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Highlights:  

 Introduction of a compact way to visualize datasets with a very large number of features 
using feature selection algorithms and a visualization approach. 

 The method provides a solution for visualizing gene data in 2D images with selected 
features representing important features that greatly influence the classification of patients.  

 The proposed geneFS2Img method improves not only prediction accuracy but also 
inference time. 

 The performance with the selected features in this study approximated that of state-of-the-
art methods using the species abundance feature. 

 
Abstract. Advancements in machine learning in general and in deep learning in 
particular have achieved great success in numerous fields. For personalized 
medicine approaches, frameworks derived from learning algorithms play an 
important role in supporting scientists to investigate and explore novel data 
sources such as metagenomic data to develop and examine methodologies to 
improve human healthcare. Some challenges when processing this data type 
include its very high dimensionality and the complexity of diseases. Metagenomic 
data that include gene families often have millions of features. This leads to a 
further increase of complexity in processing and requires a huge amount of time 
for computation. In this study, we propose a method combining feature selection 
using perceptron weight-based filters and synthetic image generation to leverage 
deep-learning advancements in order to predict various diseases based on gene 
family abundance data. An experiment was conducted using gene family datasets 
of five diseases, i.e. liver cirrhosis, obesity, inflammatory bowel diseases, type 2 
diabetes, and colorectal cancer. The proposed method provides not only 
visualization for gene family abundance data but also achieved a promising 
performance level. 

Keywords: deep learning; disease prediction; feature selection; gene family abundance; 
metagenomic; personalized medicine. 
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1 Introduction 

Currently, one of the trends in disease treatment is ‘precision medicine’, or 
‘personalized medicine’ [1-3], which is a new term for healthcare combining 
genetic data with big data and public health to offer a powerful new approach for 
the right treatment method for the right patient at the right time with the right 
dose. Advancements in DNA sequencing technology have provided great support 
for the development of personalized medicine approaches. In such approaches, a 
patient’s DNA is analyzed to find individual characteristics that are probable 
causes of the patient’s disease on the basis of which appropriate individual 
treatment can be proposed. Thanks to the advancement of genetics technology, 
precision medicine is becoming more accurate. This method will replace 
traditional methods to improve the effectiveness of diagnosis and treatment.  

The gene expression of each individual combined with general treatment methods 
have high unsuccessful treatment risk. By applying a personalized treatment, the 
patient’s healing performance can be improved. Moreover, identifying the cause 
of the disease in each patient can reveal the best cure when traditional methods 
may not be suitable for their individual constitution. Researchers have discovered 
hundreds of genes that harbor variations contributing to human illness and 
identified genetic variability in patient responses to different treatments, and from 
there began to target genes as molecular causes of diseases. In addition, scientists 
are developing and using diagnostic tests based on genetics or other molecular 
mechanisms to better predict patient responses to targeted therapies [4]. 

In recent years, metagenomics (environmental genomics, eco-genomics, or 
community genomics) [5] has been increasingly used as part of a personalized 
medicine methodology group that attempts to the enhance effectiveness of human 
health care. From the results surveyed through many studies, the potential of the 
analysis of metagenomic data for the diagnosis of human diseases has been 
proven. Metagenomics can help to solve problems, including finding the cause of 
the disease, the essential bacterial species that change their density affecting 
human health or the disease status of a patient. In addition, given the enormous 
potential benefits of these data for improving human health care, many scientists 
have conducted experiments and proposed methods and tools based on the 
application of information technology to support data analysis for personalized 
medicine effectively. 

One of the remarkable achievements is the progress made in the detection of the 
novel SARS-CoV-2 (COVID19) virus in a short time [6]. Thanks to new 
generation sequencing technology (NGS) [7], the entire profile of the genome of 
the SARS-CoV-2 virus was quickly revealed. The genome of the new virus can 
be compared with a gene bank to find genetic characteristics that differentiate 
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new species from known species in the world. It is estimated that the genome is 
more than 85% identical to the SARS virus genome in the case of SARS-CoV-
2[8]. It is worth noting that genetic analysis has many advantages, such as making 
diagnostication and preparation of drugs and vaccines faster. Viewed from a 
different perspective, genetic sequencing techniques have changed the 
accessibility of medicine, especially in the case of dealing with diseases such as 
SARS-CoV-2 because the virus strains show a tendency to mutate or spread by 
other mechanisms. 

