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Abstract. Multiple automated guided vehicle (multi-AGV) path planning in 
manufacturing workshops has always been technically difficult for industrial 
applications. This paper presents a multi-AGV path planning method based on 
prioritized planning and improved ant colony algorithms. Firstly, in dealing with 
the problem of path coordination between AGVs, an improved priority algorithm 
is introduced, where priority is assigned based on the remaining battery charge of 
the AGVs, which improves the power usage efficiency of the AGVs. Secondly, 
an improved ant colony algorithm (IAC) is proposed to calculate the optimal 
path for the AGVs. In the algorithm, a random amount of pheromone is 
distributed in the map and the amount of pheromone is updated according to a 
fitness value. As a result, the computational efficiency of the ant colony 
algorithm is improved. Moreover, a mutation operation is introduced to mutate 
the amount of pheromone in randomly selected locations of the map, by which 
the problem of local optimum is well overcome. Simulation results and a 
comparative analysis showed the validity of the proposed method. 

Keywords: ant algorithm; collision avoidance; decentralized algorithm; path planning. 

1 Introduction 

In today’s manufacturing industry, managers have shifted their strategy from 
manufacturing large numbers of individual products to a range of products and 
to improving quality and delivery time. Accordingly, many of today’s logistic 
and manufacturing processes rely on the use of multi-AGV systems [1], 
especially in flexible manufacturing systems (FMS). FMS performance 
increases by better coordination of its components, such as AGVs [2]. In order 
to improve a multi-AGV system to operate efficiently and safely, the primary 
problem to solve is properly planning the path of multiple AGVs. This 
technology originates from robot path planning and aims to find a collision-free 
path from a start location to a target location while optimizing one or more 
objectives, such as path length, smoothness, and safety at the same time [3].  

First of all, when dealing with multi-AGV path planning, it should be ensured 
that there will be no collisions between AGVs. At present, for this problem two 
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main two solutions are adopted: the coupled approach and the decoupled 
approach [4]. In the coupled approach, AGVs act as a single unit or run in a 
composite manner. For this situation, some researchers use graphs with specific 
topologies to search the minimum spanning tree of the roadmap [5,6] or restrict 
the problem domain to grid-worlds [7]. Notwithstanding some desirable 
properties such as completeness and the possibility of calculating optimal 
motion plans, coupled methods are highly demanding in terms of computational 
resources [1]. Decoupled methods, on the other hand, are able to be fast enough 
for real-time application. For example, the method used in [8] is a decoupled 
multi-agent motion planning method. It uses an algorithm for finding the path 
for the respective AGVs, but this method does not deal with conflict scenarios. 
A widely used decoupled scheme for multi-robot motion planning that has been 
shown to be effective in practice is prioritized planning [9]. Although prioritized 
planning is practical, it has a disadvantage in that it is incomplete, i.e. in some 
situations, it cannot find a path even if there exists one [10]. Recently, Čáp and 
co-workers [11] have proposed a revised prioritized planning algorithm to make 
up for this disadvantage. Although this improved method is suitable for the real-
time application, it has a safety risk. Because it takes each AGV as a particle, it 
ignores its body size. To cope with the above concerns, this study proposes a 
revised prioritized planning algorithm for real-time application in a factory and 
defines a redundant time period to improve safety for AGVs. 

In addition, the battery management in the AGV system is crucial, as it can 
reduce the costs and increase the efficiency of the system [12]. Some studies 
have focused on energy-harvesting methods to save battery energy [13,14]. 
Besides that, considering the AGV’s remaining battery charge when planning 
for an AGV path is also important. In [15], the research was aimed at 
scheduling AGVs in an FMS environment by developing a multi-objective 
mathematical model that minimizes the makespan and the number of AGVs 
while considering the AGVs’ battery charge. However, this model does not 
consider traffic problems, collisions, deadlock or conflicts. Therefore, for multi-
AGV scheduling, this study considered both AGV battery charge and collision-
free constraints. 

