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Abstract. This paper investigat the performance of wavelet-based
multiresolutionmotion estimatio (MRME) for inbetweening in old animated
films using threedifferent MRME schemes. The three schemes are: coarse-to-
fine with a wavelebased MRME, one of Zhang's MRMs, and an MRME in
the spatial domairin ordel to make a performance comparison of these MRME
schemestwo video sequencewere used for a simulation. The experimental
results show that theoars-to-fine method performed better than Zhang's
MRME and the MRMEin the spatial domain. The evaluation results @cthl
size 9x9 indicate that trcoarse-to-fine method had an average peak signal-to
noise ratio (PSNR) 023.48 dB for the first sequence and 29.84 for theosdc
sequence.
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1 Introduction

In order for a videao havethe high visual and audio quality thatodern
audiences desirehe restoration oold animated films is required sintkey
havesome kind of damay, such as intensity flicker, noise and blotches [[]
Old animated filns were created by hand drawing. Amiemator makes
number of key frameandan assistant will then build thetermediate frame:
As a result, the motion of the object appears |, which interferes witlhuman
vision. Inbetweeningims to smooth the obje¢ motion.

Inbetweening is @rocess obuilding intermediate frames between two ima
in order to show amooth movement between the first ¢the secondmage.
The intermediate rhme is calledin-between’. Inbetweening is alsa key
process in all othdlypes of animation, including computer animat

Many researchers have done rese on inbetweening, but it remairan
interesting study subjesince the optimal solution for many problems hasd
been obtained yetDe Juan and Bodenhein3] use gradienbased motiol
estimation on traditionanimations This methodcan process color animati
videos, but itrequires high computit power and in practicé cannot handl
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displacements greater than 5 pixels [1]. Seah and[4]l use a modified
hierarchical feature-based matching method for @moéstimation to build in-
between line drawings from a pair of input line wirggs. This method uses
features such as intensity, edge, angle, displatenwientation, and
smoothness magnitude.

Most of the inbetweening research done is for 2edisional animation that is
not old and in which the systems requires a lohwfan intervention. The
process of inbetweening in this study was imposeg on gray-level animated
films that had some damage.

Inbetweening performance depends on the resultsotibn estimation. Motion

estimation is a process to determine frame displaceé in a sequence of
pictures. There are several motion estimation @lgos, such as the block
matching algorithm (BMA), gradient algorithm andagk correlation algorithm.
The BMA is the most popular as it is easy to impeainin software and

hardware. According to research [5], [6], the blocktching algorithm with a

multiresolution approach can produce smoother motextors. In video coding
and compression, wavelet-based motion estimatipfO]7has received much

attention due to its superior performance compacedonventional motion

estimation in the spatial domain. Zhang [8] progoaematching block with a
multiresolution approach on video coding based enelets. His method uses
the wavelet transform to decompose a video franmedrset of sub-frames with
different resolutions.

This paper investigates the performance of wavwmsed multiresolution
motion estimation for inbetweening in old animatiiths based on three
algorithms and three types of block sizes for matgh

2 Wavelet-Based Multiresolution Motion Estimation (MRME)

2.1  Concept of MRME

Multiresolution motion estimation (MRME) is a sp&ictase of the hierarchical
block motion estimation (HBME) approach, using ahté block sizes. It can
reduce computational complexity because MRME ed¢@manotion vectors
hierarchically.

MRME in the wavelet domain is similar to MRME inetlspatial domain. In the
spatial domain, a video frame is decomposed inturaber of frames with a
different resolution using the Gaussian pyramitherLaplacian pyramid. In the
wavelet domain, a video frame is decomposed imaraber of frames with a
different resolution as well as with different gphorientations.
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In a wavelet-based MRME technique [7],[8], the raptiestimation process is
carried out in the wavelet domain. It starts wigtiraating the motion vectors at
the lowest resolution level, where most of the imagergy resides. The motion
vectors thus obtained are used as a predictiohifdrer resolutions and as an
addition to a smoothing factor. Motion vector atledlock can be obtained by
a block-matching algorithm.

The 2D discrete wavelet transform (DWT2) of imafjéx, y) with M-level can
be expressed as a sequence of sub-images [8]@asdpl

{SzK |.Vv2j1Jj=v,H,D"”’l-\szK Jj:V,H,D} @)

where {S

2K L)
resolution of{12‘1,2‘2,---,2‘“"}. S, is the original image, whileS,is the
approximation of f (x,y) at the next resolution™2 szM is detail image in

resolution 2! at location, whereV, H andD indicate vertical, horizontal, and
diagonal, respectively.

K=012..., M} shows a set of approximations 6f(x, y) with a

Zhang and Zafar [8] have proposed four MRME scherbese schemes are
classified based on their different approach ofenmeice motion vector
estimation in the lowest resolution and motion gecefinement in high and
mid-frequency sub-bands. Wavelet-based coarsewosithemes [10] an&(+
refine) Zhang's scheme will be the subject of furthereistigation in this study.

