the 
state “Vacation: No Memory Request” with probability (1- αi)Vi; and (ii) if the 
controller determined that the processor i had a memory request, then the 
controller would transition to the state “Servicing: Memory Request” with 
probability αiβ. Similarly, Cell14 = 0(m1) represents the probability that the 
controller will transition to State 4.  

The second row in the above matrix represents the transition probabilities of the 
controller transitioning from State 2 “currently servicing the memory request of 
processor i” to States 1, 2, 3, and 4. The system will remain in this state in the 
next time quanta if memory service does not finish, or if service finishes but 
another memory request is made immediately. If service finishes and another 
memory request is not made immediately, then the system will return to the first 
state where the memory controller will wait one time quanta for another 
memory request. The second state consists of a number of sub-states, where the 
number of sub-states is k, which is the order of the memory service matrix S. 

The third row of the above matrix represents the case where the controller is on 
vacation (i.e., the memory controller is serving another processor’s memory 
request) and there are currently no memory requests for processor i. The system 
can go to any other state from this state. If vacation ends (i.e. the memory 
controller has finished serving other processors) and no memory request arrives, 
then the system will go to the first state to wait one time quanta for a memory 
request to arrive. If vacation ends and a memory request does arrive, then the 
system will go to the second state where the memory request will be served. If 
vacation does not end and no memory request arrives, then the system will 
remain in the third state. If vacation does not end and a memory request arrives, 
then the system will go to the fourth state. The third state consists of a number 
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of sub-states, where the number of sub-states is m, which is the order of the 
vacation matrix Vi. 

The fourth row of the above matrix represents the case where the system is on 
vacation and there is currently a pending memory request. In this case no more 
memory requests can arrive so the system can either remain in the current state 
if vacation does not end, or it will go to the second state if vacation does end, 
where the pending memory request will be served. The fourth state consists of a 
number of sub-states, where the number of sub-states is m, which is the order of 
the vacation matrix Vi. 

3.2.1 Vacation Model 

For a given problem the arrival probability, αi, for each processor in the 
partition that is being analyzed is known, and the service of the memory, (β,S),k, 
is also known; therefore, (υi,Vi),m, is the only remaining unknown process. 

The vacation probability transition matrix for processor i is given by: 
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Each submatrix Aj represents transitions between states of processor j while it is 
being served by the memory controller. Each matrix Bj represents the transitions 
from the states where the memory controller was serving processor j, to the 
states where the memory controller is serving processor j+1  (or processor 1, if j 
= N, where N is the number of processors in the system). The subscripts of the 
Aj matrix and the Bj matrix consist of the “mod” operator. This operator is 
necessary in the notation to account for the wrapping around of the subscript. 
That is, when processor j is done being served, the memory controller moves to 
processor j+1 , but if j+1 is greater than the number of processors in the system 
(N), then it wraps around to processor 1. For example, if there were 4 processors 
in the system (N=4), then the matrix used to represent the vacation of processor 
3 (i=3) would be of the form: 
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The form of the matrix Aj representing transitions between states when the 
memory controller is serving processor j is shown below. 
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The first row in the above matrix represents the state when there are 0 memory 
requests. In this case the processor will only remain in service if a memory 
request arrives, in which case the memory request will begin being served. If no 
memory request arrives then the memory controller will go on to serve the next 
processor (this transition is represented in matrix Bj). 

The second row represents the state when there is 1 memory request that is 
currently being served. If service finishes and no new memory requests arrive, 
then the state represented by the first row (0 memory requests) is entered. The 
state remains the same if either service does not finish, or if it finishes but a new 
memory request arrives to start a new memory request service. 

