

ITB J. ICT, Vol. 6, No. 2, 2012, 131-150 131

Received November 14
th
, 2011, Revised February 26

th
, 2012, Accepted for publication September 22

nd
, 2012.

Copyright © 2012 Published by LPPM ITB,ISSN: 1978-3086, DOI: 10.5614/itbj.ict.2012.6.2.3

A New RTL Design Approach for a DCT/IDCT-Based

Image Compression Architecture using the mCBE

Algorithm

Rachmad Vidya Wicaksana Putra, Rella Mareta, Nurfitri Anbarsanti

& Trio Adiono

IC Design Laboratory, Electrical Engineering, School of Electrical Engineering and
Informatics, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia

Email: rachmadvidyawp@students.itb.ac.id, rachavidyawp@gmail.com

Abstract. In the literature, several approaches of designing a DCT/IDCT-based

image compression system have been proposed. In this paper, we present a new

RTL design approach with as main focus developing a DCT/IDCT-based image

compression architecture using a self-created algorithm. This algorithm can

efficiently minimize the amount of shifter-adders to substitute multipliers. We

call this new algorithm the multiplication from Common Binary Expression
(mCBE) Algorithm. Besides this algorithm, we propose alternative quantization

numbers, which can be implemented simply as shifters in digital hardware.

Mostly, these numbers can retain a good compressed-image quality compared to

JPEG recommendations. These ideas lead to our design being small in circuit

area, multiplierless, and low in complexity. The proposed 8-point 1D-DCT

design has only six stages, while the 8-point 1D-IDCT design has only seven

stages (one stage being defined as equal to the delay of one shifter or 2-input

adder). By using the pipelining method, we can achieve a high-speed architecture

with latency as a trade-off consideration. The design has been synthesized and

can reach a speed of up to 1.41ns critical path delay (709.22MHz).

Keywords: DCT/IDCT architecture; low complexity; mCBE Algorithm; multiplierless;
new RTL design approach.

1 Introduction

Many kinds of digital image and video processing techniques have been

proposed in the literature. Most of them, require discrete cosine transform
(DCT). In this paper, we will discuss DCT-based image compression, one of the

most interesting topics in image processing. Actually, DCT is not an algorithm

specifically developed for image compression. But, we can take advantage of
DCT theory to support well-performing image compression [1].

In the past years, many DCT-based researches have been conducted. Loeffler,

C., et al. [2] proposed a low complexity DCT using the Flow-Graph Algorithm.

This design requires 11 multiplications and 29 additions. Jeong, et al. [3]

132 Rachmad Vidya Wicaksana Putra, et al.

proposed a low-power multiplierless DCT architecture using image data

correlation (cordic). Ruiz, et al. [4] proposed a high-throughput parallel-pipeline

2D-DCT/IDCT processor. Heyne, et al. [5] proposed a combination of the

Loeffler DCT and cordic method, which requires 38 adders and 16 shifters for
8-point 1D-DCT and consists of 3 cordic blocks with several adders. Each block

consists of an iterative shift-add operation and the longest path takes three

iterations. Therefore, its longest path has an 8-stage delay (we define one stage
as the delay of one shifter or 2-input adder). Byoung-Il Kim, et al. [6] have

proposed a low-power multiplierless DCT for image/video coders.

Subramanian, et al. [7] have proposed a VLSI implementation of a fully

pipelined multiplierless 2D-DCT/IDCT architecture for JPEGs.

In this paper, we propose a new approach of designing a DCT/IDCT-based

image compression architecture. The main focus of our research was to develop

the architecture by using a self-created algorithm that can efficiently minimize
the amount of shifter-adders to substitute constant multipliers. We named it:

multiplication from Common Binary Expression (mCBE) Algorithm. We also

propose alternative quantization numbers, which can be implemented simply as
shifters. Mostly, these numbers can retain a good compressed image quality

compared to JPEG recommendations. We had three objectives. Firstly, the

design had to be able to operate well, producing a good compressed image

quality represented by Peak-to-peak Signal to Noise Ratio (PSNR) and Mean
Square Error (MSE) values. Secondly, the design had to have less than 8-stage

delay of flow-graph architecture without iterations for 8-point 1D-DCT/IDCT.

