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Abstract. In the literature, several approaches of designing a DCT/IDCT-based 

image compression system have been proposed. In this paper, we present a new 

RTL design approach  with as main focus developing a DCT/IDCT-based image 

compression architecture using a self-created algorithm. This algorithm can 

efficiently minimize the amount of shifter-adders to substitute multipliers. We 

call this new algorithm the multiplication from Common Binary Expression 
(mCBE) Algorithm. Besides this algorithm, we propose alternative quantization 

numbers, which can be implemented simply as shifters in digital hardware. 

Mostly, these numbers can retain a good compressed-image quality compared to 

JPEG recommendations. These ideas lead to our design being small in circuit 

area, multiplierless, and low in complexity. The proposed 8-point 1D-DCT 

design has only six stages, while the 8-point 1D-IDCT design has only seven 

stages (one stage being defined as equal to the delay of one shifter or 2-input 

adder). By using the pipelining method, we can achieve a high-speed architecture 

with latency as  a trade-off consideration. The design has been synthesized and 

can reach a speed of up to 1.41ns critical path delay (709.22MHz).   

Keywords: DCT/IDCT architecture; low complexity; mCBE Algorithm; multiplierless; 
new RTL design approach. 

1 Introduction 

Many kinds of digital image and video processing techniques have been 

proposed in the literature. Most of them, require discrete cosine transform 
(DCT). In this paper, we will discuss DCT-based image compression, one of the 

most interesting topics in image processing. Actually, DCT is not an algorithm 

specifically developed for image compression. But, we can take advantage of 
DCT theory to support well-performing image compression [1]. 

In the past years, many DCT-based researches have been conducted. Loeffler, 

C., et al. [2] proposed a low complexity DCT using the Flow-Graph Algorithm. 

This design requires 11 multiplications and 29 additions. Jeong, et al. [3] 
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proposed a low-power multiplierless DCT architecture using image data 

correlation (cordic). Ruiz, et al. [4] proposed a high-throughput parallel-pipeline 

2D-DCT/IDCT processor. Heyne, et al. [5] proposed a combination of the 

Loeffler DCT and cordic method, which requires 38 adders and 16 shifters for 
8-point 1D-DCT and consists of 3 cordic blocks with several adders. Each block 

consists of an iterative shift-add operation and the longest path takes three 

iterations. Therefore, its longest path has an 8-stage delay (we define one stage 
as the delay of one shifter or 2-input adder). Byoung-Il Kim, et al. [6] have 

proposed a low-power multiplierless DCT for image/video coders. 

Subramanian, et al. [7] have proposed a VLSI implementation of a fully 

pipelined multiplierless 2D-DCT/IDCT architecture for JPEGs. 

In this paper, we propose a new approach of designing a DCT/IDCT-based 

image compression architecture. The main focus of our research was to develop 

the architecture by using a self-created algorithm that can efficiently minimize 
the amount of shifter-adders to substitute constant multipliers. We named it:  

multiplication from Common Binary Expression (mCBE) Algorithm. We also 

propose alternative quantization numbers, which can be implemented simply as 
shifters. Mostly, these numbers can retain a good compressed image quality 

compared to JPEG recommendations. We had three objectives. Firstly, the 

design had to be able to operate well, producing a good compressed image 

quality represented by Peak-to-peak Signal to Noise Ratio (PSNR) and Mean 
Square Error (MSE) values. Secondly, the design had to have less than 8-stage 

delay of flow-graph architecture without iterations for 8-point 1D-DCT/IDCT. 

Thirdly, the design had to have a small circuit area, be multiplierless, and have 
low complexity, so that it can be implemented easily in digital hardware. 

This paper is organized in a number of sections. First, the introduction section 

briefly introduces: (1) the importance of DCT theory in image compression 

systems, (2) several past researches about DCT-based image compression 
systems, and (3) the main points of the proposed design. This section is 

followed by a brief explanation of DCT/IDCT theory and its usage in image 

compression systems. The next section is about the proposed design. Here, we 
explain our design approach and its implementation in detail. This section is 

followed by the synthesis and analysis regarding our proposal. We also compare 

the proposed design with other design methods. In the following section, we 
explain the simulation and FPGA implementation. Finally, this section is 

followed by conclusion and references, respectively.  

