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Highlights: 
 This work highlights a Quadcopter real-time PID controller tuning. 

 Real-time application of the PSO search technique is presented. 

 Effective blended control of fuzzy logic and conventional PID controllers is used. 

 Experimental verification and validation of the method is presented. 

Abstract. A real-time novel algorithm for proportional, integral and derivative 

(PID) controller tuning for quadcopters is introduced. The particle swarm 

optimization (PSO) method is utilized to search the quadcopter solution space to 

find the best PID controller parameters. A fuzzy logic (FL) controller is used to 

provide proper velocity reference signals to serve as tracking set points to be 

achieved by the PID controller. This nested loop design is proposed for stabilizing 

the quadcopter, where the fuzzy logic controller (FL) is used in the stable loop (i.e. 

outer loop) to control the desired angle, while the PID controller is used for the 

rate loop (i.e. inner loop). Finally, the optimum generated PID parameters were 

achieved in real time using the PSO search algorithm. The generated parameters 

were tested successfully using an experimental quadcopter setup at the University 

of Jordan. 
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1 Introduction 

The popular unmanned aerial vehicles (UAV), self-propelled aerial vehicles that 

operate without the presence of a human pilot, are increasingly catching the 

attention of researchers and engineers. These vehicles are found in many 

important applications, including for military and surveillance purposes of great 

importance [1-4]. The control of the UAV’s attitude, altitude and position poses 

many difficulties and challenges and it has been the subject of numerous studies 

[3,5-14]. Researchers and engineers are overwhelmed by the number of advanced 

algorithms that have been proposed to address the quadcopter control problem in 

particular. 

The nonlinearity of the quadrotor behavior poses major obstacles in synthesizing 

effective controllers and control algorithms. Proportional, integral and derivative 

(PID) controllers are among the popular controllers that have been studied due to 
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their simple structure, good performance, reliability and effectiveness when tuned 

properly [15-20].  

A wide range of control systems have been introduced with a classic PID 

controller. The ubiquitous PID controller was successfully used for achieving 

attitude stabilization and horizontal position control in several studies [11,19-21]. 

Recent studies have revealed the proposal of a multi-loop (i.e. inner-loop and 

outer-loop) control architecture to control quadcopters for specific applications. 

The outer-loop controllers were designed based on a diversity of controllers while 

the inner-loop controllers were all implemented using a conventional PID control 

strategy [22-25]. 

This work proposes an optimal tuning method for the ubiquitous PID controller 

focusing on attitude stabilization using particle swarm optimization (PSO). PSO 

was used previously in the literature for controller tuning [26-29], where several 

authors proposed to perform tuning using simulation of a dynamical model and 

then implemented the results to a physical model of a quadcopter. However, the 

unmodeled quadcopter dynamics and the diversity of uncertainties in dimensions 

and physical parameters all combined prevented finding well-tuned parameters. 

In this work, to overcome these problems the tuning of the PID controller is 

performed online in a real-time environment using the particle swarm 

optimization (PSO) search algorithm. 

This paper follows the following flow of material. Section 2 gives an overview 

of fuzzy PID controllers, while section 3 introduces the quadcopter controller 

design and section 4 discusses the theory of the fuzzy logic controllers (FL). 

Section 5 introduces the particle swarm optimization (PSO) and proposes its use 

for online FL-PID controller parameter tuning as a research methodology. 

Section 6 presents the experimental results and their discussion, which is used to 

verify and validate the online controller’s tuning technique as applied to a 

quadcopter to demonstrate its effectiveness. Finally, section 7 highlights the main 

conclusions of this work. 

2 Fuzzy PID Controller Overview 

PID controllers have been used successfully in the industry for a long time owing 

to their simple structure and robust performance in a wide range of operating 

conditions. However, lately more demands on performance are placed on these 

controllers. Unfortunately, the PID controllers are linear in nature and they are ill 

suited for strongly nonlinear systems. This has motivated many researchers to 

complement the PID controller with FL based controller because FL is typically 

parameterized using rules and membership functions, which makes it easy to add 

nonlinearities, logic, and additional input signals to the controller’s control law. 
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The PID controller currently takes many forms: direct action (DA), gain 

scheduling (GS) and hybrid types of FL-PID controllers. 

For DA control, the FL controller replaces the PD controller part in the 

conventional PID structure, while the I-control action stays the same. However, 

this modification in the PID structure requires providing two measured inputs for 

the FL controller, as depicted in Figure 1. Several researchers have proven that 

the two PD systems are equivalent with the addition of providing more 

intelligence due to FL’s heuristic nature and ability to handle both linear and 

nonlinear systems [30-32].  

 

Figure 1 Direct action FL-PID controller implementation. 