2.2 Wavelet-Based Coarse-to-Fine Scheme

In a coarse-to-fine scheme [10], the motion veida@stimated only at the low-
pass band. Motion vectors at a given resolutioellean be predicted from the
motion vectors at a lower resolution, by multiplyithem by two. A

smoothness factor is added after the motion esbmairocess is done around

that prediction. Letv, (X, y) represent the motion vectors centeredxay) for
the sub-image at lev&l Then the estimation of, (X, y) is given by

Vi (X, Y) = X, (X,Y)+ 6, (X, Y) (2
for k=0,1,2,.. M

where M is the level of decomposition adg is a refinement factor.
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In this study, the original frame was decomposéd two levels using the 2D
discrete wavelet transform (DWT2). The lowest regoh only had 1/4 pixels
of the original image, but it contained a largeceatage of the total energy. In
each low-pass band, block matching estimation veafopned within twenty
four neighboring pixels. Figure 1 shows the struetof the wavelet-based
coarse-to-fine algorithm.

Motion o> Interpolation ‘ Interpolation '
Vector € Matching (S matching (I Matching
g & ¥

Figure 1 The structure of the wavelet based coarse-to-figerisghm.

2.3 (Sstrefine) Zhang's Scheme

Zhang [8] has proposed several techniques for ma#imation, one of which,
the scheme-lll % + refine) technique, provides superior performance over the
others. A total of seven sub-bands were obtaineth witwo-level wavelet
analysis. The motion relationships among the rémwoiuevels are shown in
Figure 2.

The motion vector in a sub-band at a given resmuevel, which is predicted
from a motion vector at the lowest resolution levial multiplied by an

appropriate power of two. A refinement factor igled to this prediction after
carrying out a motion search around this motiojot®n. The equation of the
motion vector prediction can be written as

ij (X! y)=2ij_1(X, y)+d(j(xﬂ Y) (3)
for k=1,2,.. M andj=V H D
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whereV,! is the motion vector at sub-band lekekith orientationj and &, is
the refinement factor determined by the resulthef inotion estimation around
the predicted valu@ V', .

H NN ﬁ ]j |
V(:xvY) [ . . V(X;Y) .Q(x,y.)
| vix,y)
EF __ | N
vy N JA(x, )| [ vy 2
| || || [A(x,y) |
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Alx,y)
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Figure 2 Motion relationship in a two-level variable-blocikzs MRME
scheme.

3 Wavelet-based Inbetweening in Old Animated Films

Figure 3 shows a block diagram of the inbetweemsipgtem for old animated
films proposed by Sulistyaningrum [10]. It consisfsseveral processing units.
First, correcting intensity flicker; second, esttimg motion vectors; third,

smoothing motion vectors resulted from step 2; tlougenerating intermediate
frames between two frames.

Old animated films produced between 1930-1940 wbee object of this
experiment. Such old films usually have some kihdamage, such as intensity
flicker, blotches, noise and line jitter. Intensiligker is the unnatural temporal
fluctuation in perceived image intensity that doesoriginate from the original
frame. In this work, the handled damage type wdyg onensity flicker. A
histogram matching method [11] was applied to atrfiéicker. This method is
based on histogram equalization by applying a umfbistogram.
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Original Flicker Motion
Sequence correction estimation
frame g(n,k)
Motion In- Enhanced
» Vector W . [—® sequence
smathiiy betweening frame f{n,K)

Figure 3 Block diagram of the inbetweening system for oldvated films.

Two algorithms of wavelet-based MRMEs were investd for their

performance. In addition, the original MRME algbnit was also investigated.
To begin the process of motion vector estimatitwe, @riginal image frames
were decomposed into two layers to build the pydamirhe Laplacian Pyramid
approach was applied to the original MRME, while D2®\M¥as applied to the
wavelet-based MRME. In the wavelet-based coardawoalgorithm, motion

vectors were estimated only at the low-pass bandhé Zhang algorithm [8],
motion vectors were estimated at all levels of eaob-band. A detailed
explanation of both methods has been given in @e&ti3.

The motion-vector smoothing algorithm consists wb tsteps: detecting and
smoothing the outlier. An average motion vectoraumding block is used for
motion vector smoothing in [12]. The average moti@ttor is defined as
follows:

||—\

w=

D, =abs(V,, —V,) 4)
D,=1% ZQ: abs(v,, -

Where v,, denotes the mean value gf and all neighbors. After computing
D, andD,, thenv, is outlier, if D, > D,

Vector median filtering (VMF) is applied for smoath outlier in [13]. VMF is
used to smooth the motion vector field by using riedian of motion vector
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input adjacent to the vector. ¢f, = ZTleVi -V,|, the vector median is defined

as the one that has the smallest distance fromvedtors in V, i.e.
med(V) =v, OV so thatd, =min{d,}.

Inbetweening can be done by interpolation. Intexpoh is a key process for
each type of animation, including computer aninratibhe object interpolation
approach was applied to inbetweening in this stud@ijierefore, object
segmentation had to be done first before inbetvwngecan take place. The
process of object segmentation uses a thresholdochethile the interpolation
uses cubic interpolation.