2 Fundamental Theory 

In designing a DCT/IDCT-based image compression system, we need to use 

DCT/IDCT formulations and quantification-dequantification processing [8]. 
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2.1 Discrete Cosine Transform Formulation 

The equation of 1-Dimension N-points DCT is formulated as: 
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2.2 Inverse Discrete Cosine Transform Formulation 

The equation of 1-Dimension N-points Inverse DCT is formulated as: 
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2.3 Basic DCT/IDCT-Based Image Compression System 

The main idea behind this image compression system is to reduce the image 

data size without significantly reducing image quality to the human eye. This 
technique will remove the least significant (high-frequency) information data 

from the image. The most significant information data usually have a low 

frequency. For the human eye it is more difficult to see differences in high 

frequencies than in low frequencies. Therefore, by eliminating the higher 
frequencies we can significantly reduce the image size without abandoning 

image quality.  

 
The input and output data of the DCT/IDCT-based compression system can be 

provided by using the YCbCr format. Input image data in JPEG format are 

converted to YCbCr format, which has three macroblock components: Y 
(luminance), Cb (chrominance blue), and Cr (chrominance red). Each 

component is computed based on microblock segmentation (8x8pixels), as 

shown in Figure 1. The inverse process is applied to the output data of the 

system in order to get the actual image (JPEG format). Therefore, by combining 
Eqs. (1) and (2) with microblock characters, we can compute 64-point data in a 

2D-DCT/IDCT process from an 8-point input 1D-DCT only. 

  
Figure 2 shows the details of the process of the complete compression system. 

In the complete compression system, first the image data will be represented as 

spatial domain data. These data will be transformed to frequency domain data 
using 2D-DCT processing. Then, we organize the frequency domain data in 
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term of importance. Thus, we can eliminate the high-frequency data using 

quantification. Next, we do 2D-IDCT processing, which is the inversion of 2D-

DCT processing, to get the compressed image data in the spatial domain. 

 

Figure 1  Microblock segmentation 
(8x8-pixels). 

 

 

 
Figure 2  Detail of complete compression 

system.  
 

2.4 Quantization and Dequantization 

The other important modules in this compression system are quantization and 

dequantization. The quantization module performs the quantification process on 
the microblock data. The dequantization module performs the dequantification 

process on the microblock data. The general equation for quantization is: 
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Dequantization is the inverse of quantization. From Eq. (3), we have DCT(u,v) 

and Q(u,v) as input for the quantification process. Parameters u and v represent 

row and column location. DCT(u,v) represents the image data location in a 
microblock (8x8pixels) and Q(u,v) represents the quantizer numbers in the 

quantization matrices (denominators of the quantification process). There is no 

fixed numbers of quantization matrices. It is the prerogative of the user to select 

the quantization matrices. However, the JPEG committee has recommended a 
number of quantization matrices (Q matrices), for  example, Q50_LUMINANCE and 

Q50_CHROMINANCE:  
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3 Proposed Design  

3.1 Choosing the Image Compression System 

In this proposal, we have used the basic system that is shown in Figure 2. Here, 

we have defined two subparts of the complete compression system: the 

supporting modules and the main compression module. The supporting modules 

consist of unsigned-to-signed and signed-to-unsigned modules. The main 
compression module consists of three main parts: an 8-point 1D-DCT block 

with transposition buffer, an 8-point 1D-IDCT block with transposition buffer, 

and Quantization-Dequantization blocks, as shown in Figure 3-4.  
 

            

Figure 3  Basic architecture in 2D-DCT.     Figure 4 Basic architecture in 2D-IDCT. 

 
This design approach was chosen in order to achieve the stated objectives, 

specifically the small area and low complexity. We did not choose a direct 2D-

DCT/IDT architecture, because of its huge area. Each 2D-DCT/IDCT design 
uses a transposition buffer to complete the 2D process. The area of the proposed 

design is smaller than the area of a direct 2D-DCT/IDCT. Obviously, our design 

needs more cycles to compare the process. 

3.2 Basic DCT/IDCT Matrices Equations 

We explore DCT/IDCT equations in Eqs. (1) and (2) to arrange the DCT/ IDCT 

matrices equations. The obtained matrices equations from the 8-point DCT 
process are shown in Eqs. (4) and (5), which are similar to the matrices 

equations from [9]. From these equations, we find a simple design for the digital 

hardware architecture.  