In GS controllers the FL part provides a dynamical mean to adjust the 

conventional PID controller’s parameters in relation to the current dynamical 

system behavior. This adaptation turns out to be very useful in handling nonlinear 

systems with varying properties, characteristics, uncertainties, etc. Figure 2 

illustrates the GS fuzzy based PID controller implementation scheme. 

In hybrid FL-PID controller designs, the PID controller’s effective working space 

is extended by using an FL based controller. However, both controllers utilize the 

error signal as input. Figure 3 illustrates the implementation of a hybrid FL-PID 

controller. An intelligent switching scheme that makes a decision on the priority 

of the controllers’ contributions may be utilized for further enhancement. 
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Figure 2 Gain scheduling FL-PID controller implementation. 

 

Figure 3 Hybrid FL-PID controller implementation. 

3 Quadcopter Controller Design 

Typically, the attitude controller of a quadcopter requires the controlling of 

angular velocities and the corresponding Euler angles (i.e. yaw, roll and pitch). 

The velocities and angles are measured using an accurate inertial measurement 

unit (IMU). An FL controller will be used to provide proper velocity reference 

signals to serve as tracking set points to be achieved by the PID controller. This 

nested loop design was used in this study for stabilizing the quadcopter, where an 

FL controller was used for the stable loop (i.e. outer loop) to control the desired 

angle and the PID controller was used for the rate loop (i.e. inner loop). Figure 4 

depicts the nested control loops that are proposed to stabilize the altitude. The top 

of the diagram shows a box designating the PSO algorithm that is used online to 

dynamically adjust the PID parameters searching for optimal parameters.  
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Figure 4 Controller strategy for attitude stabilization. 

4 Fuzzy Logic Controller (FLC) 

Since Zadeh first introduced fuzzy set theory and Mamdani applied it to replace 

operators in control many newly developed FL applications have emerged. All 

these applications may be categorized into two distinct fields: control and expert 

systems. Both fields apply inference and approximate reasoning using rule bases 

with the aid of membership functions over fuzzy logic sets [0, 1] in contrast to 

classical logic sets {0, 1}. In control applications, the two most widely accepted 

fuzzy linguistic inference tools are the Mamdani and the Takagi-Sugeno methods. 

This work considered a Mamdani-based FL controller design methodology.    

The FL controller provides its crisp output (defuzzified) based on crisp input 

(fuzzified internally) by utilizing the inference process via a rule base. Hence, the 

FL controller design involves designing three stages: fuzzification, rule-base, and 

defuzzification. Normally the FL controller design is sequential in the 

fuzzification stage; the membership functions are first selected and partitioned 

and then the rule base is constructed; finally, the defuzzification stage is 

implemented. Figure 5 summarizes the conventional top/bottom design approach 

and the main components of the FL controller. 

The difficulty in designing a FL controller comes from having to capture and 

cover all the aspects of the system’s dynamics, which is heavily dependent on the 

rule base and the selection of the membership functions (MF). The rule base 

should be constructed in such a way that the rule set spans the solution space.  
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On the other hand, the designer must choose the type of fuzzification (singleton 

or non-singleton), the number of membership functions, the functional forms of 

the membership functions (piecewise linear, Gaussian, sigmoidal), the 

parameters of the membership functions (fixed or tuned during a training 

procedure), the conjunction operator (t-norm, t-conorm), the implication or 

inference operator [33], the aggregation operator (t-norm, t-conorm) and the type 

of defuzzification (centroid, maxima, height). This demonstrates the richness and 

flexibility of fuzzy controllers, but also it reveals the need for some guidelines 

for their practical design. 

 

Figure 5 FL controller structure and conventional design methodology. 

The FL controller regulates the dynamical system according to a collection set of 

rules (i.e. rule base) in the form of linguistic IF-THEN rules. For example: IF 

error (ei) is big and the rate of change of error (dei/dt) is small, THEN the 

controller output (ui) is medium, where: ei and dei/dt are the inputs and ui is the 

FL controller’s rule fired output. Also, the big, medium and small are linguistic 

terms in the membership function (fuzzy subsets) of universe U of discourse. 

Traditionally, in the literature these sets of rules are presented in table form 

instead of as a cascaded IF-THEN statement. 

Since the quadcopter model being used is symmetric in the x and y directions, the 

roll and pitch movements present the same dynamic. Therefore, the same 

controller is capable of controlling both angles. The error in the roll and pitch 

angle input is divided into five regions in the membership function: negative large 

(NL), negative small (NS), zero (Z), positive small (PS) and positive large (PL). 

Also, the rate of change is divided into five regions in the membership function: 

negative large (NL), negative small (NS), zero (Z), positive small (PS) and 

positive large (PL). Figure 6 shows the finalized input membership functions. 
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Figure 6 Input membership functions. 

