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Highlights:  

 Presentation of design steps for speed and flux controllers based on backstepping, 
flatness-based control, and exact feedback linearization with state derivative for 
induction motor drives. 

 A comprehensive comparison between nonlinear control structure responses. 
 The research results are supported experimentally by practical simulation scenarios. 

 
Abstract. Field-oriented control (FOC) for induction motors is widely used in 
industrial applications. By using a fast and accurate torque controller based on a 
stator current controller it is possible to flexibly implement advanced speed control 
methods to achieve proper performance both in transient and steady-state states. 
In this study, a deadbeat controller was used for the current loop. The nonlinear 
methods used for the outer loop controller were backstepping, flatness-based 
control, and exact feedback linearization with state derivative. The dynamic 
responses of these three controls were compared through various experimental 
results. The advantages and disadvantages of the different control structures were 
analyzed and evaluated in detail. Based on this evaluation, an appropriate scheme 
can be specified when deployed in practice. 

Keywords: backstepping; deadbeat control; exact linearization; flatness-based control; 
field oriented control; induction motor; PI. 

1 Introduction 

Field-oriented control renders an induction motor (IM) as a separately excited 
DC motor with the same physical properties (magnetic flux forming and rotation 
torque producing) [1-4]. In the FOC structure, if the stator current controller is 
well-designed, the IM is considered as being fed by a current source inverter with 
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a controllable stator current, leading to model reduction of the IM from fourth-
order to second-order. In the induction motor control structure, stator current isd 
is in charge of the magnetic flux forming and isq is the control input for the torque 
production. The induction motor dynamics also show bilinear nonlinearity 
because there is a multiplication component of im and isq [1-5]. Therefore, due to 
the important role of the stator current, it is necessary to have a control method 
such that the actual stator current closely tracks the reference current. A deadbeat 
current loop controller ensures the main target of the stator current, which is fast-
accurate-decoupling compared to other control methods, such as PI control and 
exact linearization [5-8]. The design of the induction motor drive system 
according to an order-reduction model can be implemented in various ways. It 
has been shown that when operating in a wide range, the performance of the 
system degrades with the use of PI control [9-11]. Along with the strong 
development of hardware, nonlinear controllers [12,13] have been applied 
successfully in electrical drive systems. 

This paper presents a comparative analysis of three nonlinear methods for speed 
and magnetic flux controls based on an order-reduction model of an induction 
motor. Firstly, we used a flatness-based control by selecting proper system 
outputs. Because of the order reduction of the differential equations it is relatively 
easy to set the trajectory of speed and magnetic flux only in the form of a second-
order system with the time constant chosen from the current initial conditions 
[13-15,17-20]. Secondly, a control design was developed using backstepping 
control [16,21-23]. Finally, exact feedback linearization with state derivative was 
employed, where the nonlinear controller performs on the coordinate dq, which 
requires parameter estimation, and Rr, Rs are the rotor and stator resistances; Ls, 
Lr are the stator and rotor self-inductances; Lm is the stator-rotor mutual 
inductance; J is the inertia moment, and the derivative of the rotor flux angle and 
the rotor flux amplitude. The exact linearization control method combined with 
state derivative feedback overcomes heavy dependence on the state model 
parameters and signal measurement errors. However, the effectiveness of this 
nonlinear control method depends on accuracy of the state feedback signals [20-
22] and [24-25]. The control methods were analyzed based on criteria for 
evaluating the quality of electric drives, i.e. torque ripple, speed overshoot and 
setting time, and robustness  [12-14], which were verified via a set of 
experiments. 