Another issue of dealing with multi-AGV path planning is to find the optimal 
trajectory for each AGV. The current trend is to solve these problems by using 
robust heuristics algorithms [16]. For example, a genetic algorithm (GA) [15] or 
particle swarm optimization (PSO) [17]. Among these, the ant colony algorithm 
[18] is one of the most widely used approaches for AGV path planning because 
of its good robustness and positive feedback mechanism. However, the ant 
colony algorithm is faced with problems of low computational efficiency and 
easiness to obtain non-optimal solutions. Compared with other algorithms, the 
ant algorithm lacks a mutation operation. This operation is a crucial step in 
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intelligent algorithms, which can enhance population diversity to avoid the 
algorithm falling into a local optimum. For example, in [17] a mutation was 
added to the PSO algorithm to improve its performance. Likewise, the present 
study introduces a mutation operation to avoid the algorithm falling into a local 
optimum and improves computing efficiency by modifying the initialization and 
update the operations of the pheromone. 

2 Coordination Between AGVs 

2.1 Prioritized Planning Algorithm 

Multi-AGV systems should have good coordination in order to ensure that no 
collisions occur between AGVs. In this paper, a revised priority planning [11] is 
proposed to deal with this problem. This algorithm is described as follows: each 
AGV is assigned a unique priority and the algorithm proceeds sequentially from 
the highest-priority AGV to the lowest-priority one. In each iteration, one of the 
AGVs plans its trajectory such that it avoids the higher-priority AGVs. 
Furthermore, the prioritized planning algorithm that seeks a trajectory for each 
AGV is revised in such a way that both (a) the start positions of all lower-
priority AGVs are avoided, and (b) conflicts with higher-priority AGVs are 
avoided. The pseudocode of the revised prioritized planning algorithm is as 
follows: 

Algorithm 1: Prioritized planning algorithm 

Initialize:   
{for 1...i n  

              j

j i

S S


∪  

               ( \ , )j Best traj W S   ; 

                       If  i  , then 

                             Report failure and terminate; 

                          i iR   ∪ ; 

} 
Function ( \ , )Best traj W S   

Call algorithm 2 to obtain optimal satisfying trajectory for AGV i in the 
workshop (W) that avoids regions  if it exists. Otherwise, return  . 
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In the above pseudo-code,   acts as a dynamic obstacle. j

j i

S S


∪  represents 

that AGV i can go through the start positions of higher-priority AGVs. The 
function 

            tRyxttyxR iii   ,,0:,,�  (1) 

maps the trajectories of an AGV i to regions of spacetime that AGV i occupies 
when its center point follows given trajectory  .  

The loop structure is for each AGV to plan paths, avoiding both start positions 
of all lower-priority AGVs and higher-priority AGVs. Furthermore, the function

 es \ ,B t traj W S   calls Algorithm 2 (the improved ant algorithm that will be 

discussed in Section 3) to obtain the optimal path for each AGV. 

As shown in Figure 1, AGV 1 (the blue one in Figure 1) has a higher priority 
than AGV 2 (the green one). Therefore, during route planning, the optimal path 
is first calculated for AGV 1 and then the path is calculated for AGV 2. If both 
AGVs reach the same point at the same time, a collision occurs. In this case, 
AGV 2 with a low priority should avoid the high-priority AGV 1. Actually, this 
is used to judge the intersection point on the AGV trajectory. If there is an 
intersection point between the paths of two AGVs and the two AGVs will reach 
the intersection point at the same time, in this case, to avoid a collision, low-
priority AGVs have to avoid high-priority AGVs. 

AGV1

A
G

V
2

AGV1

A
G

V
2

 

Figure 1 Avoidance between AGVs with different priorities. 