 



136 Rachmad Vidya Wicaksana Putra, et al. 

 






































































43

52

61

70

6

4

2

0

1111

1111

8

1

xx

xx

xx

xx

ebbe

beeb

z

z

z

z

  (4) 

 







































































34

52

16

70

7

5

3

1

8

1

xx

xx

xx

xx

acdf

cfad

dafc

fdca

z

z

z

z

  (5) 











16
cos2


a

 

  









8
cos2


b

 

  









16

3
cos2


c

 

 











16

5
cos2


d    










8

3
cos2


e    










16

7
cos2


f

 

 

 
We use several symbols in the DCT matrices Eqs. (4) and (5). A brief 

explanation of the symbols: 

 Input of 8-point DCT process  : x0, x1, x2, x3, x4, x5, x6, x7 

 Output of 8-point DCT process  : z0, z1, z2, z3, z4, z5, z6, z7 

 Variables     : a, b, c, d, e, f 

 
By using a similar idea, we also get the IDCT matrices equations. A brief 

explanation of symbols used in IDCT process: 

 Input of 8-point IDCT process  : z0, z1, z2, z3, z4, z5, z6, z7 

 Output of 8-point IDCT process  : x0, x1, x2, x3, x4, x5, x6, x7 

 Variables     : a, b, c, d, e, f 

 

We will use the variables and expressions from this section for further 
exploration. 

3.3 Extracting the DCT/IDCT Matrices Equations 

Based on DCT matrices Eqs. (4) and (5), we can build several independent 

matrices equations.These are the extracted matrices equations: 
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From these equations, there are several inputs multiplied by several constant 

multipliers, which can be classified as three blocks of multiplications, as shown 

in Table 1. 
 

Table 1 Three blocks of multiplications. 
 

Blocks 

Name 

Multiplicands 

(Input Signals) 
Multipliers 

mCBE0 )()( 5261 xxxx 
 , 

)()( 4370 xxxx 
 8

1  

mCBE1 )()( 3470 xxxx 
 
, )()( 6152 xxxx   B, E 

mCBE2 70 xx 
 
, 

34 xx 
 
, 

52 xx 
 
, 

16 xx   A, C, D, F 

3.4 Fixed-Point Data Format 

We used a 20-bit data word-length, which consists of a 1-bit sign bit, 12bits of 
decimal data, and 7bits of fractional data. We chose a 12-bit data for decimal 

data because this accommodates the highest value that the compression process 

can reach. We chose a 7-bit data for fractional data because this is the shortest 
bit-length with a good performance in retaining image quality (high PSNR and 

low MSE value from modeling results, as shown in Figure 5). For the constant 

multipliers, we also used a 7-bit data as shown in Table 2.  

001 qpz   
333 qpz   

225 qpz   

117 qpz   
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Figure 5   Modeling result of fractional bit length for MSE and PSNR. 

 

Table 2 Constant multipliers bit representation. 
 

Variables 
Floating-Point 

Value 

Bit Representation 

Approximation 

Decimal Fractional 

8

1  
0.3535534 - 0101101 

A 0.49039264 - 0111111 
B 0.46193766 - 0111011 
C 0.415734806 - 0110101 
D 0.277785116 - 0100100 

E 0.191341716 - 0011000 
F 0.097545161 - 0001100 

 

3.5 Multiplication Decomposition Using the mCBE Algorithm 

It follows from Section 3.3 that we need multiplication by several constant 
multipliers. We know that multiplication can be substituted by a shift-add 

operation. Thus, we propose an algorithm to minimize the amount of shifter-

adder used to substitute the multiplication, which uses several constant 
multipliers. This is the multiplication from Common Binary Expression (mCBE) 

Algorithm.  

 

Figure 6   Illustration of the mCBE algorithm design. 
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Here, we present the mCBE Algorithm: 
 

i. Listing of all constants (C1-n) which are used to multiply the same input, 

then produce a table as shown in Figure 6. 

ii. Choose and classify every constant which has bit value 1, more or equal to 
70% from its bit’s amount. There will be two groups: 

a. Group of [≥70%]. 

b. Group of [<70%]. 
iii. Suppose there are 2 groups. 

a. Group of [≥70%] : Group A. 

a.1  If only one constant fits in Group A, then: 
 Find out the most significant bit that contains the value of 1.  

 If the position is bit-m, choose bit-(m+1) as MostShiftBit.  

