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Highlights: 

 Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD) can be 

used for qualitative interpretation of self-potential (SP) data. 

 Continuous Wavelet Transform (CWT) analysis was applied to identify multiple 

anomaly sources from SP data. 

 NA-MEMD and CWT were applied to SP data for qualitative and quantitative 

interpretations, respectively. 

 The combination of NA-MEMD and CWT on SP data was used to identify the 

location of fractures and seepage in the LUSI embankment.  

 The interpretation of the result was supported by direct current resistivity.    

 

Abstract. The stability of an embankment is generally influenced by a number of 

factors, such as deformation, fractures, overtopping, seepage, etc. Fractures and 

seepage are commonly found in the LUSI (Sidoarjo mud flow) embankment. In 

this study, analysis of self-potential (SP) data was applied to identify fractures and 

seepage in the LUSI embankment. Noise-Assisted Multivariate Empirical Mode 

Decomposition (NA-MEMD) and Continuous Wavelet Transform (CWT) were 

applied to determine the location of seepage and fractures in the subsurface based 

on SP data. The results were correlated with the 2D direct current resistivity 

(DCR) method, which showed that both methods worked well and were 

compatible in detecting and localizing fracture and seepage in the LUSI 

embankment. 

Keywords: fractures; self-potential; signal processing method; seepage; DCR. 

1 Introduction 

Failure of the LUSI (the Sidoarjo mud flow) embankment is mainly caused by 

seepage. Seepage flows through cracks in the embankment body. The degree of 
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water seepage in earth-fill embankments can be identified using the self-potential 

(SP) method [1-4]. The SP method includes a passive method that measures the 

natural static voltage of the ground. This method only needs voltage sensitive 

measuring devices and two special electrodes to conduct measurements, making 

this method quite fast and simple to execute. The spatial distribution of the 

measured SP data can indicate possible anomalous water flow. 

Generally, inversion is used to identify the locations (distance and depth) of 

sources causing SP anomalies. Forward modeling is required in the inversion 

process, where forward modeling of SP in the inversion process generates 

idealized bodies (example: sphere, cylinder, inclined sheet, inclined thick sheet) 

[5-9]. Several phenomena that disturb embankment stability can be approximated 

by simple geometrical models [3]: piping can be represented by a cylindrical 

body, internal erosion can be represented by a sphere, differential settlement can 

be represented by horizontal fractures, which can be represented by an inclined 

sheet. These assumptions cannot be used in general cases, because in some cases 

the sources of SP anomalies cannot be represented by idealized bodies but 

complex bodies are required [10]. Moreover, embankment instability is caused 

by a combination of several idealized bodies [3]. Thus, using a single idealized 

body model in the localization of SP sources has high ambiguitiy.  

In order to locate instability in the LUSI embankment, the filtered adaptive 

method Noise-Assisted Multivariate Empirical Mode Decomposition (NA-

MEMD) and Continuous Wavelet Transform (CWT) analysis were used. NA-

MEMD removes noise from the SP data for a qualitative interpretation, while 

CWT determines the subsurface position of SP body anomalies for a quantitative 

interpretation. In order to identify anomaly sources, the CWT method does not 

need assumptions. Although seepage in the LUSI embankment generally occurs 

through fractures or rock pores in the embankment body, the CWT analysis of 

anomaly sources is assumption-free for determining the seepage positions. As 

most geophysical methods, SP suffers from inherent ambiguity. Consequently, in 

identifying the positions of SP body anomalies, uncertainty model solutions are 

needed [7,11]. CWT analysis can provide the uncertainty positions of SP anomaly 

sources. 

2 Theory of Self-Potential 

The principle of the SP method is to measure the natural potential that is formed 

in the subsurface by several mechanisms, namely mineralization (geobattery), 

electrochemical (liquid junction or diffusion), electrokinetic (streaming), and 

thermoelectric potential. Firstly, SP anomalies associated with the presence of 

ore deposits are caused by redox half-reactions [12] involving electron donors 

and electron acceptors. The resulting potential is called electrochemical potential 
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and generally causes strong SP anomalies (in the order of hundreds of millivolts). 

Secondly, SP anomalies related to different mobility of anions and cations in 

solutions with different concentrations are LUSI embankment called diffusion 

potential [13]. Thirdly, streaming potential related to the motion of ground water 

in porous rocks is caused by the pore pressure gradient or hydraulic head [1]. 