Thirdly, the design had to have a small circuit area, be multiplierless, and have
low complexity, so that it can be implemented easily in digital hardware.

This paper is organized in a number of sections. First, the introduction section

briefly introduces: (1) the importance of DCT theory in image compression

systems, (2) several past researches about DCT-based image compression
systems, and (3) the main points of the proposed design. This section is

followed by a brief explanation of DCT/IDCT theory and its usage in image

compression systems. The next section is about the proposed design. Here, we
explain our design approach and its implementation in detail. This section is

followed by the synthesis and analysis regarding our proposal. We also compare

the proposed design with other design methods. In the following section, we
explain the simulation and FPGA implementation. Finally, this section is

followed by conclusion and references, respectively.

2 Fundamental Theory

In designing a DCT/IDCT-based image compression system, we need to use

DCT/IDCT formulations and quantification-dequantification processing [8].

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 133

2.1 Discrete Cosine Transform Formulation

The equation of 1-Dimension N-points DCT is formulated as:

1

()

0

(2 1)
() () cos

2

N

x

x

x u
Z u u f

N








   
   

  
 ,  

1
 0

2
 0

for u
N

u

for u
N







 





 (1)

2.2 Inverse Discrete Cosine Transform Formulation

The equation of 1-Dimension N-points Inverse DCT is formulated as:

1

()

0

(2 1)
() () cos

2

N

u

x

x u
f x u Z

N








   
   

  
 ,  

1
 0

2
 0

for u
N

u

for u
N







 





 (2)

2.3 Basic DCT/IDCT-Based Image Compression System

The main idea behind this image compression system is to reduce the image

data size without significantly reducing image quality to the human eye. This
technique will remove the least significant (high-frequency) information data

from the image. The most significant information data usually have a low

frequency. For the human eye it is more difficult to see differences in high

frequencies than in low frequencies. Therefore, by eliminating the higher
frequencies we can significantly reduce the image size without abandoning

image quality.

The input and output data of the DCT/IDCT-based compression system can be

provided by using the YCbCr format. Input image data in JPEG format are

converted to YCbCr format, which has three macroblock components: Y
(luminance), Cb (chrominance blue), and Cr (chrominance red). Each

component is computed based on microblock segmentation (8x8pixels), as

shown in Figure 1. The inverse process is applied to the output data of the

system in order to get the actual image (JPEG format). Therefore, by combining
Eqs. (1) and (2) with microblock characters, we can compute 64-point data in a

2D-DCT/IDCT process from an 8-point input 1D-DCT only.

Figure 2 shows the details of the process of the complete compression system.

In the complete compression system, first the image data will be represented as

spatial domain data. These data will be transformed to frequency domain data
using 2D-DCT processing. Then, we organize the frequency domain data in

134 Rachmad Vidya Wicaksana Putra, et al.

term of importance. Thus, we can eliminate the high-frequency data using

quantification. Next, we do 2D-IDCT processing, which is the inversion of 2D-

DCT processing, to get the compressed image data in the spatial domain.

Figure 1 Microblock segmentation
(8x8-pixels).

Figure 2 Detail of complete compression

system.

2.4 Quantization and Dequantization

The other important modules in this compression system are quantization and

dequantization. The quantization module performs the quantification process on
the microblock data. The dequantization module performs the dequantification

process on the microblock data. The general equation for quantization is:











),(

),(

vuQ

vuDCT
roundQDCT

 (3)

Dequantization is the inverse of quantization. From Eq. (3), we have DCT(u,v)

and Q(u,v) as input for the quantification process. Parameters u and v represent

row and column location. DCT(u,v) represents the image data location in a
microblock (8x8pixels) and Q(u,v) represents the quantizer numbers in the

quantization matrices (denominators of the quantification process). There is no

fixed numbers of quantization matrices. It is the prerogative of the user to select

the quantization matrices. However, the JPEG committee has recommended a
number of quantization matrices (Q matrices), for example, Q50_LUMINANCE and

Q50_CHROMINANCE:

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 135



































9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116

_50 LUMINANCEQ

 

