 Then, determine the SubShiftBit to complete the substraction 

operation in order to get the desired result. 
a.2  If there are several constants that fit in Group A, then: 

 For every constant, find out the most significant bit that 

contains the value of 1.  
 If the position is bit-m, choose bit-(m+1) as MostShiftBit.  

 Then, determine the SubShiftBit to complete the substraction 

operation in order to get the desired result.  

 If it is possible to use the same MostShiftBit or SubShiftBit, then 
use them together to fit other constants. 

b. Group of [<70%] : Group B. 

b.1  Find out the most appeared value of 1 for Vv (vertical view), and 
call it VvShiftBit. If there are several bits that fit, choose one. 

b.2  From the chosen VvShiftBit point, find the most appeared bit value 

of 1 for the corresponding Hv (horizontal view). We call this bit 
HvShiftBit. There are three possible conditions: single HvShiftBit 

found, several HvShiftBits found, or no HvShiftBit found. 

b.2.1 If there is a single HvShiftBit, then: 

 Choose this bit as AddShiftBit to the chosen VvShiftBit. 
 Then, still with the same VvShiftBit, check again from 

step (b.2) for unselected bits. 

b.2.2 If there are several HvShiftBits, then: 
Check whether between those HvShiftBits (Two or more 

HvShiftBits are grouped as HvShiftBitsG) there is a mutual 

inter-Hv relation (in the same constant). 
 If yes, then:  

Choose the bit which has the least inter-Hv relation in 

HvShiftBitsG as AddShiftBit to the chosen VvShiftBit. 

 If no, then: 
Choose one as AddShiftBit to the chosen VvShiftBit. 
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b.2.3 If there is no HvShiftBit, then: 

 Continue to step (iv). 

iv. Loop from step (iii) until all values 1 are represented as MostShiftBit,  

VvShiftBit, SubShiftBit, or AddShifBit. 
v. Design a butterfly-like flow-graph using chosen MostShiftBit, VvShiftBit, 

SubShiftBit, or AddShifBit. 

 
Notes: 

 

Ci : Constant multiplier number i. 
Vv : Vertical view relation. 
Hv   : Horizontal view relation. 
MostShiftBit : Biggest shifting bit value: its shifting result will be 

substracted from another signal (usually SubShiftBit). 
VvShiftBit  : Most appeared bit value 1 in vertical bit order, which is 

used as shifting bit. 
HvShiftBit : Most appeared bit value 1 in inter-Hv relation to 

VvShiftBit. 
HvShiftBitsG : Group of several HvShiftBits. 
AddShiftBit : The bit which is chosen as shifter bit and its shifting 

output will be added to the result of VvShiftBit or another 

AddShiftBit output. 
SubShiftBit : The bit which can be partner of MostShiftBit to complete 

the substraction operation. 
 

3.6 Implementation of the mCBE Algorithm 

3.6.1 Basic mCBE Building Blocks  

Implementation of the mCBE Algorithm occurs inside the multiplication block. 
From Table 1, we get three blocks (mCBE0, mCBE1, and mCBE2).  

a. The mCBE0 Block 

Table 3 shows an illustration of the mCBE0 block design. 
 

Table 3 Constant bit representation. 
 

Variables 
Bit Representation 

6 5 4 3 2 1 0 

8

1  
0 1 0 1 1 0 1 

 
         VvShiftBit0-1  AddShiftBit0-1 

 

Then, we get the following architecture (Figure 7): 
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Figure 7   The mCBE0 block architecture. 

 

b. The mCBE1 Block 

Table 4 shows an illustration of the mCBE1 block design. 
 

Table 4 Constant bit representation. 
 

Variables 
Bit Representation 

6 5 4 3 2 1 0 

B 0 1 1 1 0 1 1 
E 0 0 1 1 0 0 0 

 
               MostShiftBit    SubShiftBit 

       VvShiftBit  AddShiftBit 
 

Then, we get the following architecture (Figure 8): 
 

 

Figure 8   The mCBE1 block architecture. 
 

c. The mCBE2 Block 

Table 5 shows an illustration of the mCBE2 block design. 
 

Table 5 Constant bit representation. 
 

