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Abstract. To enhance the position estimation accuracy of an underground 
localization system for coal mine roadways, an algorithm based on the feature 
vector of received signals is presented in this paper. The algorithm includes three 
steps: the construction process of a feature vector database and a distance 
database, the vector matching process and the localization process. When a 
signal vector is received, it only needs to calculate the distance from the received 
vector to the center vector of each subset and then compare it with the data in the 
distance database. After multiple filtering and comparing the source of the 
strongest signal, the coordinates closest to the received vector are found. The 
experiment showed that the maximum error of this algorithm was 4 m and the 
average error was 1.62 m. Furthermore, within a localization error of 1 m, the X-
axis localization accuracy was 98% while the Y-axis localization accuracy was 
86%. Also, the algorithm took much less time compared to the KNN and WKNN 
algorithms, so the algorithm meets the requirements of coal mine safety systems 
and underground personnel localization systems. 

Keywords: underground localization algorithm; RSSI; feature vector; database 
construction; FVMA. 

1 Introduction 
In the case of a coal mine accident, the accuracy of the localization system 
directly affects rescue efficiency. The RSSI (received signal strength indication) 
based localization algorithm is popular because of its low cost and high 
precision. It has become one of the most popular research directions in 
localization algorithms. The RSSI-based localization algorithm is divided into 
two main phases: offline data acquisition and online location matching [1-3]. 
However, the underground complex environment greatly affects the propagation 
of electromagnetic waves [4]. Experts and scholars have proposed a variety of 
localization methods to improve the stability and accuracy of RSSI. Hart & 
Cover proposed an algorithm called the K-neighbor method [5-6]. By 
comparing and calculating the distance between the received signal and the 
element of a fingerprint database, the nearest coordinate is selected from the 
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database as the coordinate of the locating point. In 2008, Lakmali et al. 
proposed a localization algorithm based on the K-neighbor method and 
evaluated it using a cellular network. They focused on the gathering of 
fingerprint data and the establishment of the fingerprint database [7]. For the 
instability of the RSSI signal, Chunyan & Wangjian have improved the KNN 
(k-nearest neighbor) algorithm using a database with geometric information. 
They used the point spoke strength of the nearest sample point to determine the 
control point network structure of the reference point where the mobile terminal 
is located. Based on this, their method dynamically selects the key parameter K 
of the KNN algorithm [8]. For the problem of low accuracy of the KNN 
algorithm, Kong & Chunlei proposed the WKNN localization algorithm to 
adjust the weights of K nearby points according to the fluctuations of the mean 
and variance of the RSSI values [9]. In addition, other scholars have proposed a 
weighted centroid algorithm [10], a K-means algorithm [11-12], a Bayesian 
algorithm [13] and an algorithm combined with Kalman filtering [14]. These 
algorithms improve positioning accuracy to varying degrees. 

Some algorithms in the above references are very complicated and some cannot 
meet the requirements of high localization accuracy for more complicated 
environmental conditions in coal mine roadways. A new algorithm based on the 
feature vector of received signals, called the feature vector-matching algorithm 
(FVMA), is presented in this paper. In the process of constructing databases, 
first, several typical vectors are selected as seed vectors in the sample set. After 
several iterations, the sample set is divided into multiple subsets and the central 
vector of each subset is also calculated. Then, the distances between each vector 
and the center vectors of the subset, the previous subset and the next subset are 
calculated and stored in the distance database. In the vector matching process, 
the subset which the received vector belongs to can be found by calculating the 
distance between the received vector and the center vector of each subset. Then, 
according to the distance database, the two vectors closest to the distance of the 
received vector to the center vectors of the subset and the previous subset (or 
the next subset) are selected. Finally, by comparing the source of the strongest 
signal of these two vectors and the received vector, one single localization 
vector is determined and the localization process is completed. This study 
focused on the construction method of the databases and the localization 
method. Also, the accuracy and localization time of FVMA were tested by a 
simulation experiment. 