9999999999999999

9999999999999999

9999999999999999

9999999999999999

9999999999996647

9999999999562624

9999999966262118

9999999947241817

_50 ECHROMINANCQ

3 Proposed Design

3.1 Choosing the Image Compression System

In this proposal, we have used the basic system that is shown in Figure 2. Here,

we have defined two subparts of the complete compression system: the

supporting modules and the main compression module. The supporting modules

consist of unsigned-to-signed and signed-to-unsigned modules. The main
compression module consists of three main parts: an 8-point 1D-DCT block

with transposition buffer, an 8-point 1D-IDCT block with transposition buffer,

and Quantization-Dequantization blocks, as shown in Figure 3-4.

Figure 3 Basic architecture in 2D-DCT. Figure 4 Basic architecture in 2D-IDCT.

This design approach was chosen in order to achieve the stated objectives,

specifically the small area and low complexity. We did not choose a direct 2D-

DCT/IDT architecture, because of its huge area. Each 2D-DCT/IDCT design
uses a transposition buffer to complete the 2D process. The area of the proposed

design is smaller than the area of a direct 2D-DCT/IDCT. Obviously, our design

needs more cycles to compare the process.

3.2 Basic DCT/IDCT Matrices Equations

We explore DCT/IDCT equations in Eqs. (1) and (2) to arrange the DCT/ IDCT

matrices equations. The obtained matrices equations from the 8-point DCT
process are shown in Eqs. (4) and (5), which are similar to the matrices

equations from [9]. From these equations, we find a simple design for the digital

hardware architecture.

136 Rachmad Vidya Wicaksana Putra, et al.






































































43

52

61

70

6

4

2

0

1111

1111

8

1

xx

xx

xx

xx

ebbe

beeb

z

z

z

z

 (4)







































































34

52

16

70

7

5

3

1

8

1

xx

xx

xx

xx

acdf

cfad

dafc

fdca

z

z

z

z

 (5)











16
cos2


a

 









8
cos2


b

 









16

3
cos2


c











16

5
cos2


d 










8

3
cos2


e 










16

7
cos2


f

We use several symbols in the DCT matrices Eqs. (4) and (5). A brief

explanation of the symbols:

 Input of 8-point DCT process : x0, x1, x2, x3, x4, x5, x6, x7

 Output of 8-point DCT process : z0, z1, z2, z3, z4, z5, z6, z7

 Variables : a, b, c, d, e, f

By using a similar idea, we also get the IDCT matrices equations. A brief

explanation of symbols used in IDCT process:

 Input of 8-point IDCT process : z0, z1, z2, z3, z4, z5, z6, z7

 Output of 8-point IDCT process : x0, x1, x2, x3, x4, x5, x6, x7

 Variables : a, b, c, d, e, f

We will use the variables and expressions from this section for further
exploration.

3.3 Extracting the DCT/IDCT Matrices Equations

Based on DCT matrices Eqs. (4) and (5), we can build several independent

matrices equations.These are the extracted matrices equations:











































)()(

)()(

8

1

8

1
8

1

8

1

4370

5261

4

0

xxxx

xxxx

z

z (6)

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 137




















 





























 










)()(

)()(

)()(

)()(

8

1

6152

3470

6

2

6152

3470

6

2

xxxx

xxxx

BE

EB

z

z

xxxx

xxxx

be

eb

z

z

 (7)




















 




















 










34

70

34

70

1

0

8

1

xx

xx

AF

FA

xx

xx

af

fa

p

p (8)
























































16

52

16

52

3

2

8

1

xx

xx

FA

AF

xx

xx

fa

af

p

p (9)




















 




















 










16

52

16

52

1

0

8

1

xx

xx

DC

CD

xx

xx

dc

cd

q

q (10)




















 




















 










34

70

34

70

3

2

8

1

xx

xx

DC

CD

xx

xx

dc

cd

q

q (11)

 (12)

From these equations, there are several inputs multiplied by several constant

multipliers, which can be classified as three blocks of multiplications, as shown

in Table 1.

Table 1 Three blocks of multiplications.