Data visualization is an essential part of data analysis and plays a significant role 
in novel discoveries. We propose visualization of metagenomic data because of 
their high dimensionality and complexity. Using visualization of metagenomic 
data gives a complete overview of the information in the data and makes thorough 
exploitation of personalized medicine possible. It is necessary to clearly represent 
systematic, functional and other properties with enough detail to explain the 
structures and biological knowledge. One of the most popular programming 
languages is R, which we recommend for developing a graphical interface in a 
code-based environment. 

In this study, a novel method is proposed, called geneFS2Img, to generate an 
image of gene family abundance after feature selection (FS) processing. A very 
large number of features, which can be up to nearly two million features, are 
compacted in images of 24 x 24 pixels with a new dimension of 576 (compressed 
more than 3000 times). Then, these images are input into a deep-learning 
architecture to make predictions. This study makes several contributions. Firstly, 
we introduce a compact way to visualize datasets with a very large number of 
features using a feature selection algorithms and the Fill-up approach [9].  

The method provides a solution for visualizing gene data in 2D images with 
selected features, representing important features that have a large influence on 
the classification of patients. Secondly, geneFS2Img improves not only 
prediction accuracy but also inference time. Analytical results revealed that gene 
family abundance is potentially advantageous for predicting colorectal cancer and 
inflammatory bowel disease. Thirdly, although we only performed prediction on 
576 selected features out of close to two million features, the results were 
comparable to most datasets using species abundance. We note that the number 
of selected features in this study approximated the number of species features in 
[9]. 

2 Related Work 

Machine learning in general and deep learning in particular have a significant 
impact on many fields of science and technology, especially in medicine. We 
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believe that human-machine collaboration is essential in order to achieve 
ambitious goals in medicine, clinical disease diagnosis, disease prevention, 
personalized medicine, personalized prognosis and drug development. Thanks to 
the rapid development of information technology, many technology-based tools 
are becoming more and more popular for data analysis. 

Other studies used various different machine learning classification methods, 
including a decision tree-based method, random forest (RF) [10], naive Bayes 
(NB) [11], and support vector machine (SVM) [12]. The most successful model 
is the neural network model in supervised learning algorithms that are widely 
used to predict disease genes. On the other hand, clustering is regularly done 
using unsupervised learning. A comparison of classification-based methods can 
be found in Le, et al. [13]. Moreover, deep learning uses different processing 
layers with linear and nonlinear transformations that are a high-level abstraction. 
Isolating the problem by applying biological knowledge, the neural network 
approach was developed inspired by the structure and function of neurons. 

In other studies, researchers used algorithms such as mRMR (Min Redundancy 
Max Relevance) [14], Lasso (Least Absolute Shrinkage and Selection Operator) 
[15], Elastic Net [16]. In addition, Hilal, et al. applied a number of methods such 
as Conditional Mutual Information Maximization (CMIM), Fast Correlation 
Based Filter (FCBF), mRMR and eXtreme Gradient Boosting (XGBoost) [17]. 
Because the analysis of high-dimension data requires hundreds or thousands of 
variables, feature selection (FS) was seen as a priority. Therefore, Hilal, et al. 
investigated filter feature selection approaches for informative feature detection 
in gene expression microarray (GEM) analysis, also called differentially 
expressed gene (DEG) discovery, for gene prioritization and biomarker discovery 
[18]. Some of the most commonly used tools were developed with four 
classification methods (SVM, RF, Lasso and ENet) in various domains. Gene 
family abundance datasets are very complex and highly dimensional so that data 
visualization is difficult. The authors of [9] presented techniques for generating 
synthetic images by a supervised method to visualize metagenomic data based on 
comparison of linear discriminant analysis (LDA) with t-SNE [9]. 

