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Abstract. This paper presents the application of a smeared fixed crack approach 
for nonlinear finite element analysis of shear-critical reinforced concrete beams. 
The experimental data was adopted from tests undertaken on twelve reinforced 
concrete beams by Bresler and Scordelis in 1963, and from duplicate tests 
undertaken by Vecchio and Shim in 2004. To this end, all beams were modeled in 
3D using the software package ATENA-GiD. In the modeling, the nonlinear 
behaviors of the concrete were represented by fracture-plastic constitutive models, 
which were formulated within the smeared crack and crack/crush band 
approaches. The applicability of nonlinear analysis was demonstrated through 
accurate simulations of the full load-deflection responses, underlying 
mechanisms, crack patterns, and failure modes of all 24 beams. Detailed 
documentation of the results is presented to demonstrate the potential and practical 
value of nonlinear finite element analysis in providing an informed assessment of 
the safety and performance of reinforced concrete structures. 
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1 Introduction 

Accurate modeling of the nonlinear response of reinforced concrete has an 
important role to play in providing accurate predictions of the multifaceted 
nonlinear behavior of reinforced concrete structures. Although the response of 
reinforced concrete can be regarded as linear under normal loading conditions, it 
can become highly nonlinear when subjected to extreme loading conditions, for 
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example during a seismic event [1]. High nonlinearity can also occur when the 
load applied is considerably larger than the anticipated value, for example in 
poorly designed or constructed structures [2-4], or in structural elements with 
complex detailing [5-7]. In such situations, both the concrete and the reinforcing 
steel can contribute to the overall structural nonlinearity to a greater or lesser 
extent. In the case of the concrete, this is due to the complex behavior of cracked 
concrete, generally exhibiting the formation of cracks and opening/closing of pre-
existing cracks [3,8], crack slip and shear transfer along crack interfaces [9,10], 
and crack-to-crack interactions [7]. 

Compared to concrete, reinforcing steel can be considered as a far more linear 
material. Under service load conditions, local variations in stresses and strains 
can be expected to develop along the steel embedded in the concrete due to 
concrete cracking, bond conditions, and dowel action [11,12]. When steel begins 
to yield, however, it can turn into a highly nonlinear material and exert a dominant 
influence on the overall structural response. This is due to the large deformation 
caused by the yielding of the steel reinforcement. While most welcome from a 
structural design point of view, due to the ductile response exhibited, this large 
deformation may cause further damage to the concrete and hence increase the 
complexity of the problem at hand. The purpose of modeling is to capture the key 
features of the highly complex behavior of reinforced concrete without resorting 
to all the details but still maintaining accuracy. This forms the basis for the 
smeared crack approach, which is well documented [13,14]. 

Situations may arise where the applied load causes damage mainly to the 
concrete, resulting in undesirable brittle failure without being preceded by 
yielding of the steel reinforcement. This can occur, for example, in beams that 
are overly reinforced [2,15], in beams with little or no shear reinforcement 
subjected to restraint-induced tensile forces [16], or in beams with a non-
compliant bar spacing and/or arrangement [17,18]. Not only does failure of such 
members give little or no warning, the load (shear) capacity will also be difficult 
to predict with accuracy and it is generally less well understood by design 
engineers [19]. The latter can partly be attributed to the empirical nature of shear 
design code provisions, particularly for members without shear reinforcement. 
This is understandable, as unlike flexural behavior, which can be conveniently 
related to the section compatibility and equilibrium of compressive and tensile 
longitudinal forces, shear behavior and related mechanisms involve a more 
complicated problem over multiple sections. 

Apart from design engineers, shear analysis of reinforced concrete members 
presents a major challenge to finite element modelers [20-22]. This can partly be 
attributed to the complex nature of the problem, generally involving non-uniform 
crack formation and a dominant crack that may have a major impact on the overall 
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structural response [23]. To address this issue, Vecchio & Shim [24] implemented 
a disturbed stress field formulated within the smeared crack approach. They used 
this approach to replicate the load-deflection response of twelve shear-critical 
reinforced concrete beams, reported previously by Bresler & Scordelis [25], and 
twelve duplicate beams [24]. These were specifically tested to investigate the 
post-peak ductility, in which reasonable agreements were reported based on the 
load-deflection responses and modes of failure. In their study, the importance of 
out-of-plane reinforcement in two-dimensional nonlinear finite element analysis 
of reinforced concrete beams with shear reinforcement was specifically 
highlighted. The reason for this was to account for the confinement effects 
introduced by the loading plate on the strength of the concrete in the vicinity of 