Blocks

Name

Multiplicands

(Input Signals)
Multipliers

mCBE0)()(5261 xxxx 
 ,

)()(4370 xxxx 
 8

1

mCBE1)()(3470 xxxx 

,)()(6152 xxxx  B, E

mCBE2 70 xx 

,

34 xx 

,

52 xx 

,

16 xx  A, C, D, F

3.4 Fixed-Point Data Format

We used a 20-bit data word-length, which consists of a 1-bit sign bit, 12bits of
decimal data, and 7bits of fractional data. We chose a 12-bit data for decimal

data because this accommodates the highest value that the compression process

can reach. We chose a 7-bit data for fractional data because this is the shortest
bit-length with a good performance in retaining image quality (high PSNR and

low MSE value from modeling results, as shown in Figure 5). For the constant

multipliers, we also used a 7-bit data as shown in Table 2.

001 qpz 
333 qpz 

225 qpz 

117 qpz 

138 Rachmad Vidya Wicaksana Putra, et al.

Figure 5 Modeling result of fractional bit length for MSE and PSNR.

Table 2 Constant multipliers bit representation.

Variables
Floating-Point

Value

Bit Representation

Approximation

Decimal Fractional

8

1
0.3535534 - 0101101

A 0.49039264 - 0111111
B 0.46193766 - 0111011
C 0.415734806 - 0110101
D 0.277785116 - 0100100

E 0.191341716 - 0011000
F 0.097545161 - 0001100

3.5 Multiplication Decomposition Using the mCBE Algorithm

It follows from Section 3.3 that we need multiplication by several constant
multipliers. We know that multiplication can be substituted by a shift-add

operation. Thus, we propose an algorithm to minimize the amount of shifter-

adder used to substitute the multiplication, which uses several constant
multipliers. This is the multiplication from Common Binary Expression (mCBE)

Algorithm.

Figure 6 Illustration of the mCBE algorithm design.

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 139

Here, we present the mCBE Algorithm:

i. Listing of all constants (C1-n) which are used to multiply the same input,

then produce a table as shown in Figure 6.

ii. Choose and classify every constant which has bit value 1, more or equal to
70% from its bit’s amount. There will be two groups:

a. Group of [≥70%].

b. Group of [<70%].
iii. Suppose there are 2 groups.

a. Group of [≥70%] : Group A.

a.1 If only one constant fits in Group A, then:
 Find out the most significant bit that contains the value of 1.

 If the position is bit-m, choose bit-(m+1) as MostShiftBit.

 Then, determine the SubShiftBit to complete the substraction

operation in order to get the desired result.
a.2 If there are several constants that fit in Group A, then:

 For every constant, find out the most significant bit that

contains the value of 1.
 If the position is bit-m, choose bit-(m+1) as MostShiftBit.

 Then, determine the SubShiftBit to complete the substraction

operation in order to get the desired result.

 If it is possible to use the same MostShiftBit or SubShiftBit, then
use them together to fit other constants.

b. Group of [<70%] : Group B.

b.1 Find out the most appeared value of 1 for Vv (vertical view), and
call it VvShiftBit. If there are several bits that fit, choose one.

b.2 From the chosen VvShiftBit point, find the most appeared bit value

of 1 for the corresponding Hv (horizontal view). We call this bit
HvShiftBit. There are three possible conditions: single HvShiftBit

found, several HvShiftBits found, or no HvShiftBit found.

b.2.1 If there is a single HvShiftBit, then:

 Choose this bit as AddShiftBit to the chosen VvShiftBit.
 Then, still with the same VvShiftBit, check again from

step (b.2) for unselected bits.

b.2.2 If there are several HvShiftBits, then:
Check whether between those HvShiftBits (Two or more

HvShiftBits are grouped as HvShiftBitsG) there is a mutual

inter-Hv relation (in the same constant).
 If yes, then:

Choose the bit which has the least inter-Hv relation in

HvShiftBitsG as AddShiftBit to the chosen VvShiftBit.

 If no, then:
Choose one as AddShiftBit to the chosen VvShiftBit.