This paper organized as follows. The mathematical model of the IM is briefly 
given in Section 2. The control designs are presented in Section 3. Section 4 is 
dedicated to the experimental results. Finally, some important remarks are stated 
in Section 5.   
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2 Mathematical Model of the IM in dq-Coordinate 

Consider the mathematical model of the induction motor on the dq-coordinate 
given as follows: 
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It is clear that the IM is of the fourth order and comprises an electrical-magnetic-
mechanical process. The motion of the IM in Eq. (1) is characterized by torque 
production, which is the scalar product of magnetic flux  rd  (created by d-

component current sqi -Isd) and d-component current sqi . If the stator current 

controller satisfies the speed, accuracy and decoupling requirements, the motor 
model is reduced from the fourth-order  Eq. (1). to the second-order Eq. (2), 
resulting in model reduction, including the magnetization and motion equations. 
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3 Design of Nonlinear Outer Loop Controllers 

With the use of a deadbeat controller it can be assumed that the stator current 
control is well-designed so in this study we could omit the current dynamics [12]. 
Therefore, the main objective of this study was to focus on evaluating the motor 
control structures for the outer control loop of the IM drives by looking at 
different possibilities of applying nonlinear control methods, such as flatness- 
based control, backstepping, exact linearization, and derivative state feedback. 

3.1 Flatness-based Controller 

Figure 1 shows that the flat output is magnetic flux and speed ,d d
r    , the 

trajectory planning gives the reference values for flux and speed through the 
calculation of the reference inputs for the inner current loop. The magnetic flux 

trajectory design '* '& d
rd rd   can be given in the form of the following second-order 

system: 
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Rewriting Eq. (3) as a function of time gives: 
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In the same fashion, the magnetic flux trajectory is given as: 
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Design of the feedforward controller: 

In this flatness-based system, the input * *
Tu ;sd sqi i     is calculated based on the 

flatness output and construction trajectories as: 
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where Lm  is the motor load, calculated by estimating the load; 
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Design of the feedback controller: 

In fact, the derived state-space model of the induction motor is not absolutely 
accurate. In the model, all types of disturbances are ignored, so when using only 
feedforward control action, the resulting closed system output will have a steady-
state error. Therefore, in order to ensure the tracking performance, a closed-loop 
control is required using the PI controller. The PI control structure of magnetic 
flux is: 
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The discrete PI speed control structure is:  
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where , RV V are amplification coefficients; 1 1d d a    are standard convention 

parameters. 
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Figure 1 Induction motor drive with flatness-based control outer loop. 

3.2 Backstepping Control Design 

From Eq. (2), define the current error as: 

  *
1 m mz i i   (9) 
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Taking the time derivative of  Eq. (9) gives: 
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To satisfy the Lyapunov stability: 
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Substituting Eq. (13) into Eq. (12) yields: 

  
*

1 1
m

sd r m r

di
i c T z i T

dt
     (14) 

Design the backstepping control for the speed control loop: 

From Eq. (2), define the speed error as: 
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The time derivative of Eq. (15)  is expressed as: 
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To satisfy the Lyapunov criteria then: 
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Substituting Eq. (18) into Eq. (19)  results in: 
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It should be noted that due to the assumption of ideal current control, Eq. (14) 
and Eq. (21) indicate the current control outputs. The induction motor control 
scheme based on backstepping is shown in Figure 2. 
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Figure 2 Induction motor drive with backstepping-based control outer loop. 

3.3 Exact Linearization with State Derivative Feedback 

Exact linearization with state derivative feedback was done through the design of 
a speed and magnetic flux controller based on nonlinear control methods such as 
flatness-based control and backstepping in Section 3.1 and 3.2. It is noted that 
these control strategies are based on speed and flux information that is sensitive 
to the induction motor parameters. For example, rotor resistance rR , stator sR , 

inductance mL  vary when the IM operates over a considerable period of time.  

In practice there is always a deviation between the calculated and the actual 
values of the parameters. In addition, they also depend on the load torque, the 
moment of inertia, and coefficients of the mechanical structure connecting the 
motor such as damping coefficient d  and shaft-stiffness c  [12] and [13]. This 
affects the stability and control quality of the IM drive system. With the 
application of a deadbeat current control [5] and the assumption of an ideal 
current response, the IM model can be represented as: 
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where: /r ra R L ; rf is the rotor flux angle; d is the friction coefficient. It is 

noted that the control model Eq. (21) is of the third order, where the first equation 
gives the magnetic flux, the second equation gives the rotor flux rotation, and the 
third equation gives the rotational motion. The second equation, which is the 
dynamic state variable measured in terms of participating in the design of the 
speed and flux controller for a squirrel cage rotor according to the method of 
exact linearization with derivative-state feedback. The control model is divided 
into two subsystems. The first subsystem consists of the magnetic flux equation 
and the rotor flux rotation angle while the second subsystem consists of the 
rotating motion equation characterized by uncertainty parameters such as friction 
stiffness d, moment of inertia J, load moment mL. The first subsystem was applied 
to the design of the speed and magnetic flux controllers, because this subsystem 
is less dependent on the motor parameters, link structure, torque, etc. 