4 Experiment and Results

Our simulation used two video sequences to invastighe wavelet-based
MRME. It used a Popeye sequence with a dimensi&d0fx 320 pixels and a
Felix the Cat sequence with a dimension of 240 ® Pixels. The mean
absolute difference (MAD) was used for the blockehatg algorithm of the
wavelet-based MRME. Assuming that a motion blockdias N x M, the MAD
is defined as:

MADIG ) =SS () =1,y (e ) ©)

m=1 n=1

where |, (m,n) is the pixel value at coordinateém,n) in (k)th frame,
I (m+dx,n+dy) is the pixel value at coordinatgsn+ dx,n+dy) in the
(k+1)th frame. The motion vector is given by:

(MV,,MV,) =min MAD(dxdy) (6)

(dx,dy)OR?
This experiment used 101 consecutive frames fon é@&t sequence. 50 even
frames were removed and 50 new even frames wereraged from 51 odd
frames using the proposed and existing algoriththe. selected frames had a
static background and a dynamic foreground. The PP8Ids calculated from
the constructed even frames with respect to thggnai even frames, as follows:

N M

1 - 2
MSE =503 (fg (%) e (,Y)

x=1 y=1

2
PSNR =10x Ioglo(%j
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whereMSE is the mean square errdt,is the vertical size of framé is the

horizontal size of the framef,, (X, y) is the pixel value of the original even

frame at position(x, y)and f,(X Y)is the pixel value of the constructed

even frame at positiorn(x,y). The average PSNR, denoted by PS)Rs
given as

PSNR,, =L > PSNR ©

wherePSNR is the measure®SN\R for framei, andK is the total number of
constructed even frames.

This experiment was carried out in order to inggt the performance of a
wavelet-based multiresolution motion estimation fobetweening in old
animated films for three algorithms and three tymdsblock size. The
comparison results are shown in Figure 4, Figuen® Figure 6. The figures
indicate that the coarse-to-fine scheme providedrgrovement of the PSNR
for all test sequences over the spatial MRME andnglsa MRME. The
performances of the coarse-to-fine method and tieisd MRME method
provided similar PSNR values for a constant blode ©f 9x9 and variable
block sizes of 5, 9, 17.

Table 1 shows the average PSNR for all test seggerithe test resulted in
three MRME schemes and three various block sizeslbsequences. The
variable block size was varied (5x5, 9x9, and 1Jxfdm top to bottom levels.
The constant block size was varied (5x5 and 9xBg fAble indicates that the
coarse-to-fine MRME provided the best PSNR forbidick sizes, especially in
block size 9x9. In the coarse-to-fine scheme, tlsdion vectors are estimated
only at the low-pass band so that the noise in Higl-pass band is not
processed. This causes the coarse-to-fine MRMEetmbre resistant to noise
than Zhang's MRME scheme.

The coarse-to-fine MRME and the spatial MRME gawgngilar PSNR for the
9x9 block size and the variable block sizes bec#usavavelet transformation
used in the experiments was the Haar wavelet, wharherates sub-images
similar to those of the Laplacian pyramid. The klsize affects the accuracy of
the ME. The larger the block size, the more aceutas; however, computation
time is also longer.
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Figure 4 PSNRs of the spatial MRME, the coarse-to-fine MRE Zhang's
MRME with block size 5x5 for test sequences: (a8, (b) Felix.
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GRAFIK PSNR INBETWEENING Popeye 9x9
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Figure 5 PSNRs of the spatial MRME, the coarse-to-fine MREME Zhang's
MRME with block size 9x9 for test sequences: (a)@3e@, (b) Felix.
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Figure 6 PSNRs of the spatial MRME, the coarse-to-fine MRt Zhang's
MRME with variable block sizes 5, 9, 17 for tesgjsences: (a) Popeye, (b)
Felix.
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Table 1 Average PSNR of test video sequences.

Variable
Sequences Schema Constant Block Block
5x5 9x9 5x5,9x9,17x17
Blow Me .
Down Popeye MR(';"E spatial 17.9244 2003717  23.4286
omain
(1933)
Coarse-to-fine 22.2571 23.4805 23.4286
Zhang's MRME 17.894! 17.774¢ 18.036¢
Felixthe cat  MRME spatial 18.9243  29.8436 29.6829
in Hollywood domain .
(1923) Coarse-to-fine 26.3320 29.8445 29.6842
Zhang's MRME 23.1284 24.3541 24.4985
5 Conclusion

In this paper a comparative study was discussethefperformance of a
wavelet-based MRME for inbetweening in old animatiéas. Our findings
show that the coarse-to-fine method was one of ket methods for
inbetweening in old animated films. The evaluatiesults on block size 9x9
indicate that the coarse-to-fine method had anamePSNR of 23.48 dB for
the Popeye sequence and 29.84 dB for the Felixesegu
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