3 Data Description 

The advantages of metagenomics have been explained in Section 1. Applying 
machine learning to metagenomic data is a basic approach in the bioinformatics 
domain. One of the publicly available datasets that we used is provided by the 
HMP Unified Metabolic Analysis Network (HUMAnN2) [19] and has millions 
of features. The main source of the dataset was downloaded from 
curatedMetagenomicData [20] in R.  
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The six gene family abundance datasets provide vast knowledge of the causes of 
diseases such as inflammatory bowel disease (IBD) [21], liver cirrhosis (CIR) 
[22], colorectal cancer (COL) [23], obesity (OBE) [24] and type 2 diabetes (T2D) 
[25]. We also evaluated a dataset with data from 96 European women; 53 WT2 
patients and 43 women who were not affected by the disease. Through the 
investigations, we have generalized and summarized the genetic diversity in 
Table 1. 

Table 1 Description of detailed information on six gene family abundance 
datasets. 

Dataset name CIR COL IBD OBE T2D WT2 
#features 1,747,534 1,796,274 1,730,384 1,519,375 1,690,774 1,415,610 
#samples 232 121 110 253 344 96 
#patients 118 48 25 164 170 53 
#controls 114 73 85 89 174 43 

Ratio of patients 0.51 0.40 0.23 0.65 0.49 0.55 

Ratio of 
controls 

0.49 0.60 0.77 0.35 0.51 0.45 

D is the set of six considered gene family abundance datasets, so we have:   

D = {𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑 , 𝑑  }, with 𝑑  = CIRgene, 𝑑  = COLgene, 𝑑  = IBDgene, 
𝑑  = OBEgene, 𝑑  = T2Dgene, 𝑑 = WT2gene, d = 1 ... 6. 

Let’s say that: 𝑆 = {𝑠 , 𝑠 , … , 𝑠 } includes 𝑛 samples in 𝑑 ; 𝐹 = {𝑓 , 𝑓 , … , 𝑓 } 
reveals 𝑚 features corresponding to 𝑑 ; 𝑃 = {𝑝 , 𝑝 , … , 𝑝 } represents 𝑘 patients 
who were affected by the disease corresponding to 𝑑 , 𝐶 = {𝑐 , 𝑐 , … , 𝑐 }  
consists of 𝑘 controls/healthy individuals that belong to 𝑑 . 

 𝑀𝑎𝑡𝑟𝑖𝑥(𝐶) =  

⎝

⎜
⎜
⎛

CIR 232 1747534 118 114
COL 121 1796274 48 73
IBD 110 1730384 25 85
OBE 253 1519375 164 89
T2D 344 1690774 170 174

W T2 96 1415610 53 43 ⎠

⎟
⎟
⎞

 

All abundance features in one sample sum up to 1: 

 ∑ 𝑓 = 1 

where 𝑘 indicates the number of features of a sample and 𝑓  denotes the value of 
the 𝑖 − 𝑡ℎ feature. 
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4 Method 

Figure 1 describes the 6 steps of our method in detail. The original gene family 
data are filtered by feature selection and after that images are generated from the 
new set of selected features before inputting them into a learning architecture 
such as Linear Regression or CNN2D. Because of the massive number of features 
in this dataset, we propose the Perceptron algorithm (Perceptron Weight Based 
Filter) to reduce irrelevant features from a training set mentioned in step 2. After 
filtering in step 3, informative features are collected by using feature selection. 
We propose to use image generation in step 4, making parallel data visualization 
increasingly accurate when we reduce the size of the images equal to 24 x 24 
pixels. Last but not least, Linear Regression and Convolutional Neural Network 
play an important role in training in step 5. Finally, we use performance metrics 
to evaluate our used models. 

 

Figure 1 The overall framework of geneFS2Img. 

4.1 Feature Selection for Gene Family 

The main motivation for proposing a feature selection method [26] was to 
improve classification accuracy by employing appropriate feature selection to 
achieve better performance. In this study, we identified informative genes to 
construct a good model and exclude irrelevant genes from millions of genomes 
in the dataset without much loss of information. The reason why addressing large-
scale data can reduce high dimensionality to avoid many challenges if costly 
measurement as well as decreasing the number of unneeded features that 
unfortunately impact the result.  