Variables 
Bit Representation 

6 5 4 3 2 1 0 

A 0 1 1 1 1 1 1 
C 0 1 1 0 1 0 1 
D 0 1 0 0 1 0 0 
F 0 0 0 1 1 0 0 

 
     MostShiftBit           SubShiftBit/ 

        AddShiftBit1 
                        AddShiftBit0            VvShiftBit0 

             AddShiftBit0 
              VvShiftBit1 



142 Rachmad Vidya Wicaksana Putra, et al. 

Then, we get the following architecture (Figure 9): 
 

 
Figure 9   The mCBE2 block architecture. 

 

In order to optimize the area consumption and retain a good image quality, we 

use some additional techniques. First, we expand the data word-length while the 
shifting process occurs in the mCBE0-2 blocks. Then, we cut the expanded data 

word-length at the last 7bits to represent 20-bit fixed-point data, right after the 

1D/2D-DCT/IDCT processes have been completed. 
 

3.7 Complete 8-Point 1D-DCT/IDCT Architecture 

The complete architecture is obtained by integrating the mCBE blocks with the 

remaining operations. The final 8-point 1D-DCT/IDCT architecture is shown in 
Figure 10-11.  
 

 

Figure 10   The proposed 8-point 1D-DCT architecture. 
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Figure 11   The proposed 8-point 1D-IDCT architecture. 

 

From Figures 10 and 11, both designs (8-point 1D-DCT and 8-point 1D-IDCT) 
consist of 60 adders and 34 shifters. The 8-point 1D-DCT has six stages and the 

8-point 1D-IDCT has seven stages, where each stage is defined as the delay of 

one shifter or 2-input adder. The results fulfill the second and the third 
objective. The flow-graph architecture of each design has a less than 8-stage 

delay, without any iterations. Both designs only use shifter-adder components, 

so they have a low complexity and can be implemented easily in digital 
hardware. Furthermore, the designs can also easily be pipelined and modified 

for future improvement. 

3.8 Alternative Quantization-Dequantization Numbers 

In this paper we propose alternative quantization and dequantization numbers in 

order to simplify the hardware implementation without significantly reducing 

the image quality, based on the following considerations: 

1. Image Quality Consideration: The proposed quantization-dequantization 

numbers can mostly retain and improve compressed-image quality 

compared to JPEG recommendation numbers. This can be seen from the 

retaining or increasing of the Peak-to-peak Signal to Noise Ratio (PSNR) 
value and the Mean Square Error (MSE) values. 
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2. Low Complexity Hardware Implementation: The proposed quantization-

dequantization numbers have to be implemented easily as shifter. 
 

In order to retain image quality and get low complexity hardware, we adopt the 

recommended quantization numbers as reference and change the value of the 

numbers slightly compared to the recommended numbers, which are a power of 
2. The proposed alternative quantization and dequantization numbers are:  



































128128128128128646464

12812812812864646432

1281281286464643232

128128646464323232

12864646432323216

6464643232321616

646432323216168

64323232161688

ECHROMINANCLUMINANCE QQ

 
 

For ease of reference, we call them FathQuantz numbers. If we use these 
numbers, there are consequences that we need to know. The design can be 

implemented easily as a shifter. However, the numbers are fixed, so we cannot 

make them change dynamically in the digital hardware, except if we design a 

supporting system for that case. In order to know the quality of the FathQuantz 
numbers, we examined them and compared the results with the reference 

numbers (JPEG recommendations, see Section 2.4). We use a comparison of 

PSNR and MSE values to show in how far there is a difference between the 
FathQuantz numbers and the reference numbers. The comparison results are 

shown in Figures 12-13. 

 

  Figure 12   Comparison of PSNR values.   Figure 13   Comparison of MSE values. 

 

In Figures 12 and 13, we can see that the PSNR and MSE values are not 

significantly different between the reference and the FathQuantz numbers. The. 
FathQuantz numbers can mostly retain the image quality compared to the 

reference numbers. Therefore, we can use the FathQuantz numbers as 

quantization-dequantization numbers. 
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3.9 Integration into the Complete Compression System 

Figure 14 shows the architecture of complete proposed compression system.  
 

 

Figure 14   Complete proposed compression system. 