Generally, the streaming potential can have an amplitude from some millivolts to 

several hundred of millivolts. The thermoelectric potential occurs due to the 

thermal gradient inside the rock, where the thermal gradient increases the energy 

of the ions leading to a differential displacement between the ions, which 

generates an electrical current [13].  

Furthermore, streaming potential with null total current density can be defined 

mathematically as follows [1,14,15]: 

 


    
  

v v

b f

Q K Q KF
C

h
  (1) 

where F  and C are the formation factor and the streaming potential coupling 

coefficient, respectively, while   and h
 
represent the electric potential (V) and 

hydraulic head (m), respectively. Furthermore, vQ  indicates the excess of 

electric charge per unit pore volume [C/m3], b  and  f  
are the bulk and pore 

water electrical conductivity [S/m], respectively, and K  is the hydraulic 

conductivity [m/s]. The equation has as a consequence that an upstream condition 

(the hydraulic head of the measurement electrode is located above the hydraulic 

head of the reference electrode) will produce negative SP anomalies on the 

surface and vice versa. Consequently, there are negative and positive SP 

anomalies for inflow and outflow, respectively.  

Pressure is directly proportional to height. Consequently, using Eq. (1) it can be 

known that the streaming potential also depends on pressure. In general, fluid 

flows from high pressure to low pressure, which means that the location of water 

discharge (inflow in embankment seepage) will produce negative SP anomalies, 

while the direction of the fluid flow (outflow) has positive SP anomalies on the 

surface. 

SP data can be disturbed by several types of noise [12], namely: 1) noise 

generated by different transient sources; 2) spatial noise associated with strong 

heterogeneity of the resistivity distribution in the near surface; 3) other artifacts 

associated with the non-polarizing electrodes themselves. Transient noise can be 

removed if a fixed dipole is used to record the electrical signals during mapping, 

while spatial noise can be filtered if measurements are made with high spatial 
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density and can be removed using several processing techniques (Fourier-, 

wavelet- and empirical mode decomposition-based filters). In addition, other 

artifacts can be corrected if the temperature is measured at the place where the 

self-potential measurements are carried out. 

3 Study Area 

Geologically, the LUSI area is part of the Brantas river system with the following 

rock sequence (from old to young): Ngimbang, Kujung, Tuban, Ngrayong, 

Wonocolo, Ledok, and Lidah formations. At the surface, the formation consists 

of alluvial deposits from the Brantas delta (in the north of the Porong river) and 

Quaternary volcanic tuff deposits (in the south of the Porong river). The alluvial 

delta is mainly derived from the Brantas river, which separates into two rivers, 

namely the Kali Mas river in the north and the Porong river in the south, in the 

form of alluvium, composed of gravel, sand, and silty clay [16]. 

 

Figure 1 Geological map and structures in the LUSI area. Points with numbers 

are used to easily find positions in the LUSI embankment. 
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The LUSI embankment is the main embankment and is built on the outside of the 

affected area (Figure 1). The embankment was built in expansive soil with high 

resistivity. Construction was done in view of the LUSI mud eruption and the main 

goal was to protect the public and avoid greater losses to the state. The LUSI 

embankment was constructed over two faults, the Siring fault and the Watukosek 

fault (Figure 1). Nevertheless, the embankment is well constructed and has high 

standard penetration test (SPT), shear wave velocity, and resistivity [16-18]. In 

order to facilitate the reference to a point or a pond in the LUSI embankment, 

each position is denoted by ‘P’ followed by a number (for example: P79 for point 

79).  

Figure 1 shows the measurement of the SP data lines. Observation of the SP lines 

was focused on the north and northeast of the LUSI embankment, because these 

areas have highly collapse potential [19]. The embankment in the north and 

northeast parts was designed with thicknesses of 11 m and 5 m for the width of 

the top part (Figure 2) [20,21], but has been repaired each year (especially before 

the rainy season) to handle unstability. Consequently,  P79 to P82 of the LUSI 

embankment was identified as being about 12 to 15 m thick in 2017 using 

integrated vertical electrical sounding and Rayleigh wave dispersion [19].  

 

Figure 2 Dashed lines indicate the localization of the SP and DCR electrodes for 

each line at the crest of the dam. 

