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Abstract. The separation mechanism of proteins on a charged ultrafiltration 

membrane was analyzed using the extended Nernst–Planck (N-P) model. The 

model was solved numerically based on experimental data during ultrafiltration 

of bovine serum albumin/BSA and hemoglobin at various pH (between 5 and 8) 

to obtain the flux parameter (Jv). The flux parameter was used to determine the 

effective charge of the membrane () and the actual membrane porosity (Ak). 
These two parameters were then used to predict the transport mechanism of 

proteins through the charged membrane. Higher flux was obtained during the 
ultrafiltration of BSA compared to hemoglobin. The most effective separation of 

mixed proteins occurred at pH 5 (albumin = 5). In addition, the mobility of a 
single protein was lower than when it was mixed with other proteins that had 

different charges. The effective charges of the membranes were varied between 

0.99996 to 1.0000, which means that the fixed charge on the membrane structure 

was higher than the concentration of proteins, thus the effective charge of the 

membrane was not influenced by the presence of protein charge at various pH. 

On the contrary, the value of Ak was influenced by the type and charge of the 

proteins. A decrease of negative charge along with an increase of solution pH 

increased the porosity of the membrane, thus reducing the rejection of proteins. 

Keywords: BSA; charged membrane; Nernst–Planck model; protein separation; 

ultrafiltration. 

1 Introduction 

Membrane-based separation processes have gained an important role in various 

industrial sectors, including drinking water, chemical, food and beverages, oil 
and gas, energy, medical and pharmaceutical, and biotechnology [1-9]. Their 

increasing role is due to interesting features they offer, such as selective 

separation, relatively low energy consumption, low operating and capital costs, 

being easy to operate, modularity, having a small foot print, and being simple to 
scale up [10-13]. In addition, in the case of protein separation, a membrane 

eliminates the requirement of chemical additives and prevents protein 

denaturation since the process can be conducted at room temperature [14]. One 
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of the membranes extensively used in protein separation and purification is the 

polymeric ultrafiltration (UF) membrane. This membrane is designed to provide 

high retention of proteins while allowing the dissolved contaminants to pass 

through the membrane.  

The protein separation mechanism of UF membranes is based on size (sieving 

mechanism) and electrostatic charge-effects [15]. In the sieving mechanism, the 

rejection of solute is determined by the pore size and the pore size distribution 
of the membrane, which are strongly dependent on the operating parameters, 

such as solution pH, salt concentration, and system hydrodynamics [16,17]. 

When the pH of the solution is increased above the isoelectric point (IEP) of the 

proteins, they become negatively charged and the intramolecular electrostatic 
repulsion is enhanced. This contributes to the enlargement of the molecular 

shape, reduces the adsorption of the proteins on the membrane surface, and 

results in higher rejection [18]. In addition, the intramolecular electrostatic 
energy is reduced by the increased ionic strength, which leads to enlargement of 

the proteins [19]. At low ionic strength of the solution, the intramolecular 

interaction of the proteins is enhanced, which generates a compact protein 
molecule and increases the amount of adsorbed proteins on the membrane 

surface [20].  

Donnan exclusion is a basic principle that explains the separation mechanism of 

ions or charged molecules in a charged membrane based on electrostatic 
interaction or repulsion between both phases. Negatively charged proteins are 

repelled from the membrane due to the fixed negative charge on the membrane 

surface [21-23]. The diffusion of ions towards the membrane is generated by a 

chemical potential gradient (). When the ionic solution is in equilibrium with 

the ionic membrane, the electrochemical potential () of both phases is equal 
[24]. The Donnan equation is effective for low concentrations of ions in the feed 
solution and high concentrations of fixed charges on the membrane surface. In 

fact, the actual ionic solutions are not in an ideal condition and therefore an 

activity coefficient needs to be involved to correct for the non-ideality. 

Numerous empirical models have been developed to calculate the chemical 
activity of ions in a solution [25-27].        