2 Composition of the Underground Localization System 
The roadway localization system based on the feature vector is composed of a 
localization server, a number of wireless access points (APs) and WiFi terminal 
nodes. The signals transmitted by each AP are determined by their amplitude 
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and frequency. All transmitted signals have the same amplitude. AP points that 
are far apart can use the same transmission frequency. Since the amplitude 
value of the signal is more attenuated as the distance increases, the terminal 
node can receive vectors of amplitude and frequency from nearby APs. The 
terminal node sends the received vector to the localization server and the 
localization algorithm software embedded in the server can calculate the 
coordinate of the vector, thus realizing localization in the roadway. 

3 Establishment of the Feature Vector Database and Distance 
Database 

The foundation of the FVMA algorithm is the establishment of an underground 
localization feature vector database and a distance database. Considering the 
complexity of the underground environment, the heavy multipath effect and the 
complex roadway node topology, it is difficult to establish a suitable training set 
based on theoretical analysis. In this study, the training set was constructed by 
gathering the data vectors in the field. 

3.1 Construction of the ‘Training Set’ for the Feature Vector 
Database 

When a node moves in the coal mine roadway, feature vectors with coordinates 
are created; these vectors correspond to the points through which the node has 
passed. To ensure accuracy, every point in the coal mine roadway should be 
taken into account. Because each AP is fixed, the coordinate and the timescale 
signal frequency of the AP are predefined. For example, at a point designated as 
k, the moving terminal node receives certain timescale signals from nearby APs, 
denoted by 1 2 3... lAP AP AP AP‚ ‚ , and records the frequencies and amplitudes of the 
signals, after which a vector for point k is constructed as: 

 1 1 2 2 3 3, , , , , ..[( ) ( ) ( . ,) ( ), ,( )]k k k k l kl k kS f A f A f A f A x y=  (1) 

Here, kiA  is the signal amplitude value received at ( ),k kx y , and if  is the 
frequency of the signal transmitted by iAP . 

While the terminal node traverses all points in the roadway of the coal mine, a 
‘training set’ is obtained as follows: 
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3.2 Selection of the Vector Elements of the Localization Feature 
Database 

To reduce the computational complexity of the localization algorithm, the 
sample feature vector set is divided into multiple subsets and a representative 
vector of the feature database is selected based on the feature vector sample set. 
The selection steps are as follows: 

Step 1: Divide the ‘training set’ into p  subsets. To reduce the error of the 
localization algorithm, one representative vector must be selected for each 
subset. As the selection procedure requires initialization, a random vector iS  is 
selected from the ‘training set’ as the representative vector of subset iL . We 
obtain a seed vector database Da , described as follows: 

 { }1 2 3, , , , pDa S S S S=   (3) 

Step 2: Initialize the variable values of the next steps: Let 0sumD = ,  ' 0sumD = . 

Step 3: Calculate the distances 1 2 3, , , , pD D D D
 between a sample vector of 

every point on the roadway and every seed vector 1 2 3, , , , pS S S S
 based on the 

Euclidean distance formula focusing on 1 2 3., , ... lA A A A  . Find the minimum 

distance { }1 2 3min , , , ,i pD D D D D=  , divide the sample vector into subset iL , 

and let sum sum iD D D= + . 

Step 4: Repeat Step 3 until all vectors in the ‘training set’ have been allocated 
to the corresponding subset. 

Step 5: Calculate the central vectors of the subsets. The central vector of subset 

kL  is:  

 1 1 2 2 3
'

3, ' , , ' , , ' ...[( ) ( ) ( ) ( ) ( )], ' , ,k k k k l kl k kS f A f A f A f A x y=  (4) 
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is the number of 

sample vectors in subset kL  . 

Step 6: Assign a sample vector kS  in subset kL  as the new seed vector, where kS  
has the shortest distance to kS  in subset kL . Then, a new seed vector database 

'Da  is obtained in which all subsets have new seed vectors. Let 
'

sum sum

sum

D D
D

ε
−

= . 

Step 7: If 0ε ε> , let '
sum sumD D=  and 'Da Da= , and then repeat Step 3 to Step 

7; otherwise, finish the selection procedure. Here, 0ε  is a stop threshold 
constant. 