Instability of the LUSI embankment is generally caused by three factors [16,19]: 

(1) vertical and horizontal deformations, which will eventually lead to changes 

of position of the embankment and cracks in the embankment; (2) the effects of 

fluid eruption in large quantities causing overtopping and seepage in the 

embankment; (3) the driving force of the LUSI mud flow or fluid on the 

embankment, causing embankment failure due to the transformation of the 

potential energy of the mudslide into kinetic energy. Moreover, the latter 

generally contributes to collapse of the embankment in the rainy season 

(especially when it rains a lot).  



712 Sungkono, et al. 

  

In this study, the potential difference (PD) method was used, where one electrode 

is fixed to a base station and another one is moved at a regular interval. 

Measurement of the self-potential signals was carried out with a digital voltmeter 

and non-polarizing Cu/CuSO4 electrodes. The spacing between the SP readings 

was 5 m and the measured data were corrected [12]. The NA-MEMD and CWT 

methods were applied to correct the SP data for qualitative and quantitative 

interpretation, respectively.  

Furthermore, the direct current resistivity (DCR) method was used to measure the 

same line as SP (Figure 2) in order to integrate both data. Measurements of 2D 

DCR are generally used to determine the true electrical resistivity of the 

subsurface. The DCR method measures the electrical resistivity distribution of 

the subsurface using a DC current. The current is transmitted into the ground with 

two electrodes (A and B) and the potential difference between a second pair of 

electrodes (M and N) is measured. Several electrode arrays can be used to 

determine subsurface resistivity, including Wenner, Schlumberger, dipole-dipole 

and pole-pole arrays. The Wenner configuration was selected for measuring with 

the DCR method. 

4 Data Processing 

4.1 Self-Potential Data 

4.1.1 Noise-Assisted Multivariate Empirical Mode Decomposition 

(NA-MEMD) 

In this study, Noise-Assisted Multivariate Empirical Mode Decomposition (NA-

MEMD) [22,23] was used to filter the SP data. This method is able to eliminate 

mode mixing in the multivariate empirical mode decomposition (MEMD) 

algorithm. Thus, the method is suitable for filtering geophysical data [24]. It was 

used to remove linear trends from the data, which were generally correlated with 

electrode drift and with base slope and level. Furthermore, the method also 

reduced high frequency noise that reflects the telluric effect and was associated 

with the very heterogeneous nature (resistivity distribution) of the shallow 

subsurface. 

The NA-MEMD method operates on SP data and several white Gaussian noise 

(WGN) channels with a certain amplitude was added to separate channels from 

the SP data. Further, Multivariate Empirical Mode Decomposition (MEMD) [25] 

was applied to decompose the SP data and several WGN channels to obtain 

several multivariate intrinsic mode functions (IMFs). Several channels of the 

multivariate IMFs corresponding to WGN were excluded, while the other 
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channels were IMFs of the SP data. Furthermore, some IMFs were selected for 

reconstructing free noise of SP data, while a IMFs reflected a linear trend and 

IMFs associated with the telluric effect and the very heterogeneous resistivity of 

the shallow subsurface were excluded. The filtered SP data were used for 

qualitative interpretation, the result of which was compared with the CWT and 

DCR results. 

4.1.2 Continuous Wavelet Transform (CWT) 

Continuous Wavelet Transform (CWT) can be applied to accurately calculate the 

position (depth and distance) of sources bodies of potential field anomalies 

(gravity, magnetic, and self-potential data) [26,27]. The wavelet transform is a 

signal analysis method that uses simultaneous characterization of a signal in the 

time and frequency or the space and wave number domain. CWT is obtained by 

convolution or cross-correlation between a signal (in this study SP measured 

data)  f x  and multiple scales (multiple  ) of wavelets 
ng  with different 

translation parameters 'x . The wavelet transform is described in detail in 

[28,29]. Mathematically, the wavelet transforms results, ( ', )Wf x  , can be 

expressed as follows: 

       , ( ', ) ' /  






 
n

n nW g f x g x x f x dx        (2) 

where   ' /ng x x   denotes a wavelet that has spatial support centered at 'x  

and is proportional to  . Using the properties of the wavelets, the scale 

parameter ( ) plays the role of the physical dimension depth (Z), while the 

translation parameter is the equivalent of position x  [30]. The scale parameter is 

proportional to the dilation parameter [30]. Furthermore, the scale is described as 

the window size of the wavelet. A small scale means a detailed view, which will 

increase the resolution in the same time, and vice versa. 