From the mathematical equation of the induction motor [1], a subsystem was 
designed for the speed and magnetic flux controller according to the method of 
exact linearization with derivative state feedback: 
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With state variable: 1 2;rd rfx x   ; input variable: * *
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be described by the following affine nonlinear equation system:             
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Eq.(23) can be expressed as: 
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It is noted that in the system of Eq. (24) the output vector contains input vector u 
( * *

1 2;sd squ i u i  ) and the system of Eq. (24) can be exactly linearized. 

Therefore, we have an input vector u of the following form: 
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From Eq. (28) and Eq. (29) it is realized that these are the two equations used to 
calculate the speed and magnetic flux values as required. Substituting Eq. (28) 
and Eq. (29)  into Eq. (22) we get: 
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It can be seen from the system of Eq. (30) that the actual signals of speed and 
magnetic flux are equal to the reference signals and that the error is zero. To 
implement the design of the speed controller in Eq. (30) and the magnetic flux 
controller in Eq. (30), an estimator must be developed to calculate the parameters, 
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the derivative of the rotor flux and the rotational magnetic flux of the rotor. The 
PD controller was used here, because it is simple and efficient to implement. The 
estimated value is calculated by Eq. (31). 
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Thus, fast and accurate current control is performed by the deadbeat controller, 
we have a speed and magnetic control structure designed by the method of exact 
linearization combined with derivative state feedback, as shown in Figure 3. 
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Figure 3 The structure for an asynchronous motor with an inner loop as a dead-
beat controller; the outer loop is the exact linearization with derivative state 
feedback  controller. 

The control structure in Figure 3 shows that the speed and magnetic flux 
controller are omitted, where the reference stator current * *,sd sqi i  is calculated 

directly through the rotor flux state and the rotor flux rotation with the condition 
that the real signal is identical to the reference signal. This is one of the 
advantages of the controller, which allows the induction motor to operate in the 
full speed range, with any torque, inertia torque (within the operating limits of 
the motor).  
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The controllers Eqs. (28) and (29) only need to know the rotor time constant, 
inductance, number of pairs of poles, measured by the estimator in Eq. (31). Thus, 
it is recognized that this control method uses a minimum number of IM 
parameters, so it is necessary to use an estimator in the control structure, which 
is also the current research trend. In addition, the estimator in Eq. (31) improves 
the system’s robustness significantly, whether there are deviations or not, 
guaranteeing the exact motor parameters between the calculation theory and 
reality. 

4 Experimental Results 

Electric drive performance indicators such as torque response in no-load and 
loaded conditions are considered in this section. In addition, the quality of the 
electric drive is assessed through the speed of response in the transient state. The 
system’s robustness is subsequently examined under variation of the motor 
parameters. Experiments were conducted on an induction machine with the 
parameters given in Table 1. The structure of the test bench is shown in Figure 4.  

Table 1 Experimental parameters. 

Motor parameter Notation 
Rated power PN = 2.2 kW 
Rated current IN =4.7 A 

Rated frequency fN = 50 Hz 
Power factor cosφ = 0.8 

Number of pairs of poles zp= 1 
Rated speed nN = 2880 

round/minute 
Rated voltage UN = 400 V 
Stator resistor Rs = 0.37  
Rotor resistor Rr = 1.99  

Stator inductance Ls = 0.03441 H 
Stator inductance Lr = 0.03425 H 

Coefficient of mutual inductance between 
rotor and stator 

Lm = 0.0331 H 

First we see how the motor speed control loop reacts by operating the motor in a 
speed range from 100  rad/s (100 rpm) to 0.1 rad/s (1 rpm), especially at low 
speed (where low inertia makes it hard for the drive to operate properly). The 
experiment was carried out with no-load and a constant torque of 1.5 (N.m); the 
motor parameters are given in Table 1. 
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Figure 4 Experimental setup. 