2.2 Improvement of Prioritized Planning Algorithm for AGV 

Most researches on prioritized path planning mainly focused on mobile robots 
[19-21]. In practical applications, AGVs tend to be designed with a long shape 
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for being able to load more materials. As one can see from Eq. (1), in the 
prioritized planning algorithm, it is determined if there will be a conflict by 
seeing whether two AGV appear in the same location (x, y) at the same time, t. 
In order to ensure safe avoidance between AGVs, a redundant time period is 
defined in this paper to improve the prioritized planning algorithm. That is, if 
two AGVs arrive at an intersection point within this time period, then a 
collision is determined. The definition is as follows: 

If  , ,x y t t  △ , then we know that the intersection point  ,x y  is occupied 

by the dynamic   in the time period  ,t t t t △ △ .  

 =
l r

t
v


△  (2) 

In Eq. (2), t is the time when the high-priority AGV reaches the intersection 
point (the center point of the AGV coincides with the intersection point); the 
number l indicates the width of the body of the AGV; r is the buffer distance, 
the purpose of which is to enhance the safety margin of AGV avoidance; v is 
the normal running speed of the AGV. When another low-priority AGV also 
reaches an intersection within the same time period, this point is considered an 
obstacle for the low-priority AGV. 

On the other hand, in prioritized planning one of the neglected issues is how to 
assign priority to AGVs. This paper distributes the priority according to the 
AGVs’ remaining battery charge. The purpose is to make AGVs with lower 
battery charge complete their task successfully. Therefore, the lower the AGV 
priority is, the higher its battery charge will be. For example, suppose there are 
four AGVs that need to perform a task. The current power (battery percentage) 
of each AGV is: 1-AGV (35%), 2-AGV (50%), 3-AGV (28%), 4-AGV (47%). 
The priority of these AGVs, from high to low, is: 

3-AGV > 1-AGV > 4-AGV > 2-AGV 

3 Improved Ant Colony Algorithm for Path Planning 

Ant colony algorithms have been successfully applied in path planning of 
mobile robots due to their characteristics of strong robustness and parallel 
computing [22,23]. However, the performance of an ant colony algorithm 
depends on the adjustment of parameters, especially the initialization and 
update of pheromone. Therefore, most researches so far aimed to improve the 
pheromone operations. In this section, we first introduce the two most 
representative improved ant colony algorithms: Ant Colony System (ACS) [24] 
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MAX-MIN Ant System (MMAS) [25] and then compare them with the 
proposed algorithm (IAC). 

3.1 Ant Colony System 

The pheromone update of ACS contains global update rules and local update 
rules. The global update is only used for the best ant in each loop: 

  1
ij ij ij
        △  (3) 

  g b1 /

0=
L

i j△  (4) 

In Eq. (3),   is the pheromone heuristic factor, 
i j

△  is the pheromone 

increment. In Eq. (4), 
gbL  is the globally optimal path length. There will be 

partial updates after all ants have finished each action. ACS only adjusts the 
amount of pheromone on the path taken by the best individual in each 
generation to speed up convergence, but the algorithm will prematurely 
converge to a non-optimal solution. 

3.2 MAX-MIN Ant System 

In order to avoid premature convergence of the algorithm to non-optimal 
solutions, MMAS has three improvements: 

1. Firstly, initialize the amount of pheromone as a constant, C. 
2. After one loop, only the ants who find the shortest path can release 

pheromone on their path im Eq. (5):  

   min1
ij ij ij
      △  (5) 

 min
ij

Q

L
   (6) 

In Eq. (6), L is the shortest path of this iteration and Q is the pheromone 
constant. 

3. The last is to limit 
ij  to a given range:  min max,

ij
   . 