Another basic theory to analyze the transport of proteins through a charged 

membrane is the Nernst–Planck model, which was developed based on two 
transport mechanisms, i.e. Fickian diffusion and Faraday ion conduction flux 

[28]. The Nernst–Planck model not only covers the activity coefficient but also 

the characteristic parameters of the solution and the membrane. The membrane 
is assumed to be a thin film that separates two liquid phases and inhibits the 

diffusion of molecules through the membrane. Further development of the 

Nernst–Planck model, known as the extended Nernst–Planck model, has been 
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proposed by introducing a convective transport term in the basic equation [29-

31]. To solve the extended Nernst–Planck equation, several parameters need to 

be assumed or determined from experimental data of single component 

separation, after which these parameters can be used to predict the separation of 
a mixed protein solution [30,32].        

In this research, the separation mechanisms of two proteins, i.e. bovine serum 

albumin (BSA) and hemoglobin, were predicted using the extended Nernst–
Planck model. The proteins were separated using a sulfonated polyethylene 

charged membrane. A preliminary experiment was conducted to obtain the 

empirical data, which were then used to determine the parameters in the Nernst–

Planck equation. The separation performance of the proteins was investigated 
for single-protein and mixed-protein solutions at various pH of the solution. The 

extended Nernst–Planck model was used to analyze the separation performance 

and to calculate ion rejection in the single and mixed proteins under various 
solution pH conditions. The interaction parameters, i.e. effective charge of the 

membrane and actual membrane porosity, were calculated based on the 

experimental data during the protein separation process. 

2 Extended Nernst–Planck Model  

2.1 Separation Mechanism of Proteins on the Charged 

Membrane 

As an amphoteric macromolecule, protein possesses different charges under 

different solution pH conditions beyond its isoelectric point (IEP) (Figure 1). 
The behavior of proteins can be traced back to the behavior of ions in the 

presence of an electric field, thus the Nernst–Planck model can be used to 

predict the separation mechanism of proteins through membrane charge.  

If the membrane thickness is assumed infinite, the diffusion of ions can be 

assumed to approach a steady state condition and provide a constant junction 

potential. The transport of ions is driven by the chemical potential (i) 
difference, thus the flux of ions at steady state can be expressed in Eq. (1) as 

follows [24]:  

��(�) = ��
	
  �� 
���

��  (1) 

where Ji(d) is the flux of ions through the membrane (mol.m
-2

.h
-1

), Di is the 
diffusion coefficient (m

2
.s

-1
), R is the gas constant (J.mol

-1
.K

-1
), T is temperature 

(K), Ci is the ion concentration in the solution (mol.m
-3

), and -di/dx is the 

gradient in the chemical potential through the membrane thickness, and i is the 
chemical potential (J/kg), while x is the membrane thickness (m). 
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Figure 1 Diffusion of solutes through the charged membrane. 

By considering solute activity in the model related to the concentration of ions 
in the solution, the following equation in Eq. (2)  can be used [33]:  

 ��(�) =  ����� �� �� ��
�� � � �� ��

�� � =  � �� ����
�� � � �� ��

�� � (2) 

In an ideal solution, the coefficient activity (i) of component i is equal to one 

(i = 1).  

Diffusion of charged components (ions) through the membrane pores creates an 

electric field (diffusion potential) that contributes to an additional driving force. 

The flux induced by an electric field is expressed in Eq. (3) as follows: 

��(�) =  � ������(��/��)  (3) 

where zi is the netto molecule charge, or ion valence (ekiv/mol), ui is ion molar 
mobility (mol.m

2
.J

-1
.s

-1
), and dE/dx is the gradient in the electrical potential (in 

V) through the membrane thickness. For a protein solution, the mobility of the 

molecules depends on the amount of netto charge and the Faraday constant (F = 
96485.332 C mol

-1
). The total flux resulting from the two types of transport 

phenomena, i.e. chemical and diffusional potential, is in Eq. (4):    

 �� =  � !�� ����
�� � �� � �� ��

�� � "���
	


�#
��� (4) 

Another type of transport phenomena in the membrane structure is the 
molecular motion towards the radial pore. The flux of ions due to this motion is ��($) = %����&, where i is the convective clutch coefficient and Jv is the 

volumetric flux based on the membrane area [33]. The total flux in the 

membrane system then becomes: 
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where ci is the concentration of component i and Jv is the flux of each 

component in the membrane system. Eq. (5) is known as the extended Nernst–

Planck equation [34], which can be applied to all compounds that move in the 

membrane system. 