140 Rachmad Vidya Wicaksana Putra, et al.

b.2.3 If there is no HvShiftBit, then:

 Continue to step (iv).

iv. Loop from step (iii) until all values 1 are represented as MostShiftBit,

VvShiftBit, SubShiftBit, or AddShifBit.
v. Design a butterfly-like flow-graph using chosen MostShiftBit, VvShiftBit,

SubShiftBit, or AddShifBit.

Notes:

Ci : Constant multiplier number i.
Vv : Vertical view relation.
Hv : Horizontal view relation.
MostShiftBit : Biggest shifting bit value: its shifting result will be

substracted from another signal (usually SubShiftBit).
VvShiftBit : Most appeared bit value 1 in vertical bit order, which is

used as shifting bit.
HvShiftBit : Most appeared bit value 1 in inter-Hv relation to

VvShiftBit.
HvShiftBitsG : Group of several HvShiftBits.
AddShiftBit : The bit which is chosen as shifter bit and its shifting

output will be added to the result of VvShiftBit or another

AddShiftBit output.
SubShiftBit : The bit which can be partner of MostShiftBit to complete

the substraction operation.

3.6 Implementation of the mCBE Algorithm

3.6.1 Basic mCBE Building Blocks

Implementation of the mCBE Algorithm occurs inside the multiplication block.
From Table 1, we get three blocks (mCBE0, mCBE1, and mCBE2).

a. The mCBE0 Block

Table 3 shows an illustration of the mCBE0 block design.

Table 3 Constant bit representation.

Variables
Bit Representation

6 5 4 3 2 1 0

8

1
0 1 0 1 1 0 1

 VvShiftBit0-1 AddShiftBit0-1

Then, we get the following architecture (Figure 7):

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 141

Figure 7 The mCBE0 block architecture.

b. The mCBE1 Block

Table 4 shows an illustration of the mCBE1 block design.

Table 4 Constant bit representation.

Variables
Bit Representation

6 5 4 3 2 1 0

B 0 1 1 1 0 1 1
E 0 0 1 1 0 0 0

 MostShiftBit SubShiftBit

 VvShiftBit AddShiftBit

Then, we get the following architecture (Figure 8):

Figure 8 The mCBE1 block architecture.

c. The mCBE2 Block

Table 5 shows an illustration of the mCBE2 block design.

Table 5 Constant bit representation.

Variables
Bit Representation

6 5 4 3 2 1 0

A 0 1 1 1 1 1 1
C 0 1 1 0 1 0 1
D 0 1 0 0 1 0 0
F 0 0 0 1 1 0 0

 MostShiftBit SubShiftBit/

 AddShiftBit1
 AddShiftBit0 VvShiftBit0

 AddShiftBit0
 VvShiftBit1

142 Rachmad Vidya Wicaksana Putra, et al.

Then, we get the following architecture (Figure 9):

Figure 9 The mCBE2 block architecture.

In order to optimize the area consumption and retain a good image quality, we

use some additional techniques. First, we expand the data word-length while the
shifting process occurs in the mCBE0-2 blocks. Then, we cut the expanded data

word-length at the last 7bits to represent 20-bit fixed-point data, right after the

1D/2D-DCT/IDCT processes have been completed.

3.7 Complete 8-Point 1D-DCT/IDCT Architecture

The complete architecture is obtained by integrating the mCBE blocks with the

remaining operations. The final 8-point 1D-DCT/IDCT architecture is shown in
Figure 10-11.

Figure 10 The proposed 8-point 1D-DCT architecture.

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 143

Figure 11 The proposed 8-point 1D-IDCT architecture.

From Figures 10 and 11, both designs (8-point 1D-DCT and 8-point 1D-IDCT)
consist of 60 adders and 34 shifters. The 8-point 1D-DCT has six stages and the

8-point 1D-IDCT has seven stages, where each stage is defined as the delay of

one shifter or 2-input adder. The results fulfill the second and the third
objective. The flow-graph architecture of each design has a less than 8-stage

delay, without any iterations. Both designs only use shifter-adder components,

so they have a low complexity and can be implemented easily in digital
hardware. Furthermore, the designs can also easily be pipelined and modified

for future improvement.