In order to increase efficiency, the CWT is processed in the wavenumber u  

domain (frequency domain in the spatial function). Thus, this process needs fast 

Fourier transforms. Generally, the derivative of order n  of the Poisson kernel 

family and their Hilbert transforms are used as wavelets, horizontal and vertical, 

respectively. The wavelet equation is as follows:  
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where u  denotes the wavenumber of the spatial variable x .    
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Using the convolution concept, the wavelet transform of a signal using several 

scales has the following properties: 

1. High frequency (wavenumber) in low scales and vice versa. This has two 

consequences, namely: a high frequency signal is clearly visible in the low 

scales, and vice versa, and the wavelet transform can act as a filtering process.  

2. It contains properties of the signal and wavelet is used in this process.   

Based on the properties of the wavelet transforms, the SP and potential data 

indicate subsurface anomaly source that are visible in high and low scales. The 

wavelet transform property is different from the noise property disturbing the SP 

and potential data [27,31]. 

Furthermore, CWT can identify singularities very well [32]. A singularity is 

described by extrema lines in the matrix wavelet transform results (wavelet 

transform modulus maxima lines, WTML). For identifying the source of an 

anomaly, two or more extrema (minima and maxima) lines are needed, where at 

least one line is of maxima and one line of minima [27]. Generally, each body 

source of self-potential anomalies will generate a singularity in the CWT results.  

Mauri et al. [26] have shown that the dilation value is considered as the space 

above the ground surface (z > 0) and as projection below the ground surface (z < 

0). The lines of extrema converge at z < 0 in a cone-shaped structure toward the 

singularity. The convergence position of the extrema represents the position 

(depth and distance) of the SP anomaly source. A more clear description of this 

methodology can be found in References [26,27,33]. 

In order to investigate the accuracy of CWT to predict positions of seepage (fluid 

flow) disturbing embankment stability, this study used a combination of real and 

imaginary wavelets based on the Poisson kernel function. The real wavelets of 

the Poisson family using this process are the second horizontal derivative and the 

third vertical derivative, while the imaginary wavelets are the third horizontal 

derivative and the second vertical derivative, as discussed in [26].   

Variations and errors in depth calculations are caused by three main sources [27]. 

Firstly, noise in the data (due to a heterogeneous medium) will distort the lines of 

the extrema for small values of dilation. Consequently, this will affect the point 

of convergence. Secondly, the error due to the heterogeneous medium, which is 

calculated based on the quality of the best fit of the cone-shaped structure. 

Thirdly, the sampling step has a significant impact on the measured signal and 

the signal may characterize the source. The error due to measurement noise can 

be further limited by processing the signal with several wavelets (more than one) 

in order to statistically constrain the depth. 
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4.2 Resistivity Data 

The DCR data were analyzed using the L1-norm optimization method. L1-norm’s 

error approach is less sensitive to noise levels and produces fewer artifacts [34], 

while L1-norm’s modeling commonly gives better imaging results for the 

contrast of the model parameter than smoothness constrained least-squares (L2-

norm) inversion [35,36]. Inversion using L1-norm is done to minimize the 

objective function, as follows:  

  d obs cal mR d -d λ R W ri i           (4) 

where dR  and mR  denote the weighted misfit and data roughness, respectively, 

J indicates the Jacobian matrix of the partial derivatives, while W  describes the 

roughness filter. Further, obsd  and cald  are the observed and calculated data, and 

ir  indicates the changed model parameters for the ith iteration.  

The Lagrange multiplier for each iteration ( λ i ) is used to minimize model 

roughness and to stabilize the inversion process. A simple approach to solving 

L1-norm based optimization is the iteratively reweighted least-squares method 

(IRLS) [34,35]. In the IRLS algorithm, both dR  and mR  are iteratively 

calculated [36]. 

5 Result and Discussion 

SP and DCR data were acquired in the rainy seasons. The pond condition for each 

line is presented in Figure 3. The figure shows that generally the pond contained 

water, except at line P76-P77. This condition was used to help in the 

interpretation of the processed SP and DCR results. 

In order to locate anomalies, the NA-MEMD approach was applied to the SP data. 

Figure 4 shows SP data decomposition into 5 IMFs, where the last IMF indicates 

the trend of the data. This trend correlates with electrode drift and topography 

(Figure 4). Thus, the last IMF must be excluded from the SP data reconstruction.  