the plate. The use of a concrete tensile strength of 0.33 𝑓  (MPa) is 
recommended to obtain a lower-bound prediction for beams with no shear 
reinforcement, considering the brittle nature of such beams [24]. The results of 
these classical beam tests and their duplicates have since been the subject of 
further studies and are generally used to benchmark the accuracy of nonlinear 
finite element procedures. This includes the work by Ceresa et al. [26], who 
employed several commercially available software packages; Ma [27] who 
incorporated a stochastic analysis to consider natural variations in material 
properties; and Bernard [28] who investigated the influence of corrosion on load 
capacity and the orientation of the principal concrete compressive stresses. 

In this paper, the three-dimensional nonlinear finite element software ATENA 
Science was used to simulate the full load-deflection responses of Bresler and 
Scordelis beams [25] and their duplicates (Vecchio and Shim beams) [24]. All 
beams were simulated in 3D to avoid the use of additional assumptions (i.e. out-
of-plane reinforcement and/or local increase in concrete strength) as in the 
previous work and to enable the analysis to be done in an objective manner. To 
this end, the smeared fixed crack approach was employed along with nonlinear 
constitutive models of concrete and steel, the details of which are presented 
below. 

This paper focuses on providing researchers and practicing engineers with a 
better understanding of the shear mechanisms in reinforced concrete beams, 
knowledge that can be used to develop and further improve the provisions for the 
shear strength of such members. This paper also aims to demonstrate the potential 
of a simple, yet powerful tool that can be employed to provide a detailed and 
informed assessment of the safety and integrity of new or deteriorated reinforced 
concrete members, by researchers and structural engineers alike. 
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2 Details of Vecchio-Shim Beams 

In 2004, Vecchio and Shim [24] undertook an experimental testing program on 
twelve shear-critical reinforced concrete beams, which were essentially identical 
to the beams tested by Bresler and Scordelis four decades earlier [25] (hereinafter 
referred to as VS and BS beams, respectively). The testing program aimed to 
verify the repeatability of the original experiment, particularly with respect to 
failure modes and load-bearing capacities, and to investigate the post-peak 
responses, which were not explored in the original experiment. 

A schematic diagram of the beam geometry and reinforcement layout is displayed 
in Figure 1, with the beam cross-section details presented in Figure 2 and Table 
1 for clarity. Four series of three beams were tested: the OA series with no 
transverse reinforcement; and the A, B, and C series, all containing transverse 
reinforcement. In each series, the beam was labeled with a numeral suffix to 
indicate the overall span: 1 representing a short span (3.66 m); 2 representing an 
intermediate span (4.57 m); and 3 representing a long span (6.40 m). 

As summarized in Table 1, all beams had a rectangular cross-section and the same 
overall depth of 552 mm. In each series, the beam width, the amount of transverse 
reinforcement, and concrete strength were varied. The steel reinforcement used 
in the beam tests is listed in Table 2. 

 

Figure 1 Geometric and reinforcement details of VS beams (adapted from [24]). 
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Figure 2 Cross-section details of VS beams (adapted from [24]). 

Table 1 Cross-section of VS beams (unit dimension and length in mm) [24] 

Beam 𝑏  ℎ 𝑑  𝐿  Span Bottom Bar Top Bar Stirrup 
OA1 305 552 457 4100 3660 2M30; 2M25 – – 
OA2 305 552 457 5010 4570 3M30; 2M25 – – 
OA3 305 552 457 6840 6400 4M30; 2M25 – – 
A1 305 552 457 4100 3660 2M30; 2M25 3M10 D5-210 
A2 305 552 457 5010 4570 3M30; 2M25 3M10 D5-210 
A3 305 552 457 6840 6400 4M30; 2M25 3M10 D4-168 
B1 229 552 457 4100 3660 2M30; 2M25 3M10 D5-190 
B2 229 552 457 5010 4570 2M30; 2M25 3M10 D5-190 
B3 229 552 457 6840 6400 3M30; 2M25 3M10 D4-152 
C1 152 552 457 4100 3660 2M30 3M10 D5-210 
C2 152 552 457 5010 4570 2M30; 2M25 3M10 D5-210 
C3 152 552 457 6840 6400 2M30; 2M25 3M10 D4-168 

Table 2 Material properties of steel reinforcement in VS beams [24]. 