The number of features was reduced to simplify and better comprehend the 
model. Applying feature selection is essential to achieve accurate predictions for 
various diseases in view of personalized medicine. After investigating several 
methods, we propose to use feature selection following the feature-weighting [27] 
method with a perceptron neural network. 
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As stated above, the proposed method aims to select a finite number of features 
(much less than the number of available features) that can be related to the 
disease. The main idea is that, at first, we want to determine the ‘weight’ of each 
feature by applying the perceptron algorithm on the selected training dataset, 
followed by removing features that have a low ‘weight’, only keeping n features 
from the training set as well and the test set for the training stage. Theoretically, 
n is a reasonable positive number; we set n = 576 to generate images with a size 
of 24 x 24 for image classification. The following section elaborates the main 
idea and the related algorithm to show how selection is executed. 

Now, we introduce how the perceptron algorithm works. Firstly, we should 
understand the definition of weight sum, the activation function, the loss function 
and the optimization algorithm. 

Weight sum: 

 𝑓(𝑥) =  ∑ 𝑤  𝑥  

where: 𝑤   is the weight of feature   𝑖(𝑖 > 0), 𝑥  = 1 

Activation function: g(u) results in perceptron decisions. In this study we used 
the following Heaviside step function: 

 𝑔(𝑢) =
1, 𝑖𝑓 𝑢 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Activation result: 𝑔(𝑓(𝑥)) 
 
Loss function: 

 ℎ(𝑤) =  ∑ 𝑔 𝑓(𝑥 ) − 𝑦  

where 𝑤 =  (𝑤 , 𝑤 , 𝑤 , … . , 𝑤 ) represents the weights of 𝑚 features, 𝑤  is the 
bias. Our goal is to minimize ℎ(𝑤). We update weights (𝑤 ) using the following 
approach: 

 𝑤 =  𝑤 + 𝜂 ∑ 𝑥 . (𝑔 𝑓(𝑥 ) −  𝑦 ) 

where: 
1. 𝑛 is the number of samples 
2. 𝑤  is the weight of feature 𝑗, 𝑤  is the bias 
3. 𝑥 = (𝑥 , 𝑥 , 𝑥 , … 𝑥 ) is the vector representing sample 𝑖 − 𝑡ℎ, 𝑥 = 1 
4. 𝜂 is the learning rate; in this study we consider 𝑛 equals 0.01 

Computing 𝑤  to minimize ℎ(𝑤) is done following the pseudocode shown in 
Algorithm 1. 
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Algorithm 1 Perceptron 

 Function: 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛(𝑥) 
 Input: 𝑥 is the dataset, where 𝑥  denotes the sample 𝑖 − 𝑡ℎ and 𝑥  is feature 𝑗 − 𝑡ℎ′𝑠 

value of sample 𝑖 − 𝑡ℎ 
 Output: Weights after optimizing ℎ(𝑤) 

Pseudo code: 
function 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛(𝑥): 
begin 

𝑖 ← 0 
While  𝑖 ≤ 𝑛 do 

𝑤 ← 0 
𝑖 = 𝑖 + 1 

end while 
𝜂 = 0.01 

𝐻 ←   
1

2
𝑔 𝑓(𝑥 ) − 𝑦  

𝑐𝑜𝑢𝑛𝑡 ← 1  
While 𝑐𝑜𝑢𝑛𝑡 ≤ 1000 do 
     𝑛𝑒𝑤𝑊 ← 𝑤 
    𝑗 ← 1 
   While  𝑗 ≤ 𝑚 do 
         𝑠𝑢𝑚 ← 0 
         𝑖 ← 1 
         While 𝑖 ≤ 𝑛 do 
              𝑠𝑢𝑚 ← 0 
              𝑖 ← 1 
              While 𝑖 ≤ 𝑛 do 
                         𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝜂. 𝑥 . (𝑔 𝑓(𝑥 ) −  𝑦 )) 
                         𝑖 ← 𝑖 + 1 
                end while 
               𝑗 ← 𝑗 + 1 
              𝑛𝑒𝑤𝑊  ← 𝑛𝑒𝑤𝑊 + 𝑠𝑢𝑚 
    end while 
    𝑤 ← 𝑛𝑒𝑤𝑊 
    𝑁𝑒𝑤𝐻 ← 0 
    𝑖 ← 1 
    While 𝑖 ≤ 𝑛 do 