The form of the matrix Bj representing transitions between states when the 
memory controller is moving from serving processor j to serving the next 
processor (which is (j+1) mod N) is shown below. 
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The 1st row of this matrix represents the state when there are 0 memory requests 
for processor j. The 2nd row represents the state when there is 1 memory request 
for processor j. Since the processor will never start a vacation when there is a 
pending memory request that can be serviced, the probability of starting to serve 
the next processor when there is one memory request is 0, which is why the 
second row consists of zeros. When there are 0 memory requests the memory 
controller will start to serve the next processor, but it could transition to the 
state where there is no pending memory request for the next processor, or it 
could transition to the state where there is a pending memory request for the 
next processor, depending on whether a memory access request has arrived for 
the next processor since it was last served. The parameter φj represents the 
probability that a memory request is made by processor j from the time its 
vacation starts to the time that its vacation ends. This means that 1-φj represents 
the probability that there are no memory requests made by processor j in the 
time that its vacation starts to the time its vacation ends. The first entry in the 
first row of matrix Bj represents the transition from serving processor j to 
serving the next processor (processor (j+1) mod N) when there are no memory 
requests pending for processor (j+1) mod N. The second entry in the first row of 
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matrix Bj represents the transition from serving processor j to serving the next 
processor (processor (j+1) mod N) when there is one memory request pending 
for processor (j+1) mod N. The vector υi that represents the start of vacation for 
processor i can be represented as follows: 

 
( )( ) ( )[ ]0...01 mod1mod1 βϕϕυ NiNii ++−=  (6) 

The first entry in the vector represents the transition to serving the next 
processor (processor (i+1) mod N) when there is no pending memory request 
for the next processor. The second entry in the vector represents the transition to 
serving the next processor when there is one pending memory request. The rest 
of the vector is filled with zeros. The vector that represents the transitions when 
the vacation of processor i ends is given by Vi

0, and can be represented as 
follows: 
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This shows that the vacation for processor i finishes after processor ((i+N-2) 
mod N)+1 (which is the previous processor to i in the cycle) was being serviced, 
but now has 0 memory requests, and no new memory request arrived. 

The parameter φi is defined as the probability that a memory request occurs for 
processor i while processor i is on vacation. To determine this value, first the 
amount of time spent in the vacation process needs to be known. The 
probability of the vacation process ending in a particular number of time quanta 
needs to be determined for all time quanta amounts where the probability is 
significant. The first step in calculating these probabilities is to create a new 
Markov chain with a probability transition matrix Vi’  by combining υi, Vi, and 
Vi

0, as shown below: 
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Starting in state 1 of Vi’ , the system will transition to the sub-matrix Vi by the 
probabilities in the starting vector υi, it will then sojourn within Vi until it 
returns to state 1 by the probabilities defined in Vi

0. Since the vacation process 
(υi,Vi),m starts through υi and ends through Vi

0 and sojourns within Vi during 
vacation, the vacation time is the same as the time that it takes to return to state 
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1 of Vi’  for the first time when starting from state 1. The parameter fx,y
(n)is 

defined as the probability of first visiting state y from state x in a Markov chain 
at the nth time quanta. The following result has been shown to be valid by [13]. 
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The m is the number of states in the Markov chain, and vx,y is the probability of 
transitioning to state y from state x. This also means that fx,y

(1)=vx,y for any x and 
y. The probability of finishing the vacation process in n time quantum can then 
be calculated by using (14) to calculate f1,1

(n) in the Markov chain represented by 
Vi’ , which is the probability of first returning to state 1 starting from state 1 in n 
time quanta. The probability of processor i requesting access to memory in one 
time quanta was previously given as αi. This can be used to calculate the 
probability of processor i requesting access to memory within n time quantum, 
defined as σi

(n), with the following equation. 
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Eqs. (9) and (10) can now be used to calculate the probability that the vacation 
for processor i will end in n time quantum and that there will be a memory 
request made by processor i during that vacation. This probability is defined as 
φ