3.3 Construction of Distance Database 
After performing all the steps described above, the localization feature database 
is created. Then, the distances from all the sample vectors of each subset to the 
center vectors of the subset, the previous subset and the next subset can be 
calculated. Thus, for each subset a distance database bD  is built. For example, 
the distance database of subset L  is stored as shown in Table 1. The index of 
the last column is the index value of the point in the entire feature vector 
database. 

Table 1 Distance database of subset L. 

Sample Position Distance to Self-
subset 

Distance to 
Previous 
Subset 

Distance to 
Next Subset Index 

( )1 1,l lx y  ( )1 ,d l l  ( )1 , 1d l l −  ( )1 , 1d l l +  1l  

( )2 2,l lx y  ( )2 ,d l l  ( )2 , 1d l l −  ( )2 , 1d l l +  2l  
... ... ... ... ... 

( )lqlq yx ,  ( ),qd l l  ( ), 1qd l l −  ( ), 1qd l l +  ql  

4 Localization Procedure Based on Feature Vector Matching 
The WiFi terminal device at K will receive signals from nearby APs and 
construct a vector as follows: 

 1 1 2 2 3 3[( , ),( , ),( , ),...( , )]k k k k n knS f A f A f A f A=  (5) 
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One data packet containing all the information of vector kS  is sent to the server 
via the WiFi network. At the server side, kS  is recovered and then the 
localization steps are as follows: 

Step 1:  Initialization cutoff threshold constant  𝜂0 = 1, 𝜂1 = 1, 𝜂2 = 1. 

Step 2: Calculate the distance from kS  to the center vector of each subset based 

on the values of { }1 2 3min , , ,...,i PD D D D D= . The terminal device is considered 
to belong to subset i . 

Step 3: Based on the distance database of subset i , some vectors that are close 
to kS  can be filtered out by the formula ( ) 0, id i i D η− < . Here, 0η  is a stop 
threshold constant. If the number found is 0, then increase the value of 𝜂0 and 
repeat Step 3, otherwise proceed to the next step. 

Step 4: Calculate the distance ( ), 1k iD −  from kS  to 1iS − . The vectors obtained from 

Step 3 are filtered again by formula ( ) ( ) 1, 1, 1 k id i i D η−− − < . Here, 1η  is a stop 

threshold constant. Similarly, if the filtered number is 0, then increase the value 
of 𝜂1 and repeat Step 4, otherwise proceed to the next step. 

Step 5: The vector of |𝑑(𝑖, 𝑖) −𝐷𝑖| < 𝜂2 in Step 4 is filtered. If there is such a 
vector, the smallest two are selected to go to Step 6, otherwise the results of this 
localization are discarded. Adjust the size of 𝜂2 here to adjust the localization 
accuracy. 

Step 6: Compare the source of the strongest signal of the two vectors obtained 
in Step 5 and kS . Then, the only localization vector is determined and the index 
of the vector is known. 

Step 7: According to the index obtained in Step 6, the coordinates of the 
localization point can be found in the feature vector database and the 
localization procedure of point K  is completed. 

5 Experiment and Discussion 
Using the MATLAB software, an underground coal mine roadway with a length 
of 400 m and a width of 5 m was simulated. There were 21 WiFi APs 
distributed at equal distance along the roadway and 2000 points were selected as 
the training set. The location of the test points on the roadway was randomly 
generated. For convenience of statistics and observation, the random process 
produced only integer coordinate values. By comparing the true location and the 
location obtained by FVMA, the localization accuracy of the algorithm can be 



190 Guo Yinjing, et al. 

  

clearly seen. As the number of localization points increases, the error range and 
accuracy rate can be seen intuitively by comparing the difference between the 
vertical and horizontal coordinates. 

5.1 Pretreatment of Experimental Data 

In the RSSI-based localization algorithm a lognormal distribution model is 
mostly used. It is expressed as follows: 

 ( ) ( )0
0

10 * lg k
dPL d PL d n v
d

 
= + + 

 
 (6) 

where PL(d) is the path loss after the signal passes distance d, the unit is dB; 𝑣𝑘 
represents a Gaussian random variable with mean 0 and its standard deviation is 
usually 4~10. The range of n is generally 2~5; 𝑑0  indicates the reference 
distance, which is generally 1 m. The signal strength value received by the final 
terminal node is: 

 ( )RSSI P G PL d= + −  (7) 

where P is the transmission power of the signal and G is the antenna gain of the 
AP node. 