3.10 Pipelining Strategy 

As we all know, the best design conditions are built from low area consumption, 

high speed, and low latency. In our design, pipelining is purposely conducted to 
achieve a high throughput. Therefore, the pipelining strategy has to be 

conducted while taking area, speed, and latency into consideration. The 

pipelining strategy can be considered with two main conditions: 

1. Low latency: In order to achieve a low latency, no pipeline is given. 

2. High throughput: In order to achieve a high throughput, we can use a 

pipeline component to run a segmentation process. We can take several 

segments, such as: unsigned-to-signed data converter, 2D-DCT, 
quantization-dequantization, 2D-IDCT, and signed-to-unsigned data 

converter. If we want to add a number of pipelines to increase throughput, 

we can add them in the 1D-DCT/IDCT blocks to have segmentation in the 
process. However, we have to consider that adding pipelines also means 

adding area consumption and latency. 
 

We have tested two scenarios to establish the design’s boundaries. We tried the 

lowest latency design (without pipeline) and the highest throughput design 
(with the maximum amount of pipelines). We refer to the lowest latency design 

by its original name (e.g. DCT or IDCT) and to the highest latency design by 

adding “(p-)” in front of the name (e.g. p-DCT and p-IDCT). We will use the 

same references in the synthesis and benchmarks section. 

4 Design Synthesis and Benchmarks 

We have used Synopsys Design Vision with CMS-0.13µm technology to 
synthesize the designs. 
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4.1 Parity Synthesis  

In order to make an easy comparison with other synthesis results, we also 

provide parity design. Parity design has a total 49 of 2-input XOR elements and 
21 stages (one stage is defined as the delay of one 2-input XOR element). 

Table 6 Synthesis report of parity. 
 

Design 
Total 

Area 

Total 

Data Arrival 

Time (ns) 

Unit 

Area 

Unit  

Data Arrival 

Time (ns) 

Total 

Dynamic 

Power (µW) 

Parity   147 25.41 3 1.21 62.3955 

 

Hopefully, the parity design synthesis results in Table 6 will make it easier to 

compare our design with other designs. 

4.2 Synthesis of the mCBE-Based DCT/IDCT Architecture 

Table 7 presents the synthesis results of the mCBE-based designs. 

Table 7 Synthesis report of mCBE-based DCT/IDCT architecture. 
 

Design Area 
Data Arrival Time  

(ns) 

Total Dynamic Power 

 (mW) 

Latency 

(cycles) 

    DCT      1D   13787 90.00 16.02740 1 

    IDCT    1D   14461 85.40 12.17250 1 

p-DCT  1D   43779   1.41   1.06960 6 

p-IDCT  1D   47024   1.41   0.67996 7 

p-DCT  2D   66179   1.41   1.04020 25 

p-IDCT  2D   69460   1.41   1.02410 27 

p-Compression 143425   1.41   1.81550 55 

 

Notes:  

DCT : DCT with mCBE Architecture 

IDCT : IDCT with mCBE Architecture 

p-DCT : Pipelined DCT with mCBE Architecture 
p-IDCT : Pipelined IDCT with mCBE Architecture 

p-Compression  : Pipelined Complete Compression System with mCBE Arch. 

 

From Table 7, we get that the designs with lowest latency have a slower data 
arrival time (about 60 times slower) than the designs with highest latency. 

4.3 Benchmarks 

In this section, we compare our design approach with other methods. Tables 8-9 

show the benchmarks considering the multiplier design method and Tables 10-

11 show the benchmarks considering the 1D/2D-DCT/IDCT design approach. 
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Table 8 8-point DCT benchmarks. 

Design 

Name 

8-points 1D-DCT 

Area Data Arrival Time (ns) Total Dynamic Power (mW) 

Multiplier 33865 203.43 31.7158 

Shift-Add 18379   92.72 20.0942 

mCBE 13787   90.00 16.0274 
 

Table 9 8-point IDCT benchmarks. 

Design 

Name 

8-points 1D-IDCT 

Area Data Arrival Time (ns) Total Dynamic Power (mW) 

Multiplier 33854 150.03 17.96460 

Shift-Add 19277   85.72 13.79980 

mCBE 14461   85.40 12.17250 
 

Table 10 1D-DCT/IDCT design approach benchmarks. 

Design 

Name 

8-points 1D-DCT 8-points 1D-IDCT 

Area 
Data Arrival 

Time (ns) 

Latency 

(cycles) 
Area 

Data Arrival 

Time (ns) 

Latency 

(cycles) 

Multiplier 33865 203.43 1 33854 150.03 1 

Shift-Add 18379   92.72 1 19277   85.72 1 

mCBE 13787   90.00 1 14461   85.40 1 

Paper [4] -     3.33 45 -     3.33 67 

Paper [6] - - 10 - - - 

p-mCBE 43779     1.41 6 47024     1.41 7 
 

Table 11 2D-DCT/IDCT design approach benchmarks. 