MMAS can improve the convergence speed of the algorithm, but there are still 
some defects. The MMAS initializes the amount of pheromone as a fixed value 
C, leading to a slower search speed in the early stage of the algorithm. 
Moreover, MMAS can still fall into local optimum solutions. 
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3.3 Improvement of Ant Colony Algorithm 

Similar to MMAS, IAC limits the pheromone to  min max,
ij
   , but the 

amount of pheromone in each location of the map is randomly distributed 
between 0 and C: 

  0 c ()
ij

rand    (7) 

In Eq. (7), ()rand  is a random number of uniform distribution from 0 to 1, and 

 0
ij
  represents the initial amount of pheromone at position ij. 

Furthermore, the ant colony algorithm is complex in parameter tuning. The 
scope of pheromone Q has a large range of values according to the scale of the 
problem solved. Therefore, in the renewal stage of IAC, the pheromone constant 
Q is not used. With the iteration of the calculation, the amount of pheromone is 
updated by comparing the fitness values in Eq. (8): 

      1
ij ij ij

t n t       △  (8) 

 max=ij

L l
m

l



△  (9) 

In Eq. (9), maxL is the longest path distance in the current iteration, i.e. the 

fitness value of inferior ants; l is the fitness value of the current ant; m is a 
constant and controls the update of the amount of pheromone. In the update 
operation of this algorithm, the pheromone is updated by comparing the current 
fitness value with the worst fitness value. 

In addition, the results of the ant colony algorithm will always fall into a local 
optimum. Compared with other algorithms it is not difficult to find that the ant 
colony algorithm lacks a mutation operation to increase the diversity of the 
population. Therefore, a pheromone mutation operation is added to this 
algorithm. 

       minmn mn mnt t t g         (10) 

where g is a Gaussian random number with a mean of 0 and a variance of 1. 
This algorithm mutates the amount of pheromone by randomly selecting part of 
the location. In Eq. (10), when the position (m,n) is selected, the amount of 
pheromone at that position is changed from  mn t  to  mn t  . In order to 

ensure that the amount of pheromone is still positive, the absolute value symbol 
is added in Eq. (10). In summary, the entire improved ant colony algorithm can 
be obtained as follows: 
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Algorithm 2: Improved ant colony algorithm 

Initialize: 1ncycle  � 

1bestcycle  ; 

ij ;  0 =c ()ij rand  ; max ; min ; 0
ij
  ; 

ktabu null ; 

While (not termination condition) 
{for (k=1�k<m�k++) 
   {M ants are randomly placed on the initial map;} 

            for (index=0�index<n�index++) (Index is the location of the current loop) 
                   {for(k=1�k<m�k++) 
                        {Select next place with probability  k

ij
p t ; 

                         The selected place is placed in 
ktabu ; 

                         } 
                    } 

           1ncycle ncycle  ; 

            min min , 1,2,...,kL l k m  ; 

            max max , 1,2,...,kL l k m  ; 

           Calculate  ij t n  �  ij t n   from Eq. (8) and (9); 

           If   ij mint n   , then  ij min=t n  ; 

           If   ij maxt n   , then  ij max=t n  ; 

           Perform the mutation operation by using Eq. (10) 
           in some parts of the map; 

       } 
Output the best path and results; 

end 

4 Simulation Results and Comparative Analysis 

4.1 Analysis of Proposed Method Validity 

This section validates the effectiveness of the path planning method proposed in 
this paper through two sets of simulations. All simulations were implemented in 
Matlab and run on a Core i3-2120 CPU 3.30GHz PC. The test environment 
maps used 30 30  grid maps [26], as shown in Figure 2.  

In Figure 2, ‘S1’, ‘S2’, etc. denote different workstations, ‘Charge’ denotes a 
charging area, ‘Depot’ denotes a warehouse, and each warehouse location is 
assigned an AGV. Each AGV has its own driving route. After the simulation 
begins, each AGV is assigned a priority first and then the IAC is used for path 
planning. 
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Figure 2 2D industrial environment maps. 