Bar Size M10 M25a
  M25b M30 D4 D5 

Diameter (mm) 11.3 25.2 25.2 29.9 3.7 6.4 
𝑓  (MPa) 315 440 445 436 600 600 
𝑓  (MPa) 460 615 680 700 651 649 
𝐸  (GPa) 200 210 220 200 200 200 
Note: a Series 2; b Series 1 and 3. 

Table 3 presents the reported concrete properties for each series of beams. Only 
the compressive strength was considered in the analysis; all other properties were 
estimated using the default models in ATENA (discussed below). 
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Table 3 Material properties of concrete in VS beams (adapted from [24]). 

Beam Label Suffix 𝑓  (MPa) 
𝜀  
(%) 

𝐸  (GPa) 𝑓  (MPa) 

1 22.6 0.16 36.5 2.37 
2 25.9 0.21 32.9 3.37 
3 43.5 0.19 34.3 3.13 

Steel plates with dimensions of 150 × 350 × 20 mm and 150 × 300 × 58 mm were 
used at both the support and loading points, respectively. This in addition to 25-
mm thick end plates, which were welded to the bottom reinforcement at both ends 
of each beam to ensure adequate anchorage. 

3 Nonlinear Finite Element Analysis  

In this study, nonlinear finite element analysis was performed using the ATENA 
Science. ATENA is a user-friendly software package developed specifically by 
Červenka Consulting [29] for the analysis of reinforced concrete structures. In 
this software package, various nonlinear behaviors of reinforced concrete can be 
dealt with, including concrete cracking, reinforcement yielding, bonding between 
the concrete and the reinforcement, and concrete crushing under varying levels 
of confinement. Recent applications include simple flexural analysis [30], shear 
and punching failure analysis [31-33], beam-column joints under reversed cyclic 
loading [34], and durability assessment [35]. 

In ATENA Science, two fully integrated software packages are utilized, namely 
GiD and ATENA. The former is used as a pre-processor for defining the 
geometric and material properties, along with the generation of the finite element 
mesh. When a finite element model is run in GiD, it can be loaded automatically 
into either ATENA Console or ATENA Studio for performing nonlinear analysis. 
ATENA Studio was employed in this study, as it can also be used for post-
processing the results. It has a unique visualization feature, which allows the 
results and progress of analyses such as load-deflection response, deformed 
shape, stress and strain conditions, and crack formation in the concrete to be 
viewed on screen in real-time while the analysis is still in progress. 

Within ATENA’s library, three smeared crack models are available: a fixed crack 
model, a fully rotating crack model, and a combination of both (by limiting the 
maximum residual tensile stress across a crack) [37]. Within the fixed crack 
formulation implemented in ATENA, up to a maximum of three cracks can be 
considered at each material point. This would mean that after the formation of 
the first crack, new cracks can still form at other inclinations if the stress 
conditions in the cracked concrete are governing. In this work, this type of crack 
representation was considered appropriate to represent cracked concrete in both 
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series of beams. Given that all BS and VS beams contain no or a low amount of 
transverse reinforcement, significant rotation of stress fields is expected but not 
to the extent that this would cause significant rotation in crack direction due to 
crack slips. This would be a good test for verifying the crack representation 
chosen above and the material models adopted in this paper (discussed below). 
The other two crack models available in the software library (i.e. rotating and 
hybrid) can also be employed to suit the problem at hand. 

3.1 Compression and Tension Models 

In ATENA, the nonlinear behavior of concrete is modeled using the fracture-
plastic constitutive models for concrete [37]. The fracturing model is based on 
the model described in [40] and is used for representing the behavior of concrete 
in tension, whereas the plastic model is based on the work reported in [38] and is 
used for representing the behavior of concrete in compression under multiaxial 
stress conditions. The formulation of the material models is based on small 
strains, and strain decomposition into elastic, plastic, and fracturing components 
[35,37]. The stress development during the analysis is computed through an 
iterative algorithm, using rate equations that indicate progressive damage due to 
concrete cracking and plastic yielding caused by concrete crushing. For more 
details, the readers are referred to [35,37,39]. 

