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Highlights: 

 Mechanical properties of diffusion-bonded Al-Ni are more significantly influenced by 

temperature, while pressure has a less significant impact. 

 A higher temperature applied during diffusion welding results in focusing the 

deformation around the diffusion zone. 

 Molecular dynamics simulation is an effective method that can be used to gain an 

insight into the material’s behavior at the atomic scale, which may improve the 

mechanical properties at the macro scale, especially those in which diffusion welding 

phenomena are involved. 

Abstract. This paper presents an investigation of diffusion welding of aluminum 

and nickel at the atomic scale by utilizing molecular dynamics simulation. By 

employing several temperature and pressure values, the significant influence of 

the two could be obtained and thus the optimum parameter values could be 

obtained. The results showed that the bonding mechanism is mostly promoted by 

Al, in which the deformation and defects are involved. The results on both the 

mechanical properties and the evolution of the diffusion configuration showed that 

temperature has more impact compared to pressure. It was indicated that by raising 

the temperature to 700 K with the lowest pressure (50 MPa), both the mechanical 

properties and the evolution of the diffusion configuration showed a relatively 

significant difference. On the one hand, the deformation that occurs during 

welding, which is mostly caused by raising the temperature, obviously promotes 

joining and therefore more joining depth can be achieved, although it results in a 

curved diffusion zone at the interface. On the other hand, it also leads to a lower 

ultimate tensile strength. During the tensile test, raising the temperature also led 

to focusing the deformation in the diffusion zone, while a lower temperature 

resulted in a wider area of deformation. 

Keywords: Al-Ni; diffusion welding; molecular dynamics simulation; pressure; 

temperature. 
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1 Introduction 

The Industrial Revolution 4.0 is creating huge differences, from an economic as 

well as a social perspective. This is related to several major manufacturing 

processes, including welding and joining processes in which two materials are 

combined to achieve particular shapes and properties, leading it to become one 

of the main activities in manufacturing processes [1]. However, now that several 

classical welding techniques that involve the metallic interlayer can successfully 

combine metals with relatively low complexity, we currently face a new problem. 

To achieve structural metals that can be used for various applications, ranging 

from automotive, aviation, industrial manufacturing tools, architectural buildings 

that involve a concrete structure, and so forth, metallic materials are now 

becoming more complex than ever before. This is due to new alloying designs 

that involve many different chemical compositions to achieve specific 

mechanical and physical properties. The complexity of materials that undergo 

several phase changes in which their structural properties change due to external 

conditions, such as temperature and pressure, poses new problems to the 

manufacturer when it comes to welding and joining. Classical welding techniques 

are no longer suited for these complex materials. 

One of the advanced welding techniques that are now broadly used in 

manufacturing processes is solid-state welding, including diffusion welding. In 

diffusion welding, two materials are combined directly by introducing both high 

temperature and pressure. Thus, the interlayer that is used by classical welding 

techniques, most of which deteriorate the mechanical properties of the as-welded 

materials, is no longer necessary.  

However, effectiveness and efficiency of diffusion welding have to be achieved 

first before it can be broadly applied in manufacturing processes to join particular 

materials. Optimum parameter values that introduce both effectiveness and 

efficiency can lead to the reduction of resources and the most desired properties 

of the as-welded material. Long-standing research has been conducted to develop 

this method. Unfortunately, experimental investigation to accomplish the best 

parameter values for this technique is costly and consumes a relatively large 

amount of time. To overcome this issue, several numerical methods are available 

to help in the determination of the best parameter values for a certain application. 

They are the Monte Carlo simulation, finite element method, continuum method, 

and molecular dynamics simulation. For a particular application, such as the 

investigation of welding of various materials at the atomic level, molecular 

dynamics (MD) simulation not only comes with several advantages but also has 

been proven to be reliable [2]. MD simulation has several major advantages over 

other methods, such as being able to be executed at the nano scale or even at the 

atomic scale [3]. 
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The capability of handling various broad applications of materials investigations 

and the advantages offered by MD simulation has led many studies to adopt this 

method, including those that were conducted to figure out the influence of several 

parameters in various welding techniques that are critical during the process of 

welding and their impact on the mechanical properties. Specifically for the 

diffusion welding process, MD simulation has shown great results, which not 

only revealed atomistic behavior, as it can be visualized by several software tools 

[4,5], but some mechanical properties can also be estimated and validated by this 

method [6-17].  