           𝑁𝑒𝑤𝐻 ← 𝑁𝑒𝑤𝐻 + 𝑔 𝑓(𝑥 ) − 𝑦   

𝑖 ← 𝑖 + 1 
   end while 
   if 𝑁𝑒𝑤𝐻 − 𝐻 ≥ 0 then 
      break 
   end if 
   𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1 
end while 
return 𝑊 

end 



 Hai Thanh Nguyen, et al. 

142 

The next step of our method takes advantage of the perceptron algorithm shown 
in Algorithm 2. The function Select(𝑥, number) will eventually return indices of 
selected features as a set. 

Algorithm 2 Perceptron weight-based filters 

 Function 𝑆𝑒𝑙𝑒𝑐𝑡(𝑥, 𝑛𝑢𝑚𝑏𝑒𝑟) 
 Input: 𝑥  is the dataset 0 ≤ 𝑖 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, the number is the desired 

number of features that will be selected 
 Output: Indices of selected features 

Pseudo code: 
function 𝑆𝑒𝑙𝑒𝑐𝑡(𝑥, 𝑛𝑢𝑚𝑏𝑒𝑟): 
begin 
𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛(𝑥) 
𝑊 ← { } 
𝑖 ← 1 
𝑚 ← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑥 
While 𝑖 ≤ 𝑚 do 
   𝑎𝑝𝑝𝑒𝑛𝑑 𝑡𝑢𝑝𝑙𝑒 (|𝑤𝑒𝑖𝑔ℎ𝑡𝑠 |, 𝑖) to 𝑊 
  𝑖 ← 𝑖 + 1 
end while 
Sort tuples in 𝑊 using the following criteria: 𝑡𝑢𝑝𝑙𝑒 𝑎 ≥ 𝑡𝑢𝑝𝑙𝑒 𝑏 𝑖𝑓𝑓 𝑎  ≥  𝑏  
𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← { } 
𝑖 ← 1 
while 𝑖 ← min (𝑛𝑢𝑚𝑏𝑒𝑟, 𝑚) do  
    𝑎𝑝𝑝𝑒𝑛𝑑 𝑊 ,  𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 
    𝑖 ← 𝑖 + 1 
end while 
return 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 
end 

4.2 Visualization of Gene Family Abundance 

Deep learning provides numerous robust algorithms to improve prediction tasks. 
One of them is convolutional neural networks (CNN), which has shown very 
promising performance, especially in image classification. We leverage the 
power of deep learning in image classification by converting gene abundance to 
2D images using Fill-up [9]. The gene families were chosen from feature 
selection processing. The new set of features is presented in a square matrix with 
the size depending on the number of features. With 576 selected features, the size 
can be 24 x 24 pixels to cover the whole new set of features. 

Initially, at the top of the image, the features are arranged from the first feature to 
the 24th feature from right to left. The second row is organized the same way, 
starting from the 25th feature. This procedure is repeated for the i-th row until the 
last feature is filled in the image. In the examples shown in Figure 2, the obtained 
features are presented by color and gray images.  
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Figure 2 Gene family abundance visualization by feature selection and Fill-up. 
The first row presents gray images while the other row shows images with a 
rainbow colormap. The global maps (in the first column) show all coordinates of 
the features with the average value of all features in the training set. We also show 
a sample with the colormap given in the second column. 