Several fracture-plastic models are available in the software library; two 
commonly adopted models are Cementitious2 and CementitiousUser. In the 
former model, the only input required is the cube compressive strength of 
concrete, which is used to determine the other parameters that are required for 
the analysis. Should it be necessary to modify some of the parameters, the second 
(user) model can be selected, as it gives users the flexibility to provide appropriate 
input data for the constitutive laws. The second model was employed in this 
study. 

Figures 3(a) and (b) present the compression model employed in this study, with 
a parabolic shape representing the ascending (hardening) part and a linear shape 
representing the descending (softening) part. In the ascending part, the ratio of 
normal compressive stress 𝜎  (MPa) to the cylinder compressive strength 𝑓  
(MPa) is related to the compressive stress beyond the elastic limit 𝑓  (MPa), the 
equivalent concrete plastic strain 𝜀  (mm/mm), and the plastic strain at the peak 
stress 𝜀  (mm/mm) in the following manner [37,38]: 

𝑐

𝑓𝑐
′ = 𝑓

𝑐𝑜
+ 𝑓

𝑐
′ − 𝑓

𝑐𝑜
1 −

𝜀𝑒𝑞𝑝−𝜀𝑐
𝑝

𝜀𝑒𝑞𝑝

2

  (1a) 
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𝜀 =  (1b) 

𝐸 = (6000 − 15.5𝑓 ) 𝑓  (1c) 

𝑓 =
.

 (1d) 

In Eq. (1a), the compressive stress beyond the elastic limit, 𝑓 , is taken as twice 
the tensile strength of concrete (= 2𝑓  MPa) [37]. The Young modulus of concrete 
𝐸  (MPa) is determined based on the cube compressive strength 𝑓  (MPa) (Eq. 
1(c)); the relation between the cube and cylinder compressive strengths is 
provided in Eq. 1(d). This nonlinear hardening is part of the Menetrey-Willam 
model, which is used for representing the plasticity of concrete under multiaxial 
stress conditions. For the OA beam series with no shear reinforcement, the beta 
parameter in the plasticity model was taken as 0, whereas for the other beams it 
was taken as 0.5. For more details, the reader is referred to [35,37,40]. 

 
Figure 3 Compression model for concrete: (a) hardening and (b) softening [37]. 

While the ascending branch of the compression model is computed based on the 
strains, the descending (softening) branch is computed based on the displacement 
following the crush band approach to ensure mesh objectivity [37]. In this model, 
it is assumed that the post-peak compressive stress decreases linearly from the 
peak stress 𝑓  to zero stress at a prescribed displacement, 𝑤  (see Fig. 3(b)). A 
value of 𝑤  = 2.5 mm was adopted, following the recommendation by Červenka, 
et al. [39]. The crush band size 𝐿  was calculated for each finite element mesh as 
the element size projected into the direction of the minimum compressive stress. 
Moreover, the mesh orientation bias was minimized using an orientation 
correction factor [37,39] and the minimum crush band size was taken as the 
minimum beam dimension to reduce the dependency of the results on mesh size 
[39]. 

In the tension (fracturing) model, the Rankine failure criterion was used for 
defining concrete cracking. In the fixed crack representation, stresses and strains 
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were computed in a local coordinate system in which the orientation was 
determined by the orientation of the principal stresses at the onset of cracking. 
Figure 4(a) displays a schematic of the post-cracking response of concrete, 
displaying a softening law that is formulated based on the crack opening 
displacement, 𝑤, and fracture energy, 𝐺 . This is determined based on the 
fictitious crack band model and the experimentally derived empirical expressions 
proposed by Hordijk [40], as given by 

𝑡

𝑓𝑡

= 1 + 𝑐1
𝑤

𝑤𝑐

3

𝑒𝑥𝑝 −𝑐2
𝑤

𝑤𝑐
−

𝑤

𝑤𝑐

(1 + 𝑐1
3)𝑒𝑥𝑝(−𝑐2)  (2a) 

𝑓 = 0.24𝑓  (2b) 

𝑤 = 𝜀 𝐿  (2c) 

𝑤 = 5.14  (2d) 

𝐺 = 𝐺
.