(n) and is calculated by: 
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Therefore the probability that a memory request occurs for processor i while 
processor iis on vacation is given by: 
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It is not practical to use (12) to determine φi since this equation involves an 
infinite sum. It can be shown that if the probability of requesting access to 
memory for each of the processors is less than 1 (i.e., αi< 1 for all i), then the 
probability of eventually finishing a vacation is 1. This means that state 1 of Vi’  
is a recurrent state for which the following equation holds true [11]: 
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This fact can be used to determine a practical limit to the sum in (12) by 
choosing some acceptable error limit εr, where: 
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Eq. (14) gives an upper limit, r, to the sum in (13), where the probability of the 
vacation ending in more than r time quantum is considered insignificant. The 
smaller the error, εr, the larger the value of r, which means that more accuracy 
in the calculation of φi will come at the cost of increased computational 
overhead. Once the value of r is calculated, φi can be approximated by: 
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The calculation of φi is shown in the form of a pseudo code function below. 

Function φi = calc_phi (Vi’, αi)  
 -- order_Vi’ is the order of the square matrix Vi’  

 order_Vi’ ← get_order(Vi’)  

 n ← 1 

 F ← Vi’ -- F is the matrix holding the probability of first  
   --moving from each state to each other state of Vi’for  

   -- the current value of n, where f(1,1) is the  

   -- probability of finishing the vacation in n time  
   -- quantum 

 sum ← F(1,1) 
 -- σi is the probability of a memory request occurring in n  
 -- time quantum for the current value of n (Equation15)   
 σi← αi 

 φi← σi * F(1,1) -- Equation 16 
 

 -- check to see if the error limit has been reached 

 while (sum < 1- εr)  
  --this next for loop calculates the next value of F as  
  -- shown by Equation 14 

  for x=1 to order_Vi’  

   for y=1 to order_Vi’  

    total ← 0 

    for z=1 to order_Vi’  

     total ← total + Vi’(x,z)*F(z,y) 

    end (for) 
    F_new(x,y) ← total - F(y,y)* Vi’(x,y)  

   end (for)  
  end (for) 
  n ← 2 

  F ← F_new 

  sum ← sum + F(1,1) 
  σi← σi+ (1- αi)

n-1-- Equation 15  
  φi← φi + σi * F(1,1) -- Equation 16 and 17 
 end (while) 
end (function) 
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An iterative algorithm to calculate φi that depends on the probabilities in the 
probability transition matrix Vi’ is outlined below.  

Fori=1 to N 

 φi ← αi-- initialize all φi parameters 
 εi ← 1         -- initialize all εi 
end (for) 
while (|εi| > 10-12 for any i)  -- check for convergence 

 fori=1 to N 

  φi_old ← φi -- save the last φi parameter, because a  

        -- new one will be calculated 

  -- create the Vi’ matrix the based on the latest φi 

        Vi’ ← build_vacation_process(φi,i)   
  -- calculate the new value of φi 

   φi = calc_phi (Vi’, αi)  

εi  ←φi_old - φi -- calculate the error between the  

        -- current φ and the last one 
end (for) 
end (while) 
 

The above algorithm first assigns an arbitrary value to φi for all i, 1≤i≤N. In this 
case the value for φi is assigned αi. While any value between 0 and 1 can be 
assigned and the algorithm will still work, using a value that is closer to the 
actual final value will result in faster convergence. Since φi is the probability 
that there will be a memory request while processor i is on vacation and αi is the 
arrival probability, in general, the larger αi is, the larger φi will be, which is why 
αi is used as a starting guess. 