Two investigations by Chen, et al. have conducted MD simulation of diffusion 

bonding of Cu-Ag [18] and Cu-Al [19], revealing a dominant impact of 

temperature on the final result of diffusion-bonded materials and a mechanism in 

which increasing the temperature leads to an increase in the interfacial region 

thickness and temperature has more impact than pressure to promote welding. 

The atomistic diffusion behavior of W-Cu revealed by Xiu & Wu [20] shows that 

the diffusivity of the materials is important in the diffusion bonding process. In 

their simulation, the activation energy of the W atoms was larger than that of the 

Cu atoms and thus the Cu atoms promoted more diffusion into W, promoted by 

defects in the crystal surface. Concerning the tensile behavior, Hu, et al. [20] have 

investigated the tensile strength of diffusion bonded Ni-Al and revealed that the 

deformation that occurred in the sample welded with higher temperature 

decreased the tensile strength. 

However, a study that compares both the effect of temperature and pressure of 

diffusion welding between Ni and Al is still lacking. It is known that Al-Ni is a 

material that has a wide range of applications due to its excellent properties. It 

has been used as one of the main materials in several promising alloys for various 

applications, such as turbine airfoils [21], battery electrodes [22,23], an interlayer 

for joining dissimilar Ti-alloys [24,25], coating of tungsten layers [26], and so 

on. Long-standing Al-Ni research has shown the advantages of Al-Ni alloys so 

that more applications of it will be conducted soon, for instance in extreme 

ultraviolet (EUV) mask absorbers [27].  

In several applications, the joining process must be performed so that it satisfies 

the shape of the materials and the manufacturing processes. Both advantages of 

molecular dynamics simulation and the excellent properties of Al-Ni led to this 

study. The purpose of this study was to compare the effect of two welding 

parameters, i.e. temperature and pressure, and to figure out the deformation of the 

materials that occurs during the welding processes of aluminum and nickel. 

Furthermore, the welding temperature and pressure that contribute to the tensile 

behavior are discussed in detail. 
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2 Simulation Modelling and Method 

One of the most important aspects that contributed to the quality of the result of 

the molecular dynamics simulation method is their adopted interatomic potential. 

In this study, the interatomic potential proposed by Mishin, et al. [28] was 

adopted. This potential was constructed using experimental data and a large set 

of ab initio (LAPW) structural energies. The first developed interatomic models 

of EAM B2 Al-Ni have been improved to fit more complex systems of Ni-Al, 

such as for γ and γ′ phase. In this study, the latest interatomic potential of Al-Ni 

developed by Mishin in 2009 was used for the simulation. This interatomic 

potential also has been used in several investigations reported as successful that 

employed MD simulation, such as for diffusion-bonding of Ni-Al [20] and linear 

friction welding of Ni-Al [29]. 

The simulation system consisted of two slabs of monocrystalline Ni and Al with 

a dimension of approximately 7.2 nm x 9.2 nm x 9.2 nm for both the Al and the 

Ni slab. A fixed layer of atoms was configured on the edge of each atom, 

mimicking the boundary of the system, as shown in Figure 1. The lattice structure 

of Al and Ni was configured as a face centered cubic (FCC) with a lattice constant 

of 4.05 and 3.52, respectively, as investigated by Mishin in Ref. [28]. The 

periodic boundary condition (PBC) was applied in all three directions, x, y, and 

z. Both monocrystalline Al and Ni atoms were configured on [1 0 0] planes. In 

the present work, the LAMMPS software package was used, since it has many 

features and is very suitable for running MD simulations of metallic materials 

[30]. The calculation of the LAMMPS software is constructed by the Verlet 

algorithm and has several advantages such as that it can be optimized for a system 

with parallel processing and even for using a graphical processing unit (GPU) 

[31]. Furthermore, it is considered to be fairly accurate to evaluate pressure in a 

system [32]. 