 (2e) 

where 𝜎  is the tensile stress (MPa); 𝑓  is the concrete tensile strength (MPa); 𝑤 
is the crack opening displacement (mm); 𝑤  is the crack opening at the complete 
release of stress (mm); 𝐿  is the characteristic length obtained from the FE mesh 
size projected into the normal crack direction (mm); 𝐺  is the fracture energy 
required to create a unit area of stress-free crack (N/mm); 𝐺  is the base value 
of fracture energy based on the maximum aggregate size of 16 mm (= 0.03 
N/mm) [41]; 𝑐  and 𝑐  are empirical constants, and the values of 𝑐 = 3 and 𝑐 =
6.93 have been proposed based on available experimental data [40]. In this work, 
the concrete tensile strength used in the analysis was computed using Eq. (2b). 

3.2 Shear Model 

To represent the reduction in the shear modulus of the concrete after cracking, a 
shear retention factor following the expression proposed by Kolmar [42] was 
used (see Figure 4(b)). In this formulation, the shear modulus is related to the 
strain normal to the crack, 𝜀 , which is indicative of the crack opening [37]. The 
governing equations used to describe the shear retention factor are [37,42]: 

𝐺 = 𝑟 𝐺   (3a) 

𝑟 = 𝑐  (3b) 

𝑐 = 7 + 333(𝜌 − 0.005) (3c) 

𝑐 = 10 − 167(𝜌 − 0.005) 𝑖𝑓 0 < 𝜌 ≤ 0.02 (3d) 
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where 𝐺 is the shear modulus after cracking (MPa); 𝑟  is the shear retention 
factor; 𝐺  is the initial shear modulus (MPa); 𝑐  and 𝑐  are parameters depending 
on the steel bar(s) crossing in the crack direction; 𝜌 is the transformed reinforcing 
steel ratio to the crack plane; and 𝑐  is a user scaling factor (by default 𝑐  = 1). In 
this study, 𝜌 was taken as zero so that the restraining effects from the reinforcing 
steel could be considered automatically in the analysis. Another way to compute 
the shear retention factor is by relating the post-cracking shear stiffness to the 
stiffness along the crack opening direction using a scaling factor [35,37,39]. The 
former approach was adopted in this paper. 

        
Figure 4 (a) Tension and (b) shear retention models for concrete [37]. 

Apart from the reduction in shear stiffness, it was assumed that the maximum 
shear stress, 𝜏 , that can be transmitted across a crack is related to the crack 
opening displacement, 𝑤, and the maximum aggregate size, 𝑎 , as given by [43]: 

 𝜏 =
.

.
 (4) 

where 𝑓  is the concrete compressive strength (MPa). 

In addition to the constitutive models described above, a reduction in concrete 
compressive strength due to transverse cracking was considered following the 
multi-linear model proposed in [15]. In this model, no reduction in compressive 
strength is considered when the tensile strain normal to a crack is less than 0.1%. 
Between 0.1% and 0.5%, the compressive strength is assumed to decrease 
linearly from 1.0 to 0.6; thereafter, a constant value of 0.6 is considered. 

3.3 Reinforcement Model 

Steel reinforcement in concrete can be modeled either in the form of smeared or 
discrete reinforcement. In the smeared representation, the reinforcement is 
distributed over the entire volume of an element and as such, the ratio of the total 
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area of the reinforcing bars along any direction to the area of the considered mesh 
must be inputted. In the discrete model, the reinforcement was treated as a one-
dimensional truss element embedded inside the concrete. In either representation, 
specific stress-strain relations of the steel can be defined, including linear, 
bilinear, bilinear with hardening, or multilinear model.  

In this study, the discrete model with multilinear stress-strain relation was used. 
The reinforcing steel was modeled using a truss element with axial stiffness only. 
In ATENA, the compatibility between the truss element representing the 
reinforcing bar and the solid element representing the concrete is achieved by 
imposing a kinematic constraint between the displacement at each nodal point of 
the truss element and the displacements of the nodal points of the solid element 
using an interpolation function [36,37]. In this work, the bond between concrete 
and steel was assumed to be in perfect condition (no bond-slip consideration). 