The first and second IMFs show transient data, which may be caused by strong 

heterogeneity of the resistivity variation in the shallow subsurface and may also 

have been disturbed by transient sources, such as the telluric effect due to 

transient current flow in the ionosphere, lightning, large cumulus clouds, etc. 
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Figure 3 Pond (point) condition of each line, a) P79-P82; b) P78-P79; c) P76- 

P77; d) P75-P73; e) P75A-P75. Each pond contained fluid, except P76-P77. 

 
Figure 4 SP data decomposed using NA-MEMD into five IMFs. 
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Furthermore, the last, the first and the second IMF must be removed. 

Consequently, in order to reconstruct the SP anomalies (filtered SP), IMF 3-IMF4 

can be summed as in Figure 5. This figure shows that compared with SP 

measurement, the SP anomalies were improved by removing the last IMF and 

transient data compression by excluding the first and the second IMF. These steps 

were performed for all SP measurement lines. Further, the filtered SP data were 

interpreted qualitatively (based on the properties of the SP anomalies) and 

quantitatively (wavelet multiscale processing). 

 

Figure 5 Comparison of measured SP and filtered SP using the NA-MEMD 

approach. 

As described in Eq. (1), the qualitative interpretation of self-potential anomalies 

of streaming potentials for identifying seepage is easy, where seepage is generally 

shown by negative SP anomalies [14,15,37,38]. In addition, the relative intensity 

of the discharge is demonstrated by the amplitude of the anomalies. The SP data 

filtered using the NA-MEMD algorithm were applied in the qualitative 

interpretation for identifying seepage positions. 

In the quantitative interpretation of the SP anomalies, the measured SP data were 

analyzed using wavelet multiscale analysis to estimate the depth of the source 

responsible for the measured SP anomalous field [26,27]. In this study, the second 

and third orders of the vertical and horizontal derivatives of the Poisson family 

were used to provide the uncertainty positions of the subsurface anomalies. For 
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this process, the MWTmat software [26] was used to analyze the measured self-

potential field. In the software, the SP data were processed using CWT to identify 

the minimum and maximum singularities. Further analysis of both singularities 

was done to identify the sources of the SP anomalies. As a quality check of the 

results for the source positions, only positions with at least two of the four wavelet 

analyses were considered significant. For each wavelet and profile a position was 

obtained by estimating the best fit of the cone-line structure [26].  

The convergence of the line’s extrema through intersection point z < 0 gives the 

depth of the SP source. As shown in Figure 6, CWT analysis was applied to the 

SP data measured at P79-P82 (Figure 5) using the second order of the vertical 

derivative of the Poisson family.  

The figure shows that sources of SP anomalies can be identified by singularity 

analysis, where negative and positive singularities (dashed lines) will meet at a 

point (diamond) and form a cone. The points correlate to the positions of the SP 

anomaly sources. The results were divided into four groups of SP anomaly 

sources, where each group was identified through two or more singularities (see 

Figure 6). Furthermore, the data were also analyzed using another wavelet, which 

is not presented here. 

 
Figure 6 CWT analysis of measured SP to determine anomaly sources. 

For each estimated depth, the associated error is based on the quality of the best 

fit. The final localization of each source (horizontal and vertical) was based on 

the depths and distances of all solutions from the analyzed results and their 

associated uncertainty (σ). The analysis results for all of the measured SP data 

are presented in Table 1. It shows the CWT analysis result consisting of the depth 

and position of each SP source. The WTML in the CWT analysis of the SP data 

cannot determine the nature of the object associated with an SP anomaly. In order 

to describe the nature of the SP anomaly object, dipolar tomography (advanced 

complex CWT analysis of the SP data) and SP data inversion using the finite 

element approach can be used [31,39-41].  
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Table 1 Source depths (Z) and positions (X) Estimated by CWT of self-potential 

data in the LUSI embankment for several lines.  