4.3 Deep-learning Architecture 

Convolutional neural network was mainly used in this research to classify which 
situations are under control. The CNN architecture for images (CNN2D) 
presented in [9] is rather simple, but it showed promising results on metagenomic 
images. Since our method chooses 576 features from the gene dataset, the input 
of the network includes images of size 24 x 24 pixels with three colors channel 
(or one channel for gray images). The filter size of the convolutional layer is 3 x 
3 using 64 filters, followed by a max pooling layer with a kernel size of 2 x 2 with 
a stride of 2. The convolutional layers were then flattened and connected to a 
neural network layer, which results in one output (as shown in Figure 3). With 
respect to FC, 2D samples were received as input, then using a sigmoid function 
to produce an output, which determines the probability of suffering from the 
disease. For all models used in the experiments, we used the Adam optimizer 
function with a default learning rate of 0.001 and a batch size of 16. Because we 
foresaw overfitting, we used the early stopping technique with an patience epoch 
of 5. The proposed method was developed based on the deepmg framework [9] 
in Python. The method leverages modules in the scikit-learn library [28], 
Matplotlib [29], Keras [30], Tensorflow [31]. 
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Figure 3 Example of a shallow CNN architecture for metagenomics [9]. 

5 CNN2D Architecture for Prediction Tasks Conducted From 
[9] Results 

5.1 Performance Metrics 

Evaluating the model or the algorithm used is an important step in determining 
the performance of the model and evaluating more exact conclusions. There are 
many measurement metrics to evaluate model performance. In this study, we used 
the following three indicators: accuracy, p-value and time consumption (in 
seconds) to compare classifiers. Accuracy is the ratio between the number of 
correct predictions and the total number of input samples. The p-value is the 
probability of obtaining results at least as extreme as the observed results of a 
statistical hypothesis test. Consumed time is the time required to perform the 
calculations of the proposed method. The performance was expressed as average 
accuracy based on 10-fold cross-validation repeated 10 times.  

5.2 Experimental Results 

5.2.1 Proposed Method Speeds Up Learning 

In Figure 4 we can see clearly that consumed time was reduced significantly by 
hundreds of times in comparison between raw data and the Fill-up method with 
feature selection using the FC model. The consumed time was high on the T2D 
dataset, reaching more than 20 hours on average to process raw data, while for 
the smallest dataset, WT2, the least time was consumed, i.e. about 6 hours.  

The amount of time spent was strikingly similar between COL and IBD on raw 
data. On the other hand, using feature selection dramatically reduced the 
consumed time for almost all used datasets, where the least time was required for 
the WT2 dataset. After using the FC model for feature selection, the most time 
was required for the T2D dataset, but there was still a considerable time reduction. 
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Figure 4 Boxplot showing total run time (in seconds) of the FC model running 
various datasets, compared between raw data and data visualized by geneFS2Img. 

5.2.2 GeneFS2Img Outperforms State-of-the-Art Methods 

Table 2 presents a comparison of the performance of the proposed approach with 
the state-of-the-art methods in [9]. Although [9] using PCA and RN_PRO for 
dimensionality reduction performed poorly, it is worth noting that geneFS2Img 
achieved significant improvements compared to [9]. CIR, COL, IBD all had 
outstanding results with gene family abundance in [9], but the authors did not 
present standard deviation values for performance, so when using FC on raw data 
we used 10-fold cross-validation repeated 10 times to get the t-test statistic value.  

Table 2 Performance comparison between the proposed method and FC 
model[9]. 

Method CIR COL IBD OBE T2D WT2 AVG 
PCA* [9] 0.547 0.604 0.775 0.648 0.514 0.540 0.605 

RD_PRO*[9] 0.555 0.605 0.775 0.648 0.496 0.530 0.602 
Raw [9] 0.761 0.628 0.775 0.648 0.655 0.620 0.681 

geneFS2Img 
(FC with gray image) 

0.872 0.811 0.852 0.635 0.610 0.645 0.738 

geneFS2Img 
(FC with color image) 

0.855 0.785 0.852 0.624 0.619 0.635 0.728 

geneFS2Img 
(CNN with gray 

image) 
0.847 0.813 0.852 0.642 0.633 0.647 0.739 

geneFS2Img (CNN 
with color image) 