3.8 Alternative Quantization-Dequantization Numbers

In this paper we propose alternative quantization and dequantization numbers in

order to simplify the hardware implementation without significantly reducing

the image quality, based on the following considerations:

1. Image Quality Consideration: The proposed quantization-dequantization

numbers can mostly retain and improve compressed-image quality

compared to JPEG recommendation numbers. This can be seen from the

retaining or increasing of the Peak-to-peak Signal to Noise Ratio (PSNR)
value and the Mean Square Error (MSE) values.

144 Rachmad Vidya Wicaksana Putra, et al.

2. Low Complexity Hardware Implementation: The proposed quantization-

dequantization numbers have to be implemented easily as shifter.

In order to retain image quality and get low complexity hardware, we adopt the

recommended quantization numbers as reference and change the value of the

numbers slightly compared to the recommended numbers, which are a power of
2. The proposed alternative quantization and dequantization numbers are:



































128128128128128646464

12812812812864646432

1281281286464643232

128128646464323232

12864646432323216

6464643232321616

646432323216168

64323232161688

ECHROMINANCLUMINANCE QQ

For ease of reference, we call them FathQuantz numbers. If we use these
numbers, there are consequences that we need to know. The design can be

implemented easily as a shifter. However, the numbers are fixed, so we cannot

make them change dynamically in the digital hardware, except if we design a

supporting system for that case. In order to know the quality of the FathQuantz
numbers, we examined them and compared the results with the reference

numbers (JPEG recommendations, see Section 2.4). We use a comparison of

PSNR and MSE values to show in how far there is a difference between the
FathQuantz numbers and the reference numbers. The comparison results are

shown in Figures 12-13.

 Figure 12 Comparison of PSNR values. Figure 13 Comparison of MSE values.

In Figures 12 and 13, we can see that the PSNR and MSE values are not

significantly different between the reference and the FathQuantz numbers. The.
FathQuantz numbers can mostly retain the image quality compared to the

reference numbers. Therefore, we can use the FathQuantz numbers as

quantization-dequantization numbers.

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 145

3.9 Integration into the Complete Compression System

Figure 14 shows the architecture of complete proposed compression system.

Figure 14 Complete proposed compression system.

3.10 Pipelining Strategy

As we all know, the best design conditions are built from low area consumption,

high speed, and low latency. In our design, pipelining is purposely conducted to
achieve a high throughput. Therefore, the pipelining strategy has to be

conducted while taking area, speed, and latency into consideration. The

pipelining strategy can be considered with two main conditions:

1. Low latency: In order to achieve a low latency, no pipeline is given.

2. High throughput: In order to achieve a high throughput, we can use a

pipeline component to run a segmentation process. We can take several

segments, such as: unsigned-to-signed data converter, 2D-DCT,
quantization-dequantization, 2D-IDCT, and signed-to-unsigned data

converter. If we want to add a number of pipelines to increase throughput,

we can add them in the 1D-DCT/IDCT blocks to have segmentation in the
process. However, we have to consider that adding pipelines also means

adding area consumption and latency.

We have tested two scenarios to establish the design’s boundaries. We tried the

lowest latency design (without pipeline) and the highest throughput design
(with the maximum amount of pipelines). We refer to the lowest latency design

by its original name (e.g. DCT or IDCT) and to the highest latency design by

adding “(p-)” in front of the name (e.g. p-DCT and p-IDCT). We will use the

same references in the synthesis and benchmarks section.

4 Design Synthesis and Benchmarks

We have used Synopsys Design Vision with CMS-0.13µm technology to
synthesize the designs.

146 Rachmad Vidya Wicaksana Putra, et al.

4.1 Parity Synthesis

In order to make an easy comparison with other synthesis results, we also

provide parity design. Parity design has a total 49 of 2-input XOR elements and
21 stages (one stage is defined as the delay of one 2-input XOR element).

Table 6 Synthesis report of parity.

Design
Total

Area

Total

Data Arrival

Time (ns)

Unit

Area

Unit

Data Arrival

Time (ns)

Total

Dynamic

Power (µW)

Parity 147 25.41 3 1.21 62.3955

Hopefully, the parity design synthesis results in Table 6 will make it easier to

compare our design with other designs.