Structure Number of Wavelets X σX Z σZ 

Line P79-P82 

S1 4 67.3967 6.5865 -10.2437 9.550729 

S2 4 190.4354 9.231651 -65.1711 15.99827 

S3 4 138.3866 4.136642 -15.6224 5.483529 

S4 4 273.5462 20.5845 -32.2226 9.073569 

Line P78-P79 

SS1 4 194.3154 0.93842 -20.2692 4.851243 

SS2 4 85.26599 2.699981 -23.3347 8.868472 

SS3 4 32.88858 0.72523 -4.91201 3.794171 

SS4 4 239.0813 0.765973 -22.8812 3.88584 

SS5 3 281.9847 0 -7.94234 7.9434 

SS6 3 352.4498 30.30011 -8.24386 7.547819 

SS7 4 325.5904 5.60797 -44.0136 7.640628 

SS8 4 146.5408 3.638915 -36.7046 19.04271 

Line P76-P77 

WK1 3 81.54776 15.03222 -7.55414 5.48696 

WK2 3 108.4507 3.917961 -67.2183 21.66722 

WK3 3 197.961 14.14983 -5.76768 2.884647 

WK4 3 256.6205 3.27331 -39.1937 12.449 

WK5 2 191.0173 11.11475 -29.5334 7.198908 

WK6 2 36.26095 2.56701 -3.97696 4.493881 

Line P75A-P75 

KD1 3 222.7747 0.345972 -8.06587 0.807549 

KD2 4 44.20035 0.679158 -10.3666 1.859948 

KD3 4 160.4179 3.036411 -31.574 12.09849 

KD4 4 290.9196 7.335863 -68.47 15.65895 

KD5 3 102.5827 1.167678 -28.991 2.241301 

Line P75-P73 

KT1 3 88.6605 2.28848 -4.64522 2.188764 

KT2 4 275.451 6.781233 -61.3532 25.06461 

KT3 4 506.921 1.632278 -14.9403 6.094641 

KT4 3 607.0037 6.992968 -50.4533 18.28238 

KT5 3 592.8443 32.07147 -4.23121 4.086568 

KT6 2 731.802 18.39118 -1.40786 2.230054 

KT7 2 420.1123 3.609299 -19.1776 6.172374 

Note: Column 2 contains the number of wavelets used in the CWT calculation to locate 

the source depths and positions for each line. Depth and position are in meters. σ is the 

standard deviation to describe the result uncertainty. 

As calibration, the analysis result of SP was compared with 2D imaging from the 

DCR method measured over the same lines. The DCR method was analyzed to 

minimize the L1-norm model and errors (Eq. (4)) using the IRLS method. The 

method is good to minimize tail errors and properly reconstruct the model of the 

embankment (the difference in resistivity in the embankment and under the 

embankment was assumed to be large). 
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5.1 Line P79-P82 

Figure 7 demonstrates the correlation between SP anomalies, positions sources 

and their uncertainty estimated by CWT analysis, and the resistivity of the 

subsurface at line P79-P82. At this line, the thickness of the embankment is 

estimated around 10 to 15 m, as identified by the first resistivity layer and 

supported by Rayleigh wave analysis [18,19]. The low resistivity in the first layer 

indicates seepage in the embankment, which is correlated to negative SP 

anomalies. Thus, the SP anomalies can be used to determine seepage positions. 

 
Figure 7 (a) Filtered SP anomalies (mV) and (b) 2D resistivity model estimated 

by DCR method and source positions of SP anomalies (diamonds) for P79-P82 of 

the LUSI embankment, Sidoarjo, Indonesia. Lines indicate a fracture or fault 

interpreted by DCR imagery. 

The CWT of the SP data at this line identified four groups (Figure 7 and Table 1) 

that characterize four sources. Each anomaly controls a different area with 

uncertainty less than 21 m for position and 16 m for depth. Furthermore, the data 

were inverted using global optimization methods [4,42,43], where the results 

suggest that all the anomaly bodies at this line are horizontal cylinders. The 

anomalies can be interpreted as piping or seepage [3]. Moreover, seepage sources 

were also identified through CWT processing of SP anomalies, namely S1, S3, 

and S4.  

Furthermore, the negative SP anomalies at 0-70 m, 80-110 m, and 170-250 m 

were considered near-surface fractures correlated with S1, S2, and S4, 

respectively. Fractures at S1 and S2 were clearly mapped in the 2D DCR 
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inversion result, while for S4 the fracture could not be identified from the 2D 

DCR analysis, but it was clearly revealed by inversion of the VLF-EM data [19] 

and by the GPR method [44]. This may be caused by the measurement point at 

around 170-250 m distance being limited (the observed data are based on the 

length of the embankment). The fracture network at this line is the result of 

deformation. This line has a high rate of vertical deformation as was demonstrated 

by the total station data analysis [19]. 

5.2 Line P78-P79 

In order to know the cause of potential instability of the embankment at this line, 

qualitative and quantitative interpretations of the SP anomalies were applied. As 

described above, the qualitative interpretation is applied to presume seepage 

positions from the SP anomalies. During the measurements of the SP and DCR 

methods, the embankment was being repaired to increase the height and strength 

of the dikes. The thickness of the embankment at this line was around 12 m. 