The controller output for the angle reference is divided into five membership 

functions: negative large (NL), negative small (NS), zero (Z), positive small (PS) 

and positive large (PL). Figure 7 shows the output membership function. 

 

Figure 7 Output membership function. 

Table 1 lists the used set of rules of knowledge base for the fuzzy inference 

system for the roll and pitch controllers, while Figure 8 depicts the FL generated 

control surface. 
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Table 1 Fuzzy Rules for Attitude Control 

 

 

 

 

 

 

 

Figure 8 FL control surface. 

5 PID Controller Tuning Using Particle Swarm Optimization 

The literature shows that PID controllers have been applied successfully to 

quadrotors with some limitations [7,9,10]. However, the tuning of the PID 

controller may present challenges as it has to provide effective quadcopter 

dynamical behavior around the balance point. Several researchers have 

successfully used particle swarm optimization (PSO) based techniques to tune the 

PID controller parameters during the design stage or as an offline experimental 

technique; interested readers can consult the following recent references [25-27]. 

To achieve the desired performance in practice, an automated search technique 

that is based on PSO needs to be implemented for tuning the PID controller’s 
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gains [34-39]. The PSO search technique was first introduced by Kennedy and 

Eberhart in 1995, which was based on fish school and bird flock behaviors. 

Particle swarm optimization aims to find the minimum cost function in the search 

space according to a few simple dynamical formulas. A good metaphor for the 

PSO algorithm is to imagine a swarm of bees in a field searching for flowers. The 

objective of the swarm is to find the location with the most flowers.  

Basically, each bee conducts a random search and memorizes the densest location 

of flowers it encountered. Also, by assuming that all the individual bees may 

share the information about their best findings of locations, each bee will be 

guided by its own personal discovery and by the best location reported by the 

others. Consequently, by altering the direction of their trajectory to fly 

somewhere between the two locations, the bees will explore the fields by 

overflying locations with the highest concentrations and eventually will be drawn 

to the densest flower location [40]. 

The following definitions and notes are needed to realize the PSO algorithm: 

1. A number n = 3 of particles is used in PSO. 

2. Every particle is identified by: current position Pi, velocity vi and Pi_Best in the 

searched solution space. 

3. All particles share their information about their best findings of locations. 

4. The individual particle best position Pi corresponds to its minimum evaluated 

cost function J(pi) throughout its search journey. 

5. The global best position is the best of all the best particle positions, PGlobal. 

6. The solution space is explored by driving the particles to move according to 

their best findings and also influenced by the best locations reported by the 

other particles. The mathematical representation of the swarm iterative 

updates for all particles, n, is given by the following equations: 

  (1) 

 
             ,   

Global t i Best t Global t
P min J P J P      (2)            

Figure 9 illustrates how the particles are moving and sweeping the solution space 

intelligently and it also summarizes the used pseudo-algorithm. Each particle in 

the swarm tracks its position by means of two vectors one accelerates the particle 

in the direction of its own best and another towards the global best for the whole 

swarm (best of the best). The advancement of the particles in the solution space 

is controlled by a simple kinematic equation: 
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      1  i i iP t P t t t     (3) 

where Δt is the advancement in time (increment) and Pi is the current location of 

the particle (i.e. the solution). On the other hand, the particles’ velocities are 

updated during the search with the following formula: 

  (4) 

where w is a scalar that generates some form of momentum for the particle taken 

from the previous iteration. The value that was used in this study was changed 

dynamically as well (in an adaptive fashion).  

 

Figure 9 Particle movement in solution space. 

The constants c1 and c2 represent the emphasis toward the particle’s best or 

toward the global swarm’s best, weighted by random terms. Typical values from 

the literature for these weights are within the interval [0 4]. The local best is the 

best value of the solution attained by the particles and the global best is the best 

value of the solution attained by the whole swarm. The stochastic behavior of the 

PSO algorithm is realized by giving two random sequences. 
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Figure 10   PID tuning process. 

In this implementation, the objective is to find the minimum error in the fitness 

function, where the fitness of the particle is evaluated based on the system’s step 

responses. It is estimated using the sum square error (SSE). This will also act as 

a stopping criterion for the algorithm in conjunction with the maximum number 

of iterations allowed, i.e. once the iteration reaches the set maximum value the 

quadcopter stops the calibration process and the best result obtained is stored for 

further processing. The complete controller’s tuning process is summarized and 

depicted in Figure 10 as a flowchart. This algorithm will be executed in real time 

as mentioned above. This poses some challenges but the produced results are 

worth the effort of getting them. 
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6 Experimental Verification and Validation 