Figure 5 presents a schematic of the stress-strain relation employed in this study. 
The yield and ultimate strengths for each steel bar (𝑓  and 𝑓 ) were inputted from 
the values reported in the original experiment, while 𝑓  and 𝑓  were assumed 
based on the available data. The strain capacity of the reinforcing steel, 𝜀 , was 
taken as 0.1, which is a typical value used in non-seismic regions, whereas 𝜀  and 
𝜀  were assumed as 0.02 and 0.05, respectively. 

 
Figure 5 User-defined multilinear stress-strain relation for reinforcing steel [37]. 
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An example of the finite element mesh used in the analysis is presented in Figure 
6. The bottom longitudinal bars were extended past both ends of each beam and 
connected to a steel element representing the anchor plates as in the experiment. 
The analysis for each beam was run under a monotonically increasing 
displacement of 0.25 mm per step, until failure. At each displacement increment, 
the beam deflection at the bottom of the beam at midspan and the load acting on 
the top plate were monitored and compared with the experimental data reported 
in [27,28]. 

 
Figure 6 Typical finite element mesh and boundary conditions for beam OA1. 

4 Results and Discussion 

4.1 Response of Beam B1 

To demonstrate the suitability of the models in predicting the nonlinear behavior 
of concrete in a shear-critical beam, Figure 7(a) presents the predicted load-
deflection response of beam B1. This beam was specifically selected as it displays 
three different behavioral responses (flexure, shear, and compression), thereby 
providing a more comprehensive measure of the accuracy of the models. To 
describe the different behavioral responses, six stages of loading are highlighted 
in Figure 7(a) and discussed below. 

The predicted maximum principal strains and crack patterns are plotted in the 
deformed state (magnified 5 times) in Figures 7(b)-(g) and for reasons of clarity, 
the experimental crack pattern at failure is displayed as an insert in Figure 7(a). 
In general terms, the response of the beam can be characterized as shear-
compression in nature. With reference to Figure 7(b), the early stage of loading 
(50 kN) is shown to result in the formation of flexural cracks at the bottom of the 
beam and a subsequent increase in principal tensile strain. 

As the load increases to 140 kN, new and pre-existing flexural cracks propagate 
upwards, thereby increasing the prominence of the strain bands (Figure 7(c)). As 
the load increases to 210 kN (Figure 7(d)), existing cracks propagate further 
upwards alongside with the strain bands, resulting in a fan-shaped pattern that 
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radiates from the load point. A highly localized strain is evident in the web region 
when the load reaches 290 kN (Figure 7(e)), which is indicative of the onset of 
critical shear cracking. This continues up to the peak load (429 kN; Figure 7(f)). 
Throughout this final stage of loading, the flexural cracks stop progressing and 
damage is concentrated mainly in the web region, indicating the behavioral 
change from flexural to critical shear. 

   
Figure 7 (a) Load-deflection response of beam B1; (b)-(g) principal tensile strain 
and crack patterns at selected key stages of loading. 

Failure is predicted to occur due to crushing of the concrete at the top of the beam 
next to the loading plate (see Figure 7(g)), which is consistent with the 
experimental evidence. The response of the beam beyond the peak load is no 
longer symmetric, which can partly be attributed to the limitations in the iteration 
algorithm used. It is worth noting that this asymmetric response has no direct link 
with the non-symmetric crack pattern of beam B1 at failure, which occurred due 
to natural variations in material properties and/or possible (minor) errors in 
physical testing; their close resemblance is interesting however. 

4.2 Comparison of Load-deflection Response 

To further check the accuracy of the models presented in this paper, Figures 8(a)-
(l) compare the predicted and observed load-deflection responses for all beams, 
together with predictions of the ACI 318M-14 design code equations [44] in 
terms of flexure and shear capacities, which are indicated in each figure with a 
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solid and dashed line, respectively. Each column presents the response of each 
series of beams with an identical cross-section but with different span lengths and 
reinforcement arrangements. The first and second columns display the results of 
notionally identical beams with and without transverse reinforcement, while the 
third and fourth columns display the results of companion beams with smaller 
widths (B and C series, respectively). The beam span increases from top-to-
bottom: 3.66, 4.57, and 6.40 m. A summary of the predicted and observed load 
capacity and beam deflection for all VS beams (and their BS duplicates) is 
presented in Table 4. 