Design 

Name 

8x8-points 2D-DCT 8x8-points 2D-IDCT 
Synthesis 

CMOS 

Tech. 

(µm) 
Area 

Data 

Arrival 

Time 

(ns) 

Latency 

(cycles) 
Area 

Data 

Arrival 

Time 

(ns) 

Latency 

(cycles) 

Paper [3] 214263   17.14 - - - - Anam-0.18 

Paper [4] -     3.33 172 -     3.33 178 0.35 

Paper [7] -     6.02   45 -     6.02   45 - 

p-mCBE 66179     1.41   25 69460     1.41   27 CMS-0.13 

 
Notes:  

mCBE : DCT/IDCT design with mCBE Algorithm 

p-mCBE : Pipelined DCT/IDCT design with mCBE Algorithm 

Multiplier : DCT/IDCT design with multiplier 
Shift-Add : DCT/IDCT design with shift-add operation without mCBE Alg. 

Paper [n] : Proposed design in paper [n], n = number of reference 

(-) : No specific information 
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From Tables 8 and 9, the proposed design has a smaller area and a faster data 

arrival time than the general multiplier method or the pure shift-add method. 

Moreover, the DCT/IDCT designs with mCBE algorithm are almost three times 

smaller and about two times faster than the multiplier-based architecture. The 
proposed design is also smaller and faster than a pure shift-add architecture. In 

Tables 10 and 11, we show the results of the comparison between the proposed 

design and other proposed designs, such as the designs from references [6], [7], 
[8] and [9]. The results show that our design can reach all three design 

objectives (small area, multiplierless, and low complexity). Moreover, the 

proposed design can achieve a high speed and relatively low latency compared 

to the other designs. 

5 Verification and Implementation 

In order to verify the functional performance of our design, we used MATLAB 
and Modelsim software (see Figures 15-20). First, we generated the image data 

file by using MATLAB. This file was read by our Verilog HDL codes and 

computed in Modelsim. The output of the compression system in Modelsim was 

written to a new file. Then, this file was read and reconstructed as a picture by 
MATLAB. In this step, we also compared the original image with the 

compressed one by using the PSNR and MSE computation method.  

 
Figure 15   Functional verification flow. 

 
 

Figure 16   Functional simulation process. 



 DCT/IDCT-Based Img. Comp. Arch. Using mCBE Algorithm 149 
 

 

      
       Figure 17  Original picture (77KB).    Figure 18  Compressed picture (37.2KB). 

 

  
 Figure 19  Cropped original picture.    Figure 20  Cropped compressed picture. 

 
The reconstructed compressed image data were computed using MATLAB to 

examine the PSNR and MSE values. Figure 18, the reconstructed image, has 

PSNR = 41.808dB and MSE = 4.289. From the example, we notice that the 

compressed image was slightly more blurred. Considering the PSNR and MSE 
values which we have obtained from several functional verifications, we 

conclude that our system can obtain a good compressed-image quality. This 

means that we have reached the first goal: the proposed design can operate well, 
producing a compressed image of good quality. 

Our design has also been implemented in FPGA board Altera DE2 Cyclone II 

EP2C35F672C6. For FPGA implementation, we used the internal ROM to store 

the image data and compute them to give output. The computation output was 
presented using FPGA’s LED to indicate whether the output data were valid or 

not. This FPGA implementation results show that the proposed design works 

well and gives valid output data.  
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6 Conclusion 

We conclude that our design can reach all three objectives successfully. The 

mCBE Algorithm can minimize the amount of shifter-adders to substitute 
multipliers. Besides that, our alternative quantization-dequantization numbers 

can mostly retain good compressed-image quality compared to JPEG 

recommendations. The results of this research show that the proposed 8-point 

1D-DCT design has only six stages and the 8-point 1D-IDCT design has only 
seven stages. Here, we define one stage as equal to the delay of one shifter or 2-

input adder. By using the pipelining method, we can achieve a high-speed 

architecture with latency as trade-off consideration. This design has been 
synthesized and it can reach speeds of up to 1.41ns critical path delay 

(709.22MHz).   
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