An error value εi is kept for each processor. This is the difference between the 
latest value of φi and the value of φi that was calculated previously. When all of 
the error values are less than 10-12, then this means that the algorithm has 
converged to a final value of φi for all i. The error values are initialized to 1 at 
the beginning to ensure that the while loop is entered the first time. Then the 
vacation matrices for each processor i (Vi, Vi

0, υi) are built using the current 
value of φi for all i. Then a new value of φi for all i is calculated using the 
function calc_phi. The difference between the new values of φi and the previous 
values of φi are calculated. This difference is checked to see if it is less than   
10-12 for all i. If the error is smaller than the limit, then the values of φi have 
converged to the final values, otherwise the process needs to be repeated. Once 
the final values of φi are determined, there are no longer any unknowns, so the 
vacation process is fully defined. This algorithm depends on convergence of the 
φi values. If the values of φi do not converge then the algorithm would continue 
indefinitely and, therefore, it would not be stable. Explicit proof of convergence 
for this algorithm is not offered in this paper; however, an argument for proof of 
convergence could be made that is similar to the proof of the stability of token 
passing rings made by Georgiadis and Szpankowski in [14]. 
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3.2.2 Determining the Memory Access Waiting Probability 

Now that the vacation process for each processor is defined, the probability 
distribution of the discrete time Markov chain that models the memory accesses 
of each processor can be determined. From the probability distribution the 
amount of time that is spent waiting for access to the memory when the memory 
controller is currently serving another processor can be determined. 

First the vacation process, (υi,Vi),m, for each processor i is built using the 
determined values of φj for all 1≤j≤N, as shown with (3), (4), (5), (6), and (7). 
Then the vacation process is used to build the probability transition matrix for 
the Markov chain representing the memory accesses of processor i, as shown 
with (1). Then the steady state probability vector πi can be calculated for the 
Markov chain. The steady state probability vector for Pi can be calculated by 
solving for πi = πiPi. The steady state probability vector represents the 
probability of being in any given state of Pi in a steady state condition. 

The fourth block row of Pi shown in (1) represents all of the states where 
processor i has a pending memory request, but the memory controller is 
currently serving other processors. Therefore, the sum of the probabilities in the 
steady state vector that represent the states in the fourth block row of the Pi 
shown in (1) is the probability that the processor has a pending memory request, 
but the memory controller is serving another processor. Each of the rows in the 
matrix shown in (1) is made up of several sub-rows of which the number 
depends on the number of states in the memory service process, which is k. The 
first row shown in (1) is actually only one row. The second row represents k 
actual rows. The third and fourth rows are each made up of m sub-rows, where 
m is the order of the vacation process. The order of the vacation process is also 
dependent on the order of the memory service, and can be determined by (16): 

 
( )( )11 −+= Nkm  (16) 

There is one block row in the vacation for each processor, except the processor 
who the vacation process is defined for, so there is N-1 block rows in the 
vacation. Each block row in the vacation is made up of k+1 rows, one row for 
the case where the currently serviced processor has 0 memory requests, and k 
rows for the case where the currently serviced processor has 1 memory request 
that is being serviced. This means that the sum of the last m items in the steady 
state vector πi will be the probability that processor i will have to wait for 
memory access when it has a pending request because the memory controller is 
currently serving another processor. This is represented mathematically as: 
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Where ζi is defined as the probability that processor i will have to wait for 
memory access when it has a pending request because the memory controller is 
serving other processors, and the notation πi[h] means the item h in vector πi. 

3.2.3 Adjusting the Partition to Account for Waiting Time 

Now that ζi for each processor can be calculated, these values can be used to 
adjust the length of the partition of the processing period that is being analyzed 
so it can be adjusted to account for the time that each processor spends waiting 
for memory access. The partition ends when the first task that is executing in 
the partition ends. In order to determine which task ends first, the end time of 
each of the tasks is calculated taking into consideration the memory access 
waiting time. The end time of each task can be calculated with (18): 

 i

ioldremaining
inewremaining

t
t

ζ−
=

1
__

__  (18) 

 

The tremaining_old_i is the time remaining in the task execution without considering 
the memory access wait times, from the beginning of the current partition being 
analyzed. The task that has the smallest tremaining_new_i is the task that will end 
first, and therefore this is the new partition time, defined as tpartition_new. 