4.2 Synthesis of the mCBE-Based DCT/IDCT Architecture

Table 7 presents the synthesis results of the mCBE-based designs.

Table 7 Synthesis report of mCBE-based DCT/IDCT architecture.

Design Area
Data Arrival Time

(ns)

Total Dynamic Power

 (mW)

Latency

(cycles)

 DCT 1D 13787 90.00 16.02740 1

 IDCT 1D 14461 85.40 12.17250 1

p-DCT 1D 43779 1.41 1.06960 6

p-IDCT 1D 47024 1.41 0.67996 7

p-DCT 2D 66179 1.41 1.04020 25

p-IDCT 2D 69460 1.41 1.02410 27

p-Compression 143425 1.41 1.81550 55

Notes:

DCT : DCT with mCBE Architecture

IDCT : IDCT with mCBE Architecture

p-DCT : Pipelined DCT with mCBE Architecture
p-IDCT : Pipelined IDCT with mCBE Architecture

p-Compression : Pipelined Complete Compression System with mCBE Arch.

From Table 7, we get that the designs with lowest latency have a slower data
arrival time (about 60 times slower) than the designs with highest latency.

4.3 Benchmarks

In this section, we compare our design approach with other methods. Tables 8-9

show the benchmarks considering the multiplier design method and Tables 10-

11 show the benchmarks considering the 1D/2D-DCT/IDCT design approach.

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 147

Table 8 8-point DCT benchmarks.

Design

Name

8-points 1D-DCT

Area Data Arrival Time (ns) Total Dynamic Power (mW)

Multiplier 33865 203.43 31.7158

Shift-Add 18379 92.72 20.0942

mCBE 13787 90.00 16.0274

Table 9 8-point IDCT benchmarks.

Design

Name

8-points 1D-IDCT

Area Data Arrival Time (ns) Total Dynamic Power (mW)

Multiplier 33854 150.03 17.96460

Shift-Add 19277 85.72 13.79980

mCBE 14461 85.40 12.17250

Table 10 1D-DCT/IDCT design approach benchmarks.

Design

Name

8-points 1D-DCT 8-points 1D-IDCT

Area
Data Arrival

Time (ns)

Latency

(cycles)
Area

Data Arrival

Time (ns)

Latency

(cycles)

Multiplier 33865 203.43 1 33854 150.03 1

Shift-Add 18379 92.72 1 19277 85.72 1

mCBE 13787 90.00 1 14461 85.40 1

Paper [4] - 3.33 45 - 3.33 67

Paper [6] - - 10 - - -

p-mCBE 43779 1.41 6 47024 1.41 7

Table 11 2D-DCT/IDCT design approach benchmarks.

Design

Name

8x8-points 2D-DCT 8x8-points 2D-IDCT
Synthesis

CMOS

Tech.

(µm)
Area

Data

Arrival

Time

(ns)

Latency

(cycles)
Area

Data

Arrival

Time

(ns)

Latency

(cycles)

Paper [3] 214263 17.14 - - - - Anam-0.18

Paper [4] - 3.33 172 - 3.33 178 0.35

Paper [7] - 6.02 45 - 6.02 45 -

p-mCBE 66179 1.41 25 69460 1.41 27 CMS-0.13

Notes:

mCBE : DCT/IDCT design with mCBE Algorithm

p-mCBE : Pipelined DCT/IDCT design with mCBE Algorithm

Multiplier : DCT/IDCT design with multiplier
Shift-Add : DCT/IDCT design with shift-add operation without mCBE Alg.

Paper [n] : Proposed design in paper [n], n = number of reference

(-) : No specific information

148 Rachmad Vidya Wicaksana Putra, et al.

From Tables 8 and 9, the proposed design has a smaller area and a faster data

arrival time than the general multiplier method or the pure shift-add method.

Moreover, the DCT/IDCT designs with mCBE algorithm are almost three times

smaller and about two times faster than the multiplier-based architecture. The
proposed design is also smaller and faster than a pure shift-add architecture. In

Tables 10 and 11, we show the results of the comparison between the proposed

design and other proposed designs, such as the designs from references [6], [7],
[8] and [9]. The results show that our design can reach all three design

objectives (small area, multiplierless, and low complexity). Moreover, the

proposed design can achieve a high speed and relatively low latency compared

to the other designs.