Consequently, the first layer of the embankment, which is made of compacted 

earth fill, normally has higher resistivity than the second layer. Nevertheless, if 

the first layer is disturbed by fluid (seepage), the embankment will have low 

resistivity. 

Figure 8 shows negative SP anomalies in several locations, such as at 0-50, 

around 100 m and 200 m, and at 175-215 m distance. If we compare the SP 

anomalies with 2D resistivity, seepage not always correlates to negative 

anomalies, as it can be seen around 250 m distance. In that location the SP 

anomalies were not only an effect of seepage but also of fracture (complex 

sources). Thus, the seepage position is difficult to identify through qualitative 

analysis. Furthermore, CWT analysis should be applied to identify the source of 

the SP anomalies. 

A CWT analysis was conducted to determine the minimum and maximum 

singularities to estimate the sources of the SP anomalies. At this line, the 

anomalies indicated structures in 8 different groups. These groups reflect 8 

different sources (Figure 8 and Table 1).  

The sources of SP anomalies that can be seen in the near surface (in the 

embankment) were at SS5 (281.98 m distance) and SS6 (352.45 ± 30.30 m 

distance), where pores were the media of seepage. Furthermore, those at SS2 

(85.27 ± 2.70 m distance), SS8 (146.54 ± 3.64 m distance), SS1 (194.32 ± 0.94 

m distance), and SS4 (239.08 ± 0.77 m distance) can be considered faults. Faults 

also disturb embankment stability because water can seep in through the 

embankment. Fractures SS2 and SS8 were also revealed in the VLF-EM imaging 
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[19]. Thus, the seepage at this line may be caused by fractures and pores in the 

embankment. 

 
Figure 8 The same description as Figure 7 but for line 78-79. 

5.3 Line P76-P77 

Figure 1 shows that the measurements of the SP and DCR methods at line P76-

P77 were taken over the Watukosek fault, where the fault is close to P76. The 

thickness of the embankment at this line was around 11-12 m. During the 

measurements, the pond at line P76-P77 was not filled with fluid. Consequently, 

in the rainy season, the fault or fracture will contain fluid and have low resistivity.  

The CWT analysis of the SP data indicated structures in six different groups, 

which characterize six sources of SP anomalies (Figure 9 and Table 1). Figure 9 

is a comparison between the SP and the DCR analysis results. Negative SP 

anomalies at a distance of 75-190 m correlate with low resistivity anomalies in 

the near surface (embankment), where the positions contain some structures. The 

structures are assumedly fractures or faults breaking through the embankment 

material. The structure is considered a water-filled fracture. 

In addition, if we compare Figure 1 with Figure 9, the Watukosek fault system is 

correlated to WK2 (108.45 ± 3.92 m distance) in the CWT result of the SP 

anomalies and has low resistivity around both [45]. Fractures were also found at 

WK5 (191.02 ± 11.11 m distance) and WK6 (36.26 ± 2.57 m distance) consistent 

with low resistivity. WK5 and WK2 were also identified using VLF-EM imaging 

[19]. 
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Another anomaly, WK1 (81.55 ± 15.03 m distance) is located in a ‘near’ fracture, 

which may be an uncertainty effect in the CWT analysis. The last anomaly, WK3 

(197.96 ± 14.15 m distance) is considered porous rock containing fluid and has 

relatively low resistivity. Furthermore, the low resistivity anomaly from DCR 

located around 150 m distance was not identified using CWT, but the NA-MEMD 

result shows a small peak. 

 
Figure 9 The same description as Figure 7 but for line 76-77. 

5.4 Line P75A-P75 

The measurements of the SP and DCR methods were done while the pond at this 

line was filled with fluid. Thus, fractures in the embankment would have been 

filled with fluid. Consequently, the fracture had lower resistivity than the 

embankment. The embankment at this line was estimated around 10 m (at a 

different height than P76), where during the measurement the embankment was 

under construction. 

Figure 10 shows that the amplitude of the negative anomalies of the SP data found 

around 200-265 m distance was high. The negative SP zone values indicate 

probable paths of seepage in the downstream direction. If we compare this with 

DCR resistivity, seepage filling the fracture was shown by the low resistivity 

zone. The other seepage position could not be identified through qualitative 

analysis. This may be caused by the seepage position being close to other 

anomaly sources (for example fractures). 
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Figure 10  The same description as Figure 7 but for line 75A-75. 