The other calculation that needs to be done in order to adjust the processing 
period to be able to analyze the next partition is to determine how much of the 
task processed on each of the processors is done within the analyzed partition. 
The ratio of the task executed in the partition time to the total execution time of 
the task that is executed on processor i is defined as θi. The value of θi can be 
calculated by (19): 
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The ttotal_task_i is the total execution time of the task executed by processor when 
the memory access waiting time is not considered. The remaining time that 
needs to be analyzed for each task can then be calculated by (20): 
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The θprev_i is the ratio of the amount of the task that was analyzed in previously 
analyzed partitions. After the amount of each task that is remaining is calculated 
the entire processing period can be updated, and the next partition can be 
analyzed. 
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4 Experimental Results 

Validation of the statistical analysis method was accomplished by comparing it 
with the measurements taken from a real multiprocessing system. We used a 
Xilinx Virtex-II Pro FPGA [15] on the Xilinx XUPV2P development platform 
[16]. MicroBlaze [17] soft processors were used, where each processor was 
clocked at 100 MHz. This system was limited to four MicroBlaze processors for 
a given application. The minimum time quantum was 10 ns. A polling based 
memory controller was implemented within the FPGA. The global memory was 
implemented with RAM with access time less than processor clock. 

A green screen video system was used to test the analysis method. This is a 
common technique used for television weather forecasts to show the weather 
map behind the meteorologist. The example application takes two images that 
are in YUV colour format, converts them both to RGB colour format, then 
replaces all of the green pixels in the primary image with the corresponding 
pixel from the secondary image. Then the combined image is converted back to 
the YUV colour format. The example application was divided up into 16 tasks. 

The first step in implementing the system was to run the example application on 
a system with a single processor, to determine the serial execution time of each 
of task (Table 1). The tasks were then allocated to each of the N processors 
based on the single processor task parameters using a greedy scheduling 
algorithm from [18]. In order to analyze this system to predict the effect of the 
memory access waiting times, a memory access model is needed. In this case 
the global memory service was modeled by a negative binomial process, with 
k=18 and pe=0.95.This resulted in a probability distribution that closely 
matched the experimental data. 

Table 1 Single processor task parameters. 

Task Initial Task Time 
(ns x 10) 

Access Request 
Probability (αi) 

Task Initial Task Time 
(ns x 10) 

Access Request 
Probability (αi) 

0 1484 0.054 8 968 0.525 
1 1484 0.054 9 968 0.525 
2 1484 0.054 10 1268 0.549 
3 1484 0.054 11 968 0.525 
4 1484 0.054 12 2630 0.681 
5 1484 0.054 13 1268 0.549 
6 968 0.525 14 1368 0.459 
7 1268 0.549 15 1368 0.459 

 
An example application where the global memory bandwidth is saturated after 
only adding a few processors to the system was chosen specifically to show the 
benefit of this analysis method over a more simplistic approach. The analysis of 
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the processing period was performed for a system with 2, 3, and 4 processors 
and compared to the experimentally measured processing period times. Also, a 
simple analysis method was applied that calculates the processing period by 
assuming that the maximum bandwidth of the global memory had been reached. 
Therefore, the processing period time was calculated by subtracting the portion 
of each task that was due to memory accesses, then calculating the processing 
period of the parallel tasks, then adding the sum of the time for each memory 
access (which was previously subtracted). This method essentially assumes that 
every time a memory access was requested, the global memory was already 
being serviced by another processor, so that the processing time can be 
parallelized but all of the memory accesses were executed serially. In addition, a 
comparison was made with an oblivious processing period, which ignores 
memory interference. 
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Figure 3 Processing period results (saturated bandwidth). 