With reference to Figures 8(a)-(l), it is evident that the predicted load-deflection 
responses displayed a reasonable agreement with the experimental data, 
considering the natural variations exhibited by the BS and VS beams. Each beam 
was predicted to display a linear response, followed by a transitional nonlinear 
response up to the peak. The predicted responses for beams with no transverse 
reinforcement (beams OA1, OA2, and OA3) exhibited stiffer post-peak responses 
than the VS beams, replicating more closely the overall stiffness of the BS beams 
(see Figures 8(a), (e) and (i)). A good agreement between the predicted and 
observed load capacities was produced, giving a mean ratio of experimental-to-
predicted load capacity of 0.95/0.99 (based on the VS/BS beams) with a 
coefficient of variation (COV) of 5.0%/10.5% (VS/BS). It is noteworthy that, due 
to the absence of transverse reinforcement, a significant drop in load was apparent 
in all OA series beams immediately after attaining the peak load, highlighting the 
dangerous brittle mode of failure which beams without transverse reinforcement 
can exhibit. 

From the comparison of the predicted and observed load-deflection responses of 
the beams with transverse reinforcement (A1-A3, B1-B3 and C1-C3), presented 
in Figures 8(b)-(d), (f)-(h) and (j)-(l), a similar trend in terms of the initial 
stiffness, peak load and maximum deflection can be observed. Slight variations 
are apparent in terms of the peak load and maximum deflection predictions, but 
they were all within a reasonable agreement and produced the same degree of 
accuracy as the analysis of the beams without transverse reinforcement discussed 
above. Of interest is the ability of the models to reproduce the more ductile 
response of the longer beams (i.e. A3, B3, and C3), as indicated by the plastic 
plateau in the load-deflection response. 

The mean ratios of experimental-to-predicted load capacity for the beams with 
transverse reinforcement were 0.94/1.01 (based on VS/BS beams) with a COV 
of 3.7%/4.5% (VS/BS), highlighting once again the accuracy of the numerical 
predictions. 
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Figure 8 Predicted and observed load-deflection responses for all beams. 

Table 4 Summary of predicted and observed load and deflection capacities for 
all beams (the number in brackets represents the value for BS beams). 

Beam 
Ultimate Load (kN) Midspan Deflection (mm) 

Pu-Test Pu-Calc Pu-Test/Pu-Calc δu-Test δu-Calc δu-Test/δu-Calc 
OA1  331 (334) 349 (349) 0.95 (0.96) 9.10 (6.6) 9.5 (9.5) 0.96 (0.69) 
OA2 320 (356) 316 (316) 1.01 (1.13) 13.2 (11.7) 11.5 (11.5) 1.15 (1.02) 
OA3 385 (378) 433 (433) 0.89 (0.87) 32.4 (27.9) 35.5 (35.5) 0.91 (0.79) 
A1 459 (468) 506 (506) 0.91 (0.92) 18.8 (14.2) 15.5 (15.5) 1.21 (0.92) 
A2 439 (490) 500 (500) 0.88 (0.98) 29.1 (22.9) 22.6 (22.6) 1.29 (1.01) 
A3 420 (468) 458 (458) 0.92 (1.02) 51.0 (35.8) 42.2 (42.2) 1.21 (0.85) 
B1 434 (446) 429 (429) 1.01 (1.04) 22.0 (13.7) 14.6 (14.6) 1.51 (0.94) 
B2 365 (400) 391 (391) 0.93 (1.02) 31.6 (20.8) 23.7 (23.7) 1.33 (0.88) 
B3 342 (356) 364 (364) 0.94 (0.98) 59.6 (35.3) 42.7 (42.7) 1.40 (0.83) 
C1 282 (312) 290 (290) 0.97 (1.08) 21.0 (17.8) 18.7 (18.7) 1.12 (0.95) 
C2 290 (324) 305 (305) 0.95 (1.06) 25.7 (20.1) 21.6 (21.6) 1.19 (0.93) 
C3 265 (270) 275 (275) 0.96 (0.98) 44.3 (36.8) 47.3 (47.3) 0.94 (0.78) 