An in-house built quadcopter and testing platform was used to verify and validate 

the effectiveness of the proposed real-time PSO algorithm for tuning the PID 

controller parameters. Figures 11 and 12 depict an image of the quadcopter and 

the corresponding block diagram of the main units. The control algorithms were 

implemented on an STM32F4 - ARM Cortex-M4 board, where the board used 

different methods and protocols to communicate with the remaining hardware 

units. Each quadcopter motor was powered and controlled by its own electronic 

speed controller (ESC) that provided a 3-phase alternating current. The ESCs 

keep each motor rotating at an rpm value determined by a pulse width they 

receive from the MCU board. An inertial magneto unit (IMU) equipped with 

magnetometers, gyroscopes and accelerometers was used to provide all the 

needed measurements (i.e. filter algorithms, bias estimation and magnetometer 

calibration) to operate the quadcopter. The IMU ran at a frequency of 400 Hz and 

the control loop at a rate of 250 Hz, which is the frequency of main loop. 

 

Figure 11   Quadcopter testing platform. 

Initially, the parameters ϕ (roll), θ (pitch), and ψ (yaw) were all set to zero 

degrees. Since the model used is symmetric in the x and y directions, the same 

controller is capable of controlling both angles. The quadcopter is started with a 
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stock PID value and when the PSO is activated by the user, the initialization of 

the PSO will start to set the maximum iteration fixed to 25 with three swarm 

particles. After that the PSO starts updating the particle position and velocity 

every 16 seconds for pitch angle with a fixed desired angle (zero degrees). After 

the iteration reaches the maximum number of iterations, the stop criterion is 

satisfied and the best gain is stored. Performance is satisfied around a constant 

set point (zero degrees), however, the user can select another state to optimize it. 

After achieving the optimized gain, the user can select the optimization under a 

variable desired angle, where the user’s desired value is changed every 1.5 

seconds to find the optimal gains, which should improve the stabilization of the 

quadcopter. 

 

Figure 12   Quadcopter testing platform. 

Figure 13 depicts the tuned PID controller parameters and the corresponding cost 

function. The quadcopter roll controller performance was evaluated for a period 

of 16 seconds. The initial controller gains were taken as (kp= 0.85, ki = 0.04, with 

fix kd = 40). After releasing 25 swarms searching the solution space, the algorithm 

reached the optimal gain, marked with white points in the top area, while the 

initial controller gain in the bottom area was taken from the previous global best 

swarm and the integration gain was fixed. The (kp and kd) was optimized after 

reaching the 25th iteration; the optimized gain is marked with white points in the 

bottom area. The quadcopter yaw controller performance was also evaluated for 

a period of 16 seconds with the initial controller gainstaken as (kp = 1.1, ki = 

0.07. After 25 swarms the algorithm reached the optimal gain, marked by white 

points in the surface, as shown in Figure 14. 



758 Musa Abdalla & Salam Baradie 

  

Finally, the quadrotor controller performance was evaluated for a period of 2.5 

seconds while varying the desired angle. The initial controller (shown in blue in 

Figure 15) performed poorly but was stable. In contrast, the optimized controller 

(shown in red) showed an optimized, smooth, and fast response. The other 

controller parameters that were evaluated are shown in gray. 

 

 

Figure 13  Quadcopter iterating tuning using real-time PSO. 
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Figure 14  Quadcopter roll iterating tuning using real-time PSO. 

 
 

Figure 15   Quadcopter step responses for all swarms for pitch, yaw and roll. 
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Figure 16 depicts a series of user-defined steps and the corresponding quadcopter 

angle responses that resulted from using the optimized real-time tuning using 

PSO. The figure shows the roll angle command response of the quadcopter in 

carrying out the user inputs. Such good performance would not be possible 

without real-time tuning.  

The figure also depicts the quadcopter roll angle response during a ten-second 

disturbance period generated by artificial wind produced by a fan. The curve 

illustrates how the quadcopter oscillated and represents the effectiveness of the 

tuned PID controller. The controller was able to compensate for the disturbance 

effect and preserved quadcopter stability. 

 

Figure 16   Roll, pitch and yaw angle step responses. 

7 Conclusions 

In this paper, a novel proportional, integral and derivative (PID) controller real-

time tuning algorithm based on particle swarm optimization (PSO) search 

strategy was presented. The tuning strategy was tested on a laboratory 

experimental quadcopter platform with a fuzzy logic controller on board to 
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provide proper velocity reference signals to serve as tracking set points to be 

achieved by the PID controller.  

Optimum PID working-parameters were successfully produced in real time by 

the PSO algorithm. The quadcopter response enhancement due to utilizing the 

new tuned parameters was clear. This technique seems to be insensitive to errors 

in the mathematics or modeling errors of the system in contrast to offline tuning 

strategies but is a little riskier. 
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