Figure 3 shows that the proposed analysis predictions are quite close to the 
actual measurement of the task periods. The simple analysis method is not 
accurate in the case of 2 processors. The simple analysis method gives an upper 
limit to the expected processing period time, which is close to the actual 
measurement only when the global memory bandwidth is saturated (3 and 4 
processors), but it is not a good estimate when the bandwidth is not saturated (2 
processors). The proposed analysis method in this paper is superior to the 
simple analysis method because it does not depend on memory bandwidth 
saturation, and it gives a good estimate for all numbers of processors tested. 
Furthermore, the results show the significance of including the effect of 
memory interference; the predictions made by the oblivious method, which 
ignores memory interference, are significantly overvalued, while the proposed 
estimate agrees with the actual hardware. 
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Additional simulations were performed to predict and compare the performance 
of larger numbers of processors. An application was chosen such that it could be 
divided into different numbers of tasks and allocated to different numbers of 
processors, as follows: {2,8}, {3,12}, {4,16}, {5,20}, {6,24}, {7,28}, {8,32}, 
{9,26}, {10,40}, {11,44}, {12,48}, {13,52}, {14,56}, {15,60}, and {16,64}; 
where in {p,t}, p is the number of processors and t is the number of tasks. The 
application required 10000 ns of single CPU time. Each task was assigned a 
random task time, with the constraint that the sum of task times of all tasks was 
kept constant at 10000 ns. In addition, each task was assigned a random 
probability of memory access, with the constraint that the sum of probabilities 
of all tasks remained constant at 1.0. This ensured the application had a 100% 
chance of accessing global memory. Finally, each task was randomly allocated 
to one of four slots of a processor.  

Figure 4 shows that the processing period of the proposed method decreases 
with increasing number of processors, as expected. The rate of decrease is 
increasingly dampened with increasing number of processors because of the 
increased probability of memory contention. Adding additional processors to 
the system results in more tasks executed in parallel, but each of the tasks take 
longer to execute because of memory contention. The proposed prediction tool 
clearly shows the expected improvement of performance, and it provides a 
means to judge and justify the cost of adding processors to the system. In 
particular, the results show that the system reaches global-memory interference-
saturation at about 6 processors, and, accordingly, there is decreasing benefit in 
adding more processors than 6 to this system. 
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Figure 4 Prediction and comparison of multiple processor performance. 
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5 Discussion 

Figure 3 and Figure 4 demonstrate the importance of considering the effect of 
memory interference in a shared memory multiprocessor system. On the one 
hand, the oblivious prediction, which ignores the effect of memory interference, 
overshoots the processing period by an average of 45%, and in some cases as 
much as 80%. On the other hand, the proposed prediction method agrees with 
the experimental results, and provides a very good estimate of the actual 
processing period. Furthermore, the results demonstrate that the proposed 
prediction method leads to a faster and more economical system. For instance, 
Figure 3 shows that, on the one hand, the simple analysis method predicted a 
very minimal improvement for increasing the number of processors from one to 
two, and this may have incorrectly lead a developer to choose a one-processor 
system. On the other hand, the proposed prediction method would have 
suggested a three-processor system, which runs 30% faster than a single-
processor system, at the cost of an additional two processors. Finally, the 
simulations suggest the proposed prediction method remains superior to the 
oblivious method. The simulations show that while the oblivious method 
predicts the same global memory saturation point, the proposed prediction 
method provides a better economic cost and benefit analysis. 

6 Conclusion 

This paper has provided a method for determining the expected amount of time 
that each processor in a stream-oriented shared memory multiprocessor system 
will wait for memory access because another processor is being served. Since 
the memory controller operated by polling each processor for memory requests, 
each processor’s memory requests was individually modeled as a discrete time 
Markov chain Geo/PH/1 system with PH vacations. Then by using an iterative 
algorithm to determine the vacation process for each processor, the system was 
analyzed to determine the amount of time that each processor spent waiting for 
memory access when another processor was accessing the memory. The 
proposed analysis allows the processing period of a pipelined execution of a 
data flow graph to be adjusted to account for the memory access wait time. The 
proposed analysis tool is useful for evaluating different task allocations, number 
of pipeline stages, and number of processors in a system to see how changes in 
these parameters could change the performance of a system. 
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