5 Verification and Implementation

In order to verify the functional performance of our design, we used MATLAB
and Modelsim software (see Figures 15-20). First, we generated the image data

file by using MATLAB. This file was read by our Verilog HDL codes and

computed in Modelsim. The output of the compression system in Modelsim was

written to a new file. Then, this file was read and reconstructed as a picture by
MATLAB. In this step, we also compared the original image with the

compressed one by using the PSNR and MSE computation method.

Figure 15 Functional verification flow.

Figure 16 Functional simulation process.

 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 149

 Figure 17 Original picture (77KB). Figure 18 Compressed picture (37.2KB).

 Figure 19 Cropped original picture. Figure 20 Cropped compressed picture.

The reconstructed compressed image data were computed using MATLAB to

examine the PSNR and MSE values. Figure 18, the reconstructed image, has

PSNR = 41.808dB and MSE = 4.289. From the example, we notice that the

compressed image was slightly more blurred. Considering the PSNR and MSE
values which we have obtained from several functional verifications, we

conclude that our system can obtain a good compressed-image quality. This

means that we have reached the first goal: the proposed design can operate well,
producing a compressed image of good quality.

Our design has also been implemented in FPGA board Altera DE2 Cyclone II

EP2C35F672C6. For FPGA implementation, we used the internal ROM to store

the image data and compute them to give output. The computation output was
presented using FPGA’s LED to indicate whether the output data were valid or

not. This FPGA implementation results show that the proposed design works

well and gives valid output data.

150 Rachmad Vidya Wicaksana Putra, et al.

6 Conclusion

We conclude that our design can reach all three objectives successfully. The

mCBE Algorithm can minimize the amount of shifter-adders to substitute
multipliers. Besides that, our alternative quantization-dequantization numbers

can mostly retain good compressed-image quality compared to JPEG

recommendations. The results of this research show that the proposed 8-point

1D-DCT design has only six stages and the 8-point 1D-IDCT design has only
seven stages. Here, we define one stage as equal to the delay of one shifter or 2-

input adder. By using the pipelining method, we can achieve a high-speed

architecture with latency as trade-off consideration. This design has been
synthesized and it can reach speeds of up to 1.41ns critical path delay

(709.22MHz).

References

[1] Salomon, D., Data Compression: The Complete Reference, 3
rd

 Edition,

New York: Springer-Verlag, 2004.

[2] Loeffler, C., Lightenberg, A. & Moschytz, G.S., Practical Fast 1-D DCT
Algorithms with 11-Multiplications, Proceedings ICASSP, 1989.

[3] Jeong, H., Kim, J. & Cho, W.-k., Low-Power Multiplierless DCT

Architecture Using Image Data Correlation, IEEE Transactions on
Consumer Electronicsm, 2004.

[4] Ruiz, G.A., Michell, J.A. & Buron, A., High Throughput Parallel-

Pipeline 2-D DCT/IDCT Processor Chip, Journal of VLSI Signal

Processing, 45, pp. 161-175, 2006.
[5] Heyne, B. & Gotze, J., A Low Power and High Quality Implementation of

The Discrete Cosine Transformation, Advance in Radio Science, 2007.

[6] Kim, B.-I. & Ziavras, S.G., Low-Power Multiplierless DCT for
Image/Video Coders, IEEE 13

th
 International Symposium on Consumer

Electronics, 2009.

[7] Subramanian, P. & Reddy, A.S.C., VLSI Implementation of Fully
Pipelined Multiplierless 2D DCT/IDCT Architecture for JPEG,

Proceedings ICSP, 2010.

[8] LSI Design Contest Official Website, Okinawa, Japan, http://lsi-

contest.com/2011/shiyou_3e.html (1 December 2010).
[9] Sung, T.Y., Shieh, Y.S. & Sun, M.J., A High-Throughput and Memory-

Efficiency 2D DCT Architecture based on Cordic Rotation, The 23rd

Workshop on Combinatorial Mathematics and Computation Theory.