Usually the mobile terminal receives a negative value and the larger the distance, 
the smaller its absolute value. The relationship between signal strength and 
distance is shown in Figure 1. Of course, this empirical model does not 
accurately simulate signal attenuation in a real environment, but it can reflect 
the trend of signal attenuation. 

The information used for localization mainly comes from the signal transmitted 
from the AP closest to the mobile terminal. In order to facilitate the calculation 
and observe directly, while expanding the force of nearby AP signals and 
reducing the effect of long-distance AP signals, the received signal strength was 
taken as an absolute value; then the countdown was taken and multiplied by 
10000 to increase the distance. The degree of signal recognition was taken as: 

 ' 10000RSSI
RSSI

=  (8) 

The relationship between signal strength and distance after preprocessing is 
shown in Figure 2. 
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Figure 1 Trends in the relationship between signal strength and distance. 

 
Figure 2 Trends in the relationship between signal intensity and distance after 
preprocessing. 

5.2 Comparison of Real Coordinates and Computed Coordinates 
A comparison was made between 20 random localization results. In the 
roadway with a length of 400 m and a width of 5 m, the real and computed 
coordinates of the mobile terminal were as shown in Table 2. As can be seen 
from the table, the average error of the localization results of these 20 random 
points was 0.4 m, and the maximum error was no more than 2 m. 
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Table 2 Comparison of 20 random localization results. 

Point 
Number 

Real 
Coordinates 

Computed 
Coordinates 

Point 
Number 

Real 
Coordinates 

Computed 
Coordinates 

1 (41,1) (41,1) 11 (267,3) (266,3) 
2 (149,1) (149,1) 12 (338,4) (338,4) 
3 (56,4) (56,4) 13 (176,3) (175,4) 
4 (173,3) (173,2) 14 (279,4) (279,4) 
5 (287,3) (285,3) 15 (379,1) (379,1) 
6 (108,2) (108,2) 16 (79,4) (79,4) 
7 (352,3) (352,4) 17 (101,5) (101,4) 
8 (276,1) (276,1) 18 (412,2) (412,2) 
9 (347,2) (348,2) 19 (85,1) (85,1) 

10 (150,1) (150,1) 20 (322,2) (322,1) 

5.3 Analysis of Coordinates Error and Accuracy Rate 
MATLAB randomly generated a hundred pairs of coordinates. The following 
experiment shows the difference between the real coordinates and the computed 
coordinates of these points, and the average accuracy rate is also given. Figure 3 
shows the X-error of the 100 points in the 400-m long roadway. It can be clearly 
seen that most of the points have an error of 0 to 1 m and a few of them have an 
error of 1 to 2 m. 

 
Figure 3 The error value in the direction of the length of the roadway (X-
coordinate). 

The experiment was conducted five times. The error values of the X-coordinates 
of these points were counted, as shown in Table 3. Times refers to the number 
of experiments, Range refers to the error range of the real and calculated 
coordinates, and Numbers refers to the number of points within each error range. 
Then, the accuracy rate shown in Table 4 below was calculated. 
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Table 3 Distribution of X-coordinate errors. 

          Times 
Numbers 
 
Range(abs） 

1 2 3 4 5 

0-1 m 99 98 98 99 97 
1-2 m 1 2 1 1 2 
2-3 m 0 0 1 0 1 
3-4 m 0 0 0 0 0 
4-5 m 0 0 0 0 0 

More than 5 m 0 0 0 0 0 

Table 4 Accuracy rate of X-coordinates. 

Abs/M(Err
or value) 0-1  1-2 2-3 3-4 M 4-5 More than 5  

Proportion 98.2% 1.4% 0.4% 0 0 0 

Figure 4 shows the Y-error in the width of the roadway. It can be seen from the 
graph that the error of most points is within 2 m. 