    Mean 0.94 (1.00)  Mean 1.18 (0.88) 
    COV (%) 4.10 (6.64)   COV (%) 17.67 (9.42) 
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Table 4 presents the mean ratios of experimental-to-predicted load capacity and 
maximum deflection. Overall, based on comparison with the twelve BS beams 
and their duplicates (VS beams), the models presented in this paper produced a 
mean observed-to-predicted load ratio of 0.94/1.00 (VS/BS) and a COV of only 
4.1%/6.6% (VS/BS), which is better than the ACI predictions with a mean of 
1.13/1.20 (VS/BS) and a COV of 12.68%/11.82% (VS/BS). It is worth noting 
that in ACI predictions, the predicted load is taken as the minimum of the load 
that corresponds to flexure and shear capacities. From Table 4, it is also evident 
that the beam deflection was less accurately predicted, producing a mean ratio of 
1.18/0.88 (VS/BS) and a COV of 17.67%/9.42% (VS/BS). However, considering 
the natural variations across the tests, the nonlinear FE modeling presented in this 
paper could be regarded as sufficiently accurate. All parameters have also been 
applied to all beams in a consistent manner, thereby providing an objective 
measure of their accuracy. 

4.3 Comparison of Crack Patterns 

To provide further evidence of the accuracy of the models employed in this study, 
Figures 9 and 10 compare the observed failure crack patterns with the predicted 
maximum principal strains and crack patterns beyond the peak load. In general, 
there was a reasonably good agreement in the location and magnitude of cracking. 

 
Figure 9  Predicted and observed failure crack patterns and maximum principal 
strains for the OA-series beams with no shear reinforcement and for the A-series 
replicate beams with shear reinforcement. 

 
Figure 10   Predicted and observed failure crack patterns and maximum principal 
strains for the B- and C-series beams with shear reinforcement. 
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In the first three beams with no transverse reinforcement (OA series), the final 
failure was due to the sudden formation of diagonal tension cracking that 
continued as a horizontal crack to the beam end (see Figure 9). In the beams with 
transverse reinforcement, the mode of failure of the beams with short and 
intermediate spans (beams A1, A2, B1, B2, C1 and C2) can be described mainly 
as shear-compression in nature. In contrast, the mode of failure of the longest 
spanning beams (beams A3, B3 and C3) can be characterized as flexural-
compression due to local crushing of the concrete in the compression zone. In 
beams with short and intermediate spans (series 1 and 2), severe diagonal cracks 
were found to develop in the later stages of loading and failure was ultimately 
triggered by crushing of the concrete in the flexural compression zone, which is 
consistent with experimental findings. The extent of the diagonal cracking in 
beams with a long span (series 3) was found to be less significant. 

5 Concluding Remarks 

This paper highlights the application of nonlinear finite element analysis to 
provide a critical assessment of the response of reinforced concrete beams in 
series of tests undertaken by Bresler-Scordelis (BS) and Vecchio-Shim (VS). 
Based on the work presented, the use of a smeared fixed crack approach in 
conjunction with fracture-plastic material models can provide accurate 
predictions of load and deflection capacities. A mean experimental-to-predicted 
load capacity of 0.94/1.00 (based on the VS/BS beams) and a COV of 4.1%/6.6% 
(also based on the VS/BS beams) were obtained. It was shown that in beams with 
no transverse reinforcement, failure was caused by sudden formation of diagonal-
tension cracking, which in some cases were combined with horizontal splitting at 
either the support or point of load application. In beams with transverse 
reinforcement, both short and intermediate span beam series were predicted to 
exhibit shear-compression failure, while the long span beam series was predicted 
to display flexure-compression failure, which is consistent with the experimental 
findings. 

The use of the analysis tool presented in this paper can provide practicing 
engineers with the ability to assess the response of structural elements in detail. 
The post-processing facilities can be particularly useful for assessing the behavior 
of a structural element with unusual and inadequate reinforcement detailing. 
Work in this direction is continuing. 
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