A timestep of 1 fs was used in this simulation. In the first step, the system was 

relaxed for 10 ps to reach equilibrium state in room temperature at 300 K. Low 

pressure was applied in all three directions at this stage, i.e. controlled at 

atmospheric pressure. After the system was relaxed, in the second step the system 

consisting of Ni and Al slabs was subjected to diffusion welding for 200 ps at 

various temperature and pressure levels. Three levels of temperature and pressure 

were considered, i.e. 300 K, 500 K, and 700 K for temperature and 50 MPa, 100 

MPa, and 150 MPa for pressure. The temperature design was based on the melting 

point of the two materials, i.e. 933.47 K for Al and 1728 K for Ni, since in 

diffusion welding the temperature ranges from 0.6 to 0.8 of its melting point. The 

simulation parameters matrix is given in Table 1. The diffusion-bonded Al-Ni 

from the system in the previous stage then performed a tensile test with a strain 
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rate of 2.64e9/s at room temperature (300 K) for 100 ps. All of the stages were 

run under the isothermal-isobaric (NPT) ensemble. 

 

Figure 1 Top (a) and angle (b) view of Al (red) and Ni (blue) slabs with fixed 

atoms on each side. 

Table 1 Simulation parameters matrix. 

           Parameter  

 

Parameter 

Temp 300 K Temp 500 K Temp 700 K 

Press 50 MPa S1 S2 S3 

Press 100 MPa S4 S5 S6 

Press 150 MPa S7 S8 S9 

3 Results and Discussions 

In order to investigate the effect of temperature and pressure on the diffusion 

welding of Al-Ni in the MD simulation, Figure 2 visualizes the diffusion-welded 

Al-Ni after holding for 200 ps for different parameter values with respect to the 

simulation matrix in Table 1. At a glance, Figure 2 indicates that the 

differentiation of pressure did not change very much to the diffusion-bonded Al-

Ni configuration, as shown in S1, S4, and S7. On the other hand, differentiation 

of temperature influenced the diffusion-bonded Al-Ni configuration relatively 

more than pressure. Figure 2 was arranged to simplify the comparison of all of 

the specimens. Vertically it compares the effect of pressure (e.g. S1, S4, and S7) 

and horizontally it compares the effect of temperature (e.g. S1, S2, and S3).  

Fixed atom Fixed atom 

(a) 
(b) 
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Figure 2 Diffusion-welded Al-Ni after holding for 200 ps at various parameter 

values with respect to the simulation matrix. 

By directly analyzing Figure 2, an interesting phenomenon of curving/bending 

lines at the interface is visible. It is worth addressing the influence of temperature 

as demonstrated in Ref. [18,19], which first observed this phenomenon. First of 

all, better joints are achieved by increasing the temperature until a certain degree. 

However, when the temperature is too high (700 K), as can be seen in samples 

S3, S6, and S9, the Al slab that had a lower melting point severely deformed, thus 

introducing a curving line at the interface. Secondly, the ability of the Ni slab to 

maintain its structure, even at a very high temperature compared to Al, gave rise 

to this curving phenomenon that did not occur when the applied temperature was 

lower (300 K and 500 K). The unexpected phenomenon started to occur when the 

applied parameter values exceeded the ability of the sample materials to maintain 

their structure, especially when they were extremely pressed (150 MPa) and 

hence the Al slab deformed over a wide area. This may be critical for certain 

applications since this curving line would lead to a lower ability to prevent 
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fracture of the as-welded material when it is exposed to extreme conditions. This 

phenomenon could be further investigated by a creep test. 

3.1 Time Evolution of Diffusion Configuration 

During diffusion welding, the sample evolution is captured to see the 

differentiation of the materials as influenced by the applied parameter values. As 

previously analyzed and compared in Figure 2, the temperature dominantly 

influenced the configuration of the diffusion-bonded Al-Ni. Increasing the 

temperature means more joining depth will be achieved. When the temperature 

was relatively low, the sample kept its crystalline structure, leading to only a 

small number of atoms that diffuse into each other. The evolution of diffusion 

welding of Al-Ni under conditions S1, S2, and S3 is shown in Figure 3. Under 

these conditions, since the temperature is not high enough to promote joining, the 

pressure takes action. But, as discussed before, pressure only has a relatively 

small impact on the process so no significant effect can be seen in the time 

evolution in this condition.  