The experimental results are shown in Figure 5, Figure 6 and Table 2. Through 
the experimental setup depicted in Figure 5 and Table 2, it can be concluded that 
the above control structures performed well with a short settling time, from 0.15 
s to 0.25 s, and a small overshoot of 4%. The recorded pulse rate torque ranged 
from %FRm  2.0% to 4.2%, while the maximum pulse rate torque %Mm  was 
4% when the motor speed was 100 rad/s.  

At a speed of 0.1 rad/s, the pulse rate torque %Mm  was very high. However, 
the control structure with the deadbeat inner and outer loop using the exact 
linearization method with the derivative state feedback gave better results in 
comparison with the other two control structures. 

The robustness of the electric drive was validated by changing (increasing) the 
rotor resistance. This parameter is directly related to the dynamical response of 
the IM as the value of Rr increases, affecting the rotor time constant /r r rT L R . 

In the experimental scenario we changed rR  linearly from the nominal value. 
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Deadbeat + backstepping                Deadbeat + flatness               Deadbeat + exact feedback 

linearization with state derivative 

 

Speed responses 

 

Torque responses at no-load condition 

 

Torque responses at load condition 

Figure 5 Speed and torque responses at a speed of 0.1 rad/s. 
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Deadbeat + backstepping           Deadbeat + flatness                  Deadbeat + exact feedback 
linearization with state derivative 

 

Speed responses 

 

Torque responses at no-load condition 

 

Torque responses at load condition 

Figure 6 Speed and torque responses at a speed of 100 rad/s. 
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Table 2 Simulating results of evaluation and comparison of the quality of 
electric drive control structures. 

FOC control structure 
Deadbeat 

backstepping 
Deadbeat 
flatness 

Deadbeat exact 
feedback linearization with 

state derivative 
Motor speed at 0.1 rad/s 

Settling time (s) 0.25 0.2 0.15 
RTF% 2.67 2.7 2.0 

mT % 50 45 30 

Motor speed at 100 rad/s 
Settling time (s) 0.25 0.2 0.15 

RTF% 4.0 4.2 3.0 

mT % 10 8 4.0 

  
Through the results in Figure 7, we look at Table 3 to assess the drop in the speed 
and torque responses when the rotor resistance Rr increases. 

Through the experimental results presented in Figure 7 and Table 3 it can be seen 
that when the rotor resistance Rr increases, the torque amplitude increases 
gradually and the speed tracking error is not obvious. When the value was 
increased by 150% of the nominal value of Rr, degradation of the torque and the 
speed could be observed.  

Compared to the other two schemes, the structure of a deadbeat current stator 
loop with a speed loop with exact linearization and derivative state feedback gave 
better system robustness against rotor resistance fluctuation.  

Table 3 Assessing the drop of speed and torque when the rotor resistance rr 
increased. 

Evaluation 
criteria 

 

Deadbeat 
backstepping 

Deadbeat 
flatness 

Deadbeat + exact 
feedback linearization with 

state derivative 

The ripper speed 
  (%) 

4.87 3.69 0.89 

The ripper torque 

mT  (%) 
20 16 5 
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Deadbeat + backstepping                         Deadbeat + flatness             Deadbeat + exact feedback 
linearization with state derivative 

 
Speed responses 

 
Zoomed image of speed responses 

 
Zoomed image of speed responses 

 

Figure 7 Speed response, torque response and value of rotor resistance Rr 
increasing to 50%. 
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5 Conclusion 

It is indicated that with the assumption of an ideal current loop, different speed 
controls can be employed, namely flatness, backstepping, and exact linearization 
integrated with derivative state feedback. From the experimental studies it was 
found that exact linearization combined with derivative-state feedback for a speed 
and magnetic flux controller has the advantages of a simple design and speed 
tracking performance. In addition, this control method does not depend heavily 
on parameter changes. The results of this study suggest a way to design an outer 
controller for complex electric drive systems, such as two soft-coupling inertia, 
multi-mass systems, with the aim of improving the quality of the electric drive 
system. Future work will involve a comprehensive study of the abovementioned 
controls in relation to various common load characteristics. 
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