 
Figure 4 The error value in the direction of the width of the roadway (Y-
coordinate). 

This test was also carried out five times and the error statistics of the Y-
coordinate of these tests are shown in Table 5. Meanwhile, Table 6 shows the 
distribution of the accuracy rate in different ranges. 
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Table 5 Distribution of Y-coordinate errors. 

          Times 
Numbers 
 
Range (abs） 

1 2 3 4 5 

0-1 m 88 85 86 91 84 
1-2 m 5 9 8 5 9 
2-3 m 5 5 5 1 2 
3-4 m 2 1 1 3 5 
4-5 m 0 0 0 0 0 

Table 6 Accuracy rate of Y-coordinates. 

Abs/M(Error 
value) 0-1  1-2 2-3 3-4  4-5 

Proportion 86.8% 7.2% 3.6% 2.4% 0 
 

5.4 Cumulative Distribution Function Comparison 
In order to demonstrate the effectiveness of FVMA, it was compared with the 
KNN and WKNN algorithms. Figure 5 shows the error cumulative distribution 
function for the three algorithms, FVMA, KNN, and WKNN. The abscissa of 
Figure 5 is the error distance and the ordinate is the cumulative distribution 
probability.  

 
Figure 5 Cumulative error distribution function of three algorithms. 
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For the same error value, the larger the value of the cumulative distribution 
probability, the higher the credibility of the positioning result and the higher the 
accuracy. For the same cumulative distribution probability, the larger the value 
of the error distance, the less accurate the localization result. It can be seen from 
the figure that within the same error range, FVMA had the highest localization 
accuracy, followed by the WKNN algorithm, and finally the KNN algorithm. 

5.5 Analysis of Localization Time 
In addition to higher localization accuracy, the FVMA algorithm also has the 
advantages of low localization time and high real-time performance. In order to 
reflect the time-consumption advantage of FVMA, the time-consumption 
comparison results of the KNN, WKNN, and FVMA methods to locate 1000 
points are shown in Figure 6. 

 
Figure 6 Localization time comparison of the three algorithms. 

As can be seen from the figure, KNN and WKNN required similar time 
consumption, while that of WKNN was slightly larger than that of KNN, but the 
localization time of FVMA was much shorter than that of the former two. Of 
course, as the number of data in the database increases, the time-consumption 
gap between the different algorithms also increases. 
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6 Conclusion 
The amplitude-frequency vector method proposed in this paper can effectively 
reduce the multipath effect in an underground roadway without increasing the 
hardware cost. The pre-calculation of the fingerprint database can reduce the 
time-consumption in localization and improves the real-time performance. After 
receiving the localization signal, the localization accuracy can be effectively 
improved by using the matching algorithm proposed in this paper. The 
localization accuracy can also be set by adjusting the size of 𝜂2 to obtain the 
required localization result. In the simulation analysis of FVMA, the following 
conclusions can be drawn: 

1. The vector-matching algorithm proposed in this paper can meet the 
requirements of localization accuracy in downhole incidents for disaster 
assistance. In the simulation experiment, FVMA showed good localization 
performance in the roadway of a coal mine and the localization error was 
less than 4 m. Although the experimental results showed that the error of 
the Y-coordinate was slightly larger than that of the X-coordinate, the result 
is acceptable because the width of the roadway is limited. 

2. Using the feature vector, the FVMA integrates all the electromagnetic wave 
information of the APs near the node, thereby minimizing the adverse 
impact of the multipath effect. By selecting the vector elements for the 
localization feature database, the FVMA identifies the representative 
vectors that denote typical points distributed on the entire roadway area; as 
a result, the localization error caused by imprecise matching is limited. 
These factors ensure localization accuracy. 

3. The preprocessing calculation of FVMA is the basis of the localization 
algorithm. The pretreatment calculation reduces the computing complexity 
and improves the real-time performance of the localization algorithm 
without increasing the computing burden of the mobile nodes. In the 
process of localization, most of the calculations are carried out by the server, 
thus improving the energy efficiency of the mobile terminal nodes. 
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