In condition S2, the temperature is high enough to promote more joining depth 

and promote diffusion into each slab, indicated by the deformation of 

monocrystalline Al since it has a lower melting point than Ni. Additionally, the 

condition of S3 with the highest temperature showed more joining depth than S1 

and S2. In all three conditions, however, the Ni slab kept its structure better than 

Al. In condition S3, monocrystalline Ni deformed only at the interface because 

of the pressure. Meanwhile, the other atoms that were far from the interface kept 

their FCC crystalline structure, while the Al atoms deformed in all of their parts. 

Furthermore, after 50 ps, there was no significant difference in diffusion 

configuration. These configurations are more clearly described by Figure 4, 

which shows the respective concentration distributions of diffusion-welded of Al-

Ni after holding for 200 ps. 

A smoother transition line of both slabs when the temperature is increased 

indicates the increase of atoms diffused from one side to the other. Therefore, it 

can be concluded that an increase in temperature influences the diffusivity of the 

materials and ultimately influences the thickness of the interfacial region, as 

indicated by the concentration distribution depicted in Figure 4. For the sake of 

completeness, all of the interfacial region thicknesses, defined as the area of the 

interfacial region for which the number of atoms exceeds 5%, is presented in 

Table 2 along with the ultimate tensile strength data. The joinging depth can be 

quantitatively interpreted by the interfacial region thickness value. As the 

interfacial region thickness value is higher, the atomic exchange between the two 

slabs is higher and consequently the joining depth also increases. 
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Figure 3 Time evolution of diffusion bonding Al-Ni of condition S1, S2, and S3 

at 50 ps, 100 ps, 150 ps, and 200 ps. 

 

Figure 4 Concentration distribution of diffusion-bonded Al-Ni after 200 ps at a 

pressure of 50 MPa and various temperatures. 
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3.2 Tensile Testing 

The tensile test is a mechanical test that applies tension to a material (which can 

be an as-welded material) to see the stress-strain curve for which the mechanical 

behavior of the material during tension and its tensile strength can be determined 

or at the very least estimated. Besides influencing the diffusion configuration as 

described in the concentration distribution, the applied temperature and pressure 

during the diffusion welding process also contribute to the tensile behavior when 

a tensile test is performed. The deformed material indeed will have lower strength 

compared to materials that keep their crystalline structure.  

As previously mentioned, the tensile test in this study was run for 100 ps and, 

henceforward, to see the sample evolution during the tensile test, four different 

times were chosen. Figure 5 shows the time evolution of the tensile test at 25 ps, 

50 ps, 75 ps, and 100 ps. It is indicated that at the lowest welding temperature, 

the deformation which occurred when the diffusion-welded of Al-Ni was 

subjected to the tensile test showed a uniform deformation that was not only 

focused in the interfacial region. As the applied temperature was increased, the 

deformation was focused only in the interfacial region (diffusion zone), while 

other parts that were far from the interface maintained an FCC crystalline 

structure. Since Al has lower strength, the deformation tended to occur in the Al 

slab in all nine conditions. This is due to the fact that the Al slab has a lower 

melting point and lower tensile strength. 

In order to quantitatively compare the performance of each sample, the stress-

strain curve is depicted in Figure 6. It is clear that the temperature very much 

influenced the mechanical properties of the diffusion-welded of Al-Ni, indicated 

by the ultimate tensile strength reached at the lowest temperature. As the applied 

temperature is increased, the ultimate tensile strength became lower. In the 

structural material, deformation due to plastic deformation is mostly 

accommodated by various mechanisms that may be responsible, i.e. dislocation 

motion, vacancy motion, twinning, phase transformation, or viscous flow of 

amorphous materials. However, the mechanism that occurred here was 

dislocation motion, due to the monocrystalline structure and did not 

accommodate any sort of other complex grain structure, thus it is reasonable to 

conclude that the absence of a grain structure is what caused the two slabs not to 

be separated at this very low temperature of welding, i.e. 300 K.  

Welding, in general, is not done at such a low temperature, because most welding 

methods are performed to weld relatively larger samples that always come with 

a grain structure. One example of this is low-temperature welding, which can 

only be used on a relatively small sample, such as nanowire, as demonstrated in 

Ref. [33]. 
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Figure 5 Time evolution of the tensile test of the diffusion-bonded Al-Ni. 