2.2 Determination of Effective Charge Fraction () and Actual 

Porosity, Ak, of the Membrane for a Single Protein  

During the filtration of proteins, opposite ions will be bounded on the 

membrane surface due to electrostatic interaction and neutralize the membrane 
surface charge. In neutral condition, the total molecule netto charges (zi) will be 

equal to zero. In addition, the behavior of the ions becomes unideal due to a 

strong electrostatic interaction between the molecules and the membrane 
surface. The Donnan equilibrium at the interface between the membrane surface 

and the external solution is given in Eq. (6) as follows:  

 ( ��$�
��)��*

+/"� = ,�- �� .
	
 ∆��� (6) 

where ci is the concentration of proteins in the membrane system, Ci is the 

concentration of proteins in the external solution, and E
D
 is the Donnan 

potential in the interface. Kobatake and Kamo used an additive law to calculate 

the ion activity in electrolyte solution and then developed the Nernst–Planck 

equation to study the ion transport through a charged membrane [35]. In this 
study, the additive law was developed for multi-ion systems. 

The Nernst–Planck equation for opposite ions is : 

 
�$�
�� =  01

23	
  ��+ � 4(+
∅)
"� � �+6�  �  

"�01
	
 7(�384/|"3|)(+
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while for the same ion charge it is : 

 
�$<
�� = =�<
�<;>01

2<	
  � "<�<01:"3/23=�384/|"3|(+
∅)
�3;>8"</2<=�<
�<;>?
"3<=�384/|"3|(+
∅)8"<<�<>   (8) 

Since the membrane thickness is very small, it is assumed that the change in 

concentration along the membrane thickness is linear (or dci/dx = ci/x).  

Eqs. (7) and (8) are solved numerically by defining Ci as the middle value, (Cim 

+ Cip)/2, to obtain  (dimensionless effective charge of the membrane) and Ak 
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(actual porosity). Cim is the concentration of proteins on the membrane surface, 

while Cip is concentration of proteins on the permeate side. The actual porosity, 

Ak, is the ratio between the volumetric flux per unit of pore area and the 

volumetric flux per unit of membrane area. It has been reported that the fouling 
phenomena on the membrane system are affected by the Ak value in the 

membrane system. In this study, the separation mechanism was predicted based 

on the membrane porosity, Ak, obtained from the modeling based on the 
separation of proteins at various pH values. 

3 Material and Experimental Method 

3.1 Materials 

In this research, bovine serum albumin (BSA) (Sigma Aldrich, MW 70100, IE 

point 4.88) and hemoglobin (Sigma Aldrich, MW 66700, IE point 6.79-6.83) 

were used. The polyethylene membrane was supplied by GDP Filter, Bandung, 
Indonesia, with an effective diameter of 2.9 cm and equipped with baffles. 

3.2 Preparation of Sulfonated Polyethylene UF Membrane 

Figure 2 shows a schematic of the polyethylene membrane sulfonation process. 

The pressure in the equipment system was measured by installing a pressure 

indicator (PI). 30 %wt of oleum was heated in a boiling flask and the resulting 

vapor was flowed into a glass tube submerged in an ice bath. The resulting SO3 
was used to sulfonate the commercial polyethylene membrane in an exicator in 

the presence of dry nitrogen (N2) gas until the pressure reached 100 mbar 

(Figure 2). The sulfonation process was carried out for 2 minutes, until the 
membrane color changed to brown permanently. The exicator was filled with N2 

gas until normal pressure was reached, after which the membrane was taken 

from the exicator and washed with demineralized water. Finally, the sulfonated 
membrane was neutralized using NaOH 0.1 N and dried in a dark room. The 

sulfonated polyethylene membrane had a negative charge due to the formation 

of aromatic carbon sulfonation. 

Before the experiment, the pure water flux (PWF) of the membrane was 

determined with the following equation in Eq. (9): 

 ABC(+) = D
E .G (9) 

where PWF1 is the pure water flux (PWF) (Lm
-2

h
-1

) before the experiment, V is 

the volume of permeate (m
3
), t is the permeation time (h), and A is the 

membrane surface area (m
2
). After filtration of the protein, the pure water flux 

was measured using Eq. (10) and symbolized as PWF(2). 
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Note: PI is pressure indicator and O is gas release stream 

Figure 2 Experimental setup for sulfonation of polyethylene membrane. 

3.3 Preliminary Experiment: Protein Separation by Sulfonated 

UF Membrane 

The experimental setup for protein separation with a cross-flow filtration system 

is shown in Figure 3. A circular flat-sheet membrane with a diameter of 2.9 cm 
was placed inside the membrane module. The transmembrane pressure (TMP) 

was varied from 1 to 2.5 bars, after which filtration was carried out at room 

temperature. The TMP was determined using the following equation in Eq. 
(10): 

 !HA = IJ 
 IK
L � A6   (10) 

where Pf is the feed pressure (bar), Pc is the concentrate pressure (bar), and Pp is 

the permeate pressure (bar). The feed tank was immersed in an ice bath to avoid 

protein denaturation due to the increase in temperature generated by the feed 
pump. The concentration of proteins in the feed tank was 100 mg/L for the 

single protein solution and 50/50 mg/L for the mixed protein solution. The pH 

of the protein solution was varied from 4 to 8. Prior to the experiment, the flux 
stability of the UF membrane was tested by filtrating demineralized water for 

120 minutes at various transmembrane pressures (TMP or P), from 0.5 to 2.5 
bar. During the filtration of the proteins, pH adjustment was performed by 

adding NaOH or HCl to the feed tank. The concentrations of proteins in the 

permeate and the membrane flux were measured when the steady state 
condition was reached. In each experiment, the operating conditions (such as 

temperature, operating pressure, and pH) were kept constant.  
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3.4 Measurement of Protein Concentration  

Five ml of protein solution sample (feed or permeate solution) reacted with 2 ml 

of specific reagen (ST reagensia). Then the protein concentration was measured 
by UV-Vis spectrophotometer with 603 nm wavelength for the albumin and 543 

nm for the hemoglobin [36,37].  

3.5 Charge Density (z) Measurement and Ion Molar Mobility (u)  

The charge density of the proteins was measured by acid-base titration. The 

sulfonated membrane was soaked in 10 mL of HCl 0.0544 N and titrated by 

NaOH 0.0346 N. The membrane charge (z, in mek/g membrane) was calculated 
with Eq. (11):  

 � = (O � P) � ,QRSTU,VW XY ZT[, / \,\Z]TV, ^,R_ℎW  (11) 
where A denotes the titrant volume required for 20 ml of acid solution in the 

absence of a membrane (blank) and B denotes the titrant volume required for 20 
ml of acid solution in the presence of a membrane. In this research, the value of 

A was 15,752 ml, while the value of B was 16,592 ml. The membrane’s weight 

was 0.0056 g. By substituting these values into Eq. (11), the membrane charge 
was 5.2 mek/g membran. 

 

Figure 3 UF membrane unit for protein separation. 

In this study, the charge density of BSA was taken from the literature, as shown 

in Figure 4 [38]. The isoelectric of BSA was found at 4.88. Meanwhile, the 
charge density of the hemoglobin was measured by acid-base titration from pH 

4 to 10 between the IEP of the protein.  

The charge density of the hemoglobin (z) was determined based on the mole of 

the titrant (NaOH 0,012 N, 1000 ppm), which was calculated using the 
following equation in Eq. (12): 
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� =  \XU, XY WRW]TVW (aTbc)/\XU, XY ℎ,\X_UXZRV TW d� -XRVW  (12) 
where the mole of hemoglobin 1000 ppm (50 mL, IE = 7) is 7.496. 10

-7
 mole. 

The titration data and calculated charge density of hemoglobin are shown in 

Table 1 and Figure 4. Both proteins showed a decrease in charge density as the 
solution pH increased or became more negatively charged when the pH of the 

solution was increased. The ion molar mobility (ui) was calculated by the Henry 

equation (Eq. (6)), after which the calculated ui value was substituted into Eqs. 

(7) and (8) to calculate the actual membrane porosity (Ak) and . 

Table 1 Titration data and calculated charge density of hemoglobin. 

pH 
Volume of titrant 

(mL) 

Total volume of 

solution (mL) 
Mole of titrant Charge, z 

3.63 0.000 50.000 2.279 x 10-5 +30 
4.23 0.781 50.781 1.342 x 10-5 +18 

4.89 1.262 51.262 7.646 x 10-6 +10 

6.31 1.658 51.658 2.893 x 10-6 +4 

7.00 1.899 51.899 0.000 0 

8.40 2.206 52.206 3.958 x 10-6 -5 

9.11 2.735 52.735 6.971 x 10-6 -9 

9.83 2.905 52.905 1.207 x 10-5 -16 

 

Figure 4 Charge density of single protein at various solution pH: (�) BSA and 

(�) hemoglobin. 

3.6 Determination of Rejection and Flux of the UF membrane 

Rejection of proteins by the UF membrane was calculated using Eqs. (13) & 

(14) as follows [39]: 
  efg = 1 � �;

�J (13) 
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  h = 1 � �;
�i  (14) 

Robs is defined as the capability of the membrane to reject proteins, while Rr is 
defined as the intrinsic retention that indicates the real (actual) rejection 

capability of the membrane.  

Cm was determined in Eq. (15) as follow: 

 �j = =�f � �6>,�-(�& k⁄ ) � �6  (15) 

The volumetric flux of the UF membrane in steady state condition was 
determined as in Eqs. (16) and (17) with the following equation [40]: 

 �& =  k �UV 	m
+
	m� (16) 

 �& =  k (UV �i
�;
�n
�; *  (17) 

where k is the mass transfer coefficient of the solute through the membrane 

pores, which was calculated with Eq. (18): 

 k =  �� op  (18) 

where  is the membrane thickness (m), and Di is the diffusion coefficient of the 
solutes (cm

2
/s). The diffusion coefficient value was calculated using Eq. (19) as 

follows [41]:  

 �� =    ! ��  (19) 

where R is the gas constant (8,314 J/mol), T is temperature (K), and ui is ion 

molar mobility. The above flux and mass transfer coefficient are related to the 

concentration polarization boundary layer. 

The mass transfer coefficient of the solutes was determined from a 

dimensionless number that is related to the hydrodynamic parameters in the 

membrane system. This is known as the Sherwood number (Sh) expressed in  

Eq. (20): 

  qr = k �r ��p   (20) 

where dh is the hydraulic diameter of the membrane pores, which is assumed to 

be a cylinder or rectangular channel through the membrane thickness. For 
turbulent flow through a rectangular channel (plate and frame module) the 

following empirical relationship is given in Eq. (21) [24]:  
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 qr = 0.04  ,t.uvq't.ww  (21) 

Re is the Reynold number and Sc is the Schmidt number, which are calculated in 

Eqs. (22) and (23): 

  � = x �ℎ y zp  (22) 

 q$ = z x ��p   (23) 

 

where v is velocity,  is dynamic viscosity, and  is the density of the solution. 
For a rectangular slit, which has height h and width w, the hydraulic diameter 

dh = 2 w.h/(w+h) [24].    

4 Results and Discussion 

4.1 Protein Separation by Sulfonated Polyethylene UF Membrane 

Figure 5 presents the permeate flux during ultrafiltration of single proteins (i.e. 
BSA and hemoglobin) using a sulfonated polyethylene membrane. Near the IE 

point of the protein, the permeate flux was slightly lower due to hydrophobic 

interaction between the protein and the membrane surface. It has been reported 

that proteins are commonly hydrophobic in neutral conditions and are easily 
adsorbed in a hydrophobic membrane surface. This behavior leads to fouling 

formation, which reduces the permeate flux. As shown in Figure 5, a higher 

permeate flux was obtained during the ultrafiltration of BSA compared to 
hemoglobin. In addition to having a larger molecule, the BSA charge was more 

negative than that of the hemoglobin when the solution pH was raised from 4 to 

8.  

Adsorption of proteins on the membrane surface was decreased due to the 

electrostatic repulsion between the membrane surface and the proteins, thus 

higher permeate flux resulted. Conversely, the positive charge of hemoglobin 

molecules in the range of solution pH generated fouling of proteins on the 
membrane surface due to strong electrostatic interaction. Fouling on the 

membrane surface contributes to flux decline during the filtration process. 

The real rejection (Rr) and observed rejection (Robs) of the single BSA protein 
were calculated based on the calculation procedure in Section 3.6. The mass 

transfer coefficient (k) of the proteins through the membrane was determined 

based on the Reynold number, the Schmidt number, and the Sherwood number 
in Eqs. (21) to (24). The calculated k value is shown in Table 2. It shows that an 

increase of pH increases the mass transfer coefficients of the albumin as well as 
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the diffusivity, which contributes to a high permeate flux. In contrast to 

albumin, an increase of the solution pH reduces the mass transfer coefficient 

and diffusivity of the hemoglobin, which results in a lower permeate flux. A 

mass transfer coefficient value higher than the diffusivity of the proteins 
through the membrane pores contributes to the accumulation of proteins on the 

membrane surface, which leads to the formation of fouling. 

 

Figure 5 Protein flux on charged polyethylene UF membrane at various pH. 

Table 2 Mass transfer coefficient (k) and diffusivity (di) of proteins. 

pH 

Albumin Hemoglobin 

1 bar 2 bar 2.5 bar 1 bar 2 bar 2.5 bar 

k*e
3
 

Di*e
6 

cm
2
/s 

k*e
3
 

Di*e
6 

cm
2
/s 

k*e
3
 

Di*e
6 

cm
2
/s 

k*e
3
 

Di*e
6 

cm
2
/s 

k*e
3
 

Di*e
6 

cm
2
/s 

k*e
3
 

Di*e
6 

cm
2
/s 

4 0.87 0.48 0.52 0.48 0.41 0.48 2.16 1.78 1.27 1.78 0.85 1.78 

5 0.48 0.24 0.32 0.24 0.26 0.24 1.58 1.19 0.93 1.19 0.74 1.19 

6 1.58 1.20 0.93 1.20 0.93 1.20 0.99 0.59 0.59 0.59 0.63 0.59 

7 2.16 1.91 1.26 1.91 1.26 1.91 0.85 0.47 0.50 0.47 0.48 0.47 

8 2.13 2.15 1.26 2.15 1.09 2.15 0.70 0.36 0.41 0.36 0.33 0.36 

 

The Rr and Robs values at various operating conditions (1-2.5 bar) and pH of the 

protein solution are shown in Figure 6. The Robs and Rr were calculated with 
Eqs. (14) and (15). Since the protein concentration on the membrane surface 

(Cm) was higher than in the bulk of the solution (Cf), the Robs value was smaller 

than the Rr value. As shown in Figure 6, the Robs declined around 30% when the 

solution pH was raised from 4 to 5. As has been explained above, the lowest 
flux occurred at pH near the IE point, which was caused by protein fouling on 

the membrane surface due to hydrophobic interaction. A high concentration of 

proteins on the membrane surface results in a low rejection value.  

Increasing the operating pressure from 1 to 2 bar decreased the rejection of the 

BSA. Higher transmembrane pressure contributed to a higher mass transfer rate 
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of proteins as well as a higher drag permeation rate, which drove more proteins 

to the permeate side. When the pH of the solution was further enhanced to the 

above of IE point, electrostatic repulsion between the membrane surface and the 

proteins was improved. More than 90% rejection of BSA was achieved at pH 4 
and 8. Furthermore, the Rr of BSA decreased up to pH 6 and slightly increased 

with further increase of solution pH. The high rejection of proteins at high 

solution pH may be attributed to the enlargement of the molecular shape, 
becoming close to ellipsoidal. High rejection of BSA was obtained although the 

operating pressure was increased from 1 to 2 bars. 

 

Figure 6 Rejection of BSA at different pH and operating pressures, P. 

The real and observed rejection of the hemoglobin at different pH of solution 

and operating pressures are presented in Figure 7. In contrast to BSA, the 

rejection of hemoglobin continuously increased by changing the solution pH 
from 4 to 6 and then became stable with a further increase in pH value. It has 

been explained that the amount of hemoglobin accumulated on the membrane 

surface is high in the range of solution pH used. This reduces the effective pore 
size of the membrane surface and acts as a second membrane layer, which 

enhances the rejection of proteins.  

 

Figure 7 The influence of pH of solution on rejection of proteins. 
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The role of charge of proteins (z) on flux and Robs for BSA and hemoglobin are 

shown in Figure 8. The lowest water flux resulted when the charge of the 

proteins was close to zero or the IE point (Figure 8(a)). Without the surface 

electric charge, proteins were moved towards to the membrane surface by 
hydrophobic interaction and formed fouling, which contributed to flux decline. 

The results show that the surface charge of the proteins plays an important role 

in the transport of proteins in the membrane system. The influence of the charge 
density on the permeate flux was similar to the effect on the solute rejection. As 

shown in Figure 8(b), the rejection of BSA significantly decreased when the 

surface charge of the proteins was neutral. During hemoglobin separation, the 

rejection of proteins continuously decreased when the surface charge of the 
proteins changed to positive. This suggests that the electrostatic interaction 

between the hemoglobin and the negative charge of the membrane surface 

contributed to a high accumulation of hemoglobin on the membrane surface, 
which easily dragged the proteins to the permeate side by cross-flow filtration in 

the membrane system. However, the overall rejection of hemoglobin was still 

maintained above 90% with a change in charge or solution pH. 

 
(a) 

 
(b) 

Figure 8 The influence of surface charge on (a) water flux and (b) rejection of 

proteins. 

Figure 9 displays the selectivity during the ultrafiltration of mixed proteins 
(BSA-hemoglobin at 50/50 mg/l) at varying solution pH and operating pressure. 

The selectivity of hemoglobin was higher compared to that of BSA at pH 5. As 

explained in Figures 4 and 5, at pH 5 the charge of BSA was close to neutral (z 
= -2), while the hemoglobin charge was positive (z = +10). Due to the positive 

charge value, the hemoglobin molecules were very easily adsorbed on the 

membrane surface, while the BSA passed to the permeate side. By increasing 

the operating pressure, the selectivity was decreased due to higher drag 
permeation of proteins to the permeate side. When the pH was further increased 

to 7, the selectivity of BSA/hemoglobin was close to zero ( = 0.53-0.66). At 
this pH, the hemoglobin charge was neutral so, theoretically, the hemoglobin 

could pass through the membrane pores. However, the presence of positively 
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charged BSA on the membrane surface provided resistance to the penetration of 

hemoglobin through the membrane. In addition, the molecular shape of the 

hemoglobin, similar to an ellipsoid, gave additional resistance to the 

hemoglobin in passing the membrane pores by the cross-flow mode of filtration. 

 
(a) 

 
(b) 

Figure 9 Selectivity of BSA/hemoglobin (50/50 mg/l): (a) based on real 

rejection (Rr) and (b) based on observed rejection (Robs).  

4.2 Ion Molar Mobility (u) of Proteins 

The mobility of BSA and hemoglobin as single proteins and in a mixed solution 

during ultrafiltration of proteins are presented in Figure 10(a) and (b). It shows 
that the mobility of the single proteins decreased when they were in mixed 

phase. In the single phase, the mobility of the BSA increased with the increase 

of solution pH, while the mobility of the hemoglobin decreased. During the 

ultrafiltration of proteins, charge dissociation on the membrane surface depends 
on the amount of opposite charge of the proteins. As the hemoglobin 

concentration in the solution increases, the mobility of the proteins decreases 

due to its interaction with the negatively charged membrane. The influence of 
the mobility of the proteins in the mixed solution on the permeate flux is shown 

in Table 3. It shows that the water flux was increased by the increase of solution 

pH. 

 
 

 
 

(a) (b) 

Figure 10 Ion molar mobility of proteins at different pH values: (a) BSA and 

(b) hemoglobin. 
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Table 3 Mobility of proteins in mixed solution and its influence on membrane 

flux. 

pH of 

solution 

Mobility in mixed proteins 

(uc.e
17

, mol cm
2
 erg

-1
s

-1
) Flux (Jv.e

3
, cms

-1
) 

BSA Hemoglobin 

5 0.205 3.25 0.5424 

6 0.785 1.70 0.4442 

7 2.406 1.32 0.7905 

8 3.769 0.94 0.7004 

4.3 Effective Charge of Membrane, , and Membrane Porosity, 

Ak 

The membrane porosity (Ak) was determined based on the Jv value obtained 

from the numerical calculation of Eqs. (8) and (9). The membrane porosity was 
calculated by ignoring the polarization concentration; the calculation results are 

shown in Table 4. It shows that the Ak values were influenced by the type of 

protein and the charge of the proteins. The Ak value increased with the decrease 
of the negative charge of the proteins. Apart from the value of Jv, the numerical 

analysis also resulted in a value of the effective membrane charge, . It was 

found that the  values varied between 0.99996 to 1.0000, which indicates that 
the fixed charge on the membrane structure was higher than the concentration of 

proteins, thus the  value was not influenced by the presence of charge solute in 
the solution.  

Table 4 Influence of solution pH and pressure on predicted membrane 

porosity, Ak. 

pH TMP (bar) 
Log Ak in single protein solution Ak in mixed protein solution 

BSA Hemoglobin BSA Hemoglobin 

5 1 -2.62 -0.48 -2.62 -0.49 

5 2 -2.73 -0.62 -2.73 -0.62 

5 2.5 -2.78 -0.69 -2.81 -0.70 

6 1 -5.28 -0.57 -5.27 -0.57 
6 2 -5.40 -0.74 -5.40 -0.72 

6 2.5 -5.42 - -5.42 - 

7 1 -5.97 - -5.97 - 

7 2 -6.07 - -6.07 - 

7 2.5 -6.11 - -6.11 - 

8 1 -6.19 -2.58 -6.19 -2.57 

8 2 -6.20 -2.73 -6.21 -2.75 

8 2.5 -6.21 -2.81 -6.21 -2.82 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11  The influence of membrane porosity on rejection of proteins in single 

protein solution (TMP = 1 bar): (A) BSA, (B) hemoglobin; and in mixed protein 

solution: (C) BSA, and (D) hemoglobin. 

The influence of membrane porosity (Ak) on the rejection of BSA by the 

sulfonated UF membrane was investigated on a solution containing 100 mg/L of 
BSA. The increase of solution pH enhanced the membrane porosity, which 

allowed the BSA to go through the membrane pores to the permeate side. The 

rejection of BSA was strongly influenced by the solution pH (Figure 11a and 
11c). The rejection of BSA slightly decreased when concentration polarization 

did not occur on the membrane surface due to charge repulsion between the 

membrane surface and BSA. Meanwhile, the rejection of hemoglobin was not 
affected by the changes in solution pH (Figure 11B and 11D). The adsorption of 

hemoglobin on the membrane surface acted as a second layer that inhibited the 

penetration of proteins through the membrane pores. 

5 Conclusion 

A protein solution containing bovine serum albumin (BSA) and hemoglobin 

was separated using a sulfonated polyethylene membrane. The separation 
process was conducted at various solution pH (between 5 and 8) to investigate 

the effect of pH on the zeta potential of the proteins and its effect on the 

separation performance. Experimental data were used to obtain the theoretical 

permeate flux (Jv) in the extended Nernst–Planck equation. Furthermore, the 

effective charge of the membrane () and actual membrane porosity (Ak) were 
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determined based on the theoretical permeate flux. These parameters were used 

to predict the separation mechanism of proteins in a charged UF membrane.  

From the experimental data, the UF membrane flux declined near the IE point 

of the proteins due to the neutral charge of the proteins, which contributed to the 
adsorption of proteins on the membrane surface by hydrophobic interaction. It 

was found that higher flux was obtained during the ultrafiltration of BSA 

compared to hemoglobin. Strong interaction between the positive charge of 
hemoglobin and the negative charge of the membrane induced fouling 

formation, which led to a decline of the permeate flux. 

The lowest rejection of proteins was achieved when the pH of the solution was 

near the IE point of the proteins. This is caused by the higher concentration of 
proteins on the membrane surface. The increase of transmembrane pressure 

leads to a higher mass transfer rate of proteins and drags the permeation rate, 

which draws more proteins to the permeate side. The charge of the proteins also 
influences the selectivity of the mixed proteins during the separation processes. 

At pH 5, where the BSA was at the IE point and the hemoglobin charge 

approached +10, while the selectivity of hemoglobin was higher compared to 
BSA. The positively charged hemoglobin accumulated on the membrane 

surface while the neutrally charged albumin with a lower molecular weight 

passed the membrane pores to the permeate side. When the solution pH was 

increased to 7, the selectivity of BSA/albumin was close to zero ( = 0.53-
0.66). This can be attributed to the positive charge of BSA on the membrane 
surface, which blocks the membrane pores and provides resistance to the 

penetration of the hemoglobin through the membrane. Effective separation 

occured at pH 5. In addition, the mobility of the single proteins decreased when 

they were mixed with other proteins with different charges. When the positive 
charge of the proteins increased, as found in the hemoglobin solution, the 

measured mobility of proteins decreased due to neutralization of charges on the 

membrane surface.  

Based on the numerical computation of the extended Nernst–