The number and battery charge of each AGV are as follows: 1-AGV (41%), 2-
AGV (45%), 3-AGV (25%), 4-AGV (30%). The priority of the AGVs can be 
obtained as follows: 

3-AGV > 4-AGV > 1-AGV > 2-AGV 

Because the path to be solved in the grid map is too tortuous, a B-spline curve  
[27] is used to smoothen the route before generating the result. The simulation 
results are shown in Figure 3, where the red route is 1-AGV’s route, blue is 2-
AGV’s route, purple is 3-AGV’s route, and green is 4-AGV’s route. 

 

Figure 3 Path planning result diagrams of AGVs. 

Because the initial battery charge of 3-AGV was low, it needed to go to the 
charging area after the task was completed. Therefore, according to the 
requirements of the priority algorithm, 3-AGV’s path was planned first and then 
the path planning was performed for other the AGVs in the priority order. 

As can be seen from the above examples, the path planning method presented in 
this paper is quite efficient for multiple AGVs in an indoor factory. 
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4.2 Analysis of Prioritized Planning Algorithm 

In order to more clearly reflect the function of the prioritized planning 
algorithm, we chose to use a more special map for simulation testing. As shown 
in Figure 4, when a shortage of materials occurs at workstations 1, 3, and 5, 1-
AGV is required for delivering materials and thus we give 1-AGV the highest 
priority.  

 

Figure 4 Diagram of avoidance between AGVs based on prioritized planning 
algorithm. 

In Figure 4 it can be clearly seen that in the center of the map, 2-AGV (low 
priority) actively avoids 1-AGV (red curve in Figure 4). Therefore, the 
prioritized planning algorithm solves the avoidance problem between AGVs 
well. 

4.3 Comparison Analysis of Ant Colony Algorithm  

In order to compare the proposed ant colony algorithm with the existing ant 
colony algorithm, we used ACS, MMAS and IAC to calculate the optimal route 
of 3-AGV in Map 1 (as shown in Figure 2). Each algorithm was iterated 20 
times. The average battery charge consumption and the calculation cost are 
shown in Table 1. The pheromone constant Q was set to 15, the ant colony size 
was set to 40, the pheromone factor 1  , the heuristic factor 6  , the 

pheromone volatilization coefficient 0 .1  , and the maximum number of 

iterations was set to 200N  . 

Table 1 Comparison of Algorithms’ Performance 

Algorithm Average power consumption Average calculation time (s) 

ACS 14.59% 184.933 
MMAS 14.48% 192.484 

IAC 14.24% 171.311 
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In Table 1, it can be seen that IAC had the highest computational efficiency and 
better results compared to other well-known algorithms. Therefore, the power 
usage efficiency of the AGVs was improved. 

Furthermore, the convergence speed of the MMAS and IAC was also compared. 
Both algorithms were applied to solve the results of 3-AGV in the two maps in 
Figure 2. As shown in Figure 5, the blue and red curves are the convergence 
curves of MMAS and IAC, respectively, where 100N  . 

  
(a) results of graph 1 (b) results of graph 2 

Figure 5 Convergence graphs of ant algorithm. 

Through comparison of the convergence curves in Figure 5 we can see that IAC 
got better solutions compared with the MMAS algorithm. This is because IAC 
has an added mutation operation to avoid falling into a local optimum. 
Therefore, using the route solved by IAC can calculate the AGV route in a 
shorter time and the power usage efficiency of the AGVs is also improved. 

5 Conclusions 

This paper presented a path planning method for a fleet of AGVs in indoor 
factory environments. Firstly, a priority algorithm is used to assign priorities 
based on the remaining power of each AGV and a redundant time period is 
defined to improve the safety of avoidance. Then, an improved ant colony 
algorithm is applied to solve the optimal paths for the AGVs. The improved 
method was mainly developed to increase the computational efficiency of the 
algorithm and keep the algorithm from obtaining a local optimum. Simulation 
experiments showed the effectiveness of the proposed method. Compared with 
other ant colony algorithms, the improved ant colony algorithm can save 
computing time and find optimal paths. 
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