 

Figure 6 Stress-strain curve of the tensile test of the diffusion-bonded Al-Ni at a 

pressure of 50 MPa and various temperatures. 
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For the samples with higher temperatures, i.e. 500 K and 700 K, the ultimate 

tensile strength was lower but showed a structure with great bonding as can be 

seen from the concentration distribution (Figure 4) together with the relatively 

small deformation (Figure 3).  

The ultimate tensile strength for all nine conditions (S1-S9) is shown in Table 2. 

When the temperature was higher, the fluctuation in tensile behavior decreased, 

which means that the whole slab was deformed uniformly, only in a more specific 

location, i.e. the interface of the diffusion zone. Meanwhile, when the temperature 

was relatively low (i.e. 300 K), the material tended to deform over a wider area 

than with higher temperatures (i.e. 500 K and 700 K). This behavior makes it 

easier to conclude whether or not the optimum condition is achieved. The fracture 

of the samples at high temperatures (500 K and 700 K) shows the same 

phenomenon, while for the lowest applied temperature (300 K), the dislocation 

mechanism has a higher value, which is promoted by its superior maintained 

crystalline structure. 

Table 2 Ultimate tensile strength & interfacial region thickness of all nine 

sample conditions S1-S9. 

Sample condition Ultimate tensile strength (GPa) Interfacial region thickness (Å) 

S1 4.407 3.937 

S2 3.938 4.383 

S3 3.413 7.381 

S4 4.403 3.937 

S5 4.085 4.474 

S6 3.200 7.996 

S7 4.239 4.207 

S8 3.738 4.586 

S9 3.500 8.217 

3.3 Optimum Parameter Values 

Determining the optimum parameter values is not a simple task. The analysis 

derived here was based on a comparison of all nine samples for all of the aspects, 

including time evolution (whether or not the sample showed severe deformation), 

the final result of diffusion-welded Al-Ni (if the final result and its corresponding 

concentration distribution showed a good result as indicated by the thickness of 

the interfacial region and its diffusion between the two of Al-Ni slabs), and its 

mechanical properties (the evolution in the tensile test, the stress-strain curve, and 

its corresponding ultimate tensile strength). Considering all of these aspects, 

condition S5 was considered the optimum condition. 

Figure 7 shows the structural and mechanical properties of the S5 sample. The 

deformation (one of the most important indicators of a weld joint’s strength) that 
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occurred in this particular condition during the welding process showed relatively 

small defects. The concentration distribution indicates a smooth transition of the 

Al and Ni slabs, which means that the diffusion zone of Ni-Al had a uniform 

composition of diffusion of both materials.  

Some other samples showed domination of only one of the two materials, i.e. Ni, 

and showed relatively significant deformation indicated by the curved interfacial 

region at a higher temperature. Furthermore, the tensile test showed great ultimate 

tensile strength since most of the parts kept their crystalline structure. Overall, 

the applied temperature and pressure of S5 showed a decent combination of 

diffusion welding parameter values with ultimate tensile strength reaching up to 

4.08 GPa. 

 
Figure 7 Result of diffusion-bonded Al-Ni for S5 (temp. 500 K, press. 100 MPa). 

(a) Time evolution of diffusion welding, (b) time evolution of the tensile test, (c) 

concentration distribution curve, (d) stress-strain curve. 
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4 Conclusions 

A molecular dynamics simulation of diffusion welding between Al and Ni was 

performed to study the mechanical properties of the weld. The effect of welding 

temperature and pressure on the final as-welded materials was discussed in detail. 

The conclusions can be summarized as follows: 

1. Temperature has a more significant impact on diffusion welding of Al-Ni 

compared to pressure. This is indicated by both the concentration 

distribution (i.e. interfacial region thickness) and ultimate tensile strength. 

2. A curving line phenomenon at the interface line occurred due to the 

extremely high temperature and pressure, particularly when it exceeded the 

ability of the sample materials to maintain their structure.  

3. As the temperature was increased, the ultimate tensile strength of diffusion-

welded Al-Ni became lower. It should be considered to use the lowest 

possible temperature in diffusion welding in order to avoid severe 

deformation and consequently lower ultimate tensile strength.  

4. Higher temperatures also focused the deformation on the diffusion zone of 

the diffusion-welded Al-Ni, while lower temperatures made the deformation 

occur in a wider area. 
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