 

Figure 11   Internal erosion on 5 October 2018 is at around 150 to 250 m distance 

from P75A [46]. This means internal erosion caused by seepage.  

CWT was also applied to the measured SP data to identify the position of each 

SP anomaly source. The CWT result indicated five groups, which characterize 

five sources of SP anomalies (Table 1 and Figure 10). The first source, KD1 

(222.77 ± 0.35 m distance), may correspond to seepage sources, while the second 
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anomaly, KD2 (44.20 ± 0.67 m in distance), is a fluid outlet. Both sources were 

supported by the 2D resistivity data, with low resistivity in those positions. The 

anomalies were probably caused by structures (fractures) as denoted by KD1. 

Thus, the water saturated in this position passed through the fracture. 

Furthermore, Figure 11 shows slide embankment or internal erosion in this area 

on October 5, 2018 [46], which is correlated to negative SP anomalies (200-265 

m distance) and may be caused by seepage in the embankment.  

Furthermore, KD3 (160.42 ± 3.04 m distance) and KD5 (102.58 ± 1.17 m 

distance) as sources of SP anomalies were predicted as fractures based on the 

slightly different resistivity around both positions. Both fractures probably are 

not affected seepage, because they are relatively deep. Similar to KD3 and KD5, 

KD4 (290.92 ± 7.34 m in distance) may be considered a fracture, although the 

DCR inversion result did not reach to this position. The interpretation was based 

on the geological condition, where the area is controlled by a high rate of 

deformation. The deformation is mainly caused by mud loading and collapse of 

the overburden due to the removal of mud from the subsurface. 

5.5 Line P75-P73 

During the SP and DCR measurements, the embankment was being reinforced, 

where the embankment part consisted of two parts. Firstly, P75-P74 is relatively 

new, with a thickness of around 8-10 m. Secondly, P74-P73 is relatively old, with 

a thickness of around 11 m. Consequently, the second part of the embankment is 

more compact than the first. This condition is reinforced by the 2D resistivity as 

the inversion result of the DCR data (Figure 12). The pond at both parts of the 

embankment contained fluid from mud eruption (75% fluid and 25% solid) and 

rainwater.  

Seepage assessment is indicated by the position of negative anomalies values. At 

line P75-P73 there are negative anomalies with potential values between -28 to -

40 mV at 0-150 m and 595-795 m distance. The potential value was clearly 

measured in the electrical field, possibly caused by seepage flow. Furthermore, 

in order to know the depth of the SP anomalies, the CWT method was applied, 

which is resulted in five groups (Figure 12 and Table 1), indicates five sources. 

The source of the negative anomaly at 0-150 m distance is denoted and interpreted 

as KT1 and seepage, respectively. This result was supported by the qualitative 

interpretation and low resistivity anomalies. Using the DCR inversion result, 

seepage through porous rock in this position was assumed. The deep source of 

SP anomalies denoted as KT2, probably indicates a fracture or a fault, where the 

source was demonstrated by contrast resistivity in the inversion result of the DCR 

data. The fracture assumedly are not affected by seepage in the embankment 

because its position is relatively deep. Furthermore, the sources of SP anomalies 
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denoted as KT3-KT7 are indicated as seepage through the near surface of a 

fracture (low resistivity in the near surface).   

 
Figure 12   The same description as Figure 7 but for line 75-73. 

6 Conclusions 

Embankment stability can be disturbed by fluid. In this paper, the cause of 

embankment instability was identified using the SP method. Interpretation of 

measured SP data is difficult, because the data represent several different sources, 

which can potentially distort subsurface anomalies. NA-MEMD was applied to 

improve the SP data by decomposing the data and selecting several IMFs to 

represent the SP anomalies. This process is called SP data filtering using NA-

MEMD. The filtering result is easy to use to identify seepage positions. Seepage 

is indicated by negative SP anomalies. This result is supported by low resistivity 

in the embankment. Furthermore, CWT was also applied to the SP data to 

determine the positions of SP anomaly sources. The result showed that the 

anomalies from the SP analysis were similar to those from the 2D resistivity 

analysis, where the anomalies were assumed to be faults or fractures and seepage 

through fractures and pores. The SP method is easy to implement, simple to 

interpret and fast in measurement. In the future, the SP method will be used to 

assess the stability of the LUSI embankment. 
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