0.841 0.779 0.838 0.627 0.618 0.657 0.727 

Note: * denotes the performance in [9] using dimensionality reduction by PCA (principal component analysis) 
and RD_PRO (random projection) 
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The p-value was used for investigating meaningful improvements (p-value < 
0.05) when comparing between our method using geneFS2Img and raw data. In 
addition, we obtained 5 out of 6 significant results on the CIR, COL, IBD, T2D 
and WT2 datasets with p-values of 2.2E-16, 2.2E-16, 8.585E-15, 0.00007934 and 
0.00615, respectively, while we also gained a p-value of 0.061 on the OBE dataset 
by using FC model. For the diseases considered in this study (liver cirrhosis, 
colorectal cancer and IBD) we obtained the best prediction while the prediction 
model performed poorly on obesity and type 2 diabetes. 

5.2.3 Results Analysis of Diseases Diagnosis 

As shown in Figure 5 we calculated the sensitivity by dividing the number of 
actual patient predictions with the total number of patient predictions. It is 
noteworthy that the prediction on CIR had high reliability. It could accurately 
predict whether the patient’s situation was under control or under threat with a 
sensitivity value of approximately 89%. Applying the same method on COL and 
IBD also resulted in models with acceptable sensitivity, fluctuating in the range 
of 75% to 86%. It is noteworthy that predicting samples to know whether patients 
did not get IBD was more accurate than predicting samples affected by the 
disease, with the accuracy of each prediction being 75.44% and 86.98%, 
respectively. With a small decrease in difference but the same trend as IBD, COL 
also revealed a higher accuracy in prediction of a healthy status for this disease. 
In contrast, obesity predictions with a positive result were more accurate than 
negative results. 

 

Figure 5 Average confusion matrix for 6 gene family abundance datasets. 
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5.2.4 Selected Features are Meaningful for Predicting Diseases 

The presented bar charts shown in Figure 6 delineate the number of features that 
appeared after 10 runs with 10-fold cross-validation and concentrate on the 
frequency of selected times from 0 to 100 for CIR and COL as examples. The 
graphs provide information about the proportion of significant selected features 
after 100 runs. All of the datasets had 576 features after reducing dimensionality. 
The CIR and COL datasets had the highest proportion of features that appeared 
100 times, i.e. 0.239 and 0.255 respectively. The charts show a trend of mild 
fluctuations of features appearing 0-80 times. Furthermore, the number of 
features had a marked rise between 90 and 99 runs and had a record high at 100 
runs for all of the datasets. The detailed information shown by CIR’s chart clearly 
shows that the figures remained constant for about 10 features and more at 
considered milestones such as 60, 80 runs. In addition, COL’s chart had a period 
of instability along 0-90 runs but then the figures climbed back up again. Other 
datasets also revealed similar patterns. 

 
Figure 6 Filtering important selected features by using geneFS2Img on gene 
family datasets. 

Identifying and selecting critical features from high-dimensional data in 
prediction models is essential because using datasets containing millions of 
features can affect the accuracy. Many different algorithms could be applied for 
feature selection, depending on the case at hand and the preference of the user. 
After careful consideration from different perspectives, geneFS2Img was chosen 
in this study. The promising results of this study open up possibilities for future 
research in the personalized medicine domain. 
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6 Conclusion 

We presented geneFS2Img to illustrate gene family abundance in very compact 
images based on a number features reduced through a selection process. The 
performance shows promising results that reveal that the selection algorithms 
retained relevant features. The results and modules for geneFS2Img are available 
at https://github.com/hainguyenct/geneFS.  

Compared to the results with raw data, we obtained significant improvements in 
both prediction accuracy and inference time. The consumed time was reduced 
remarkably with the sets of selected features compared to the original sets with 
all features. 

As revealed by the results, the proposed method appears to be an appropriate tool 
for predicting liver cirrhosis, colorectal cancer, and IBD. Some results using gene 
family abundance data even outperformed the results for bacterial species 
abundance. We note that the reduced set of features was approximate to the 
number of bacterial species in the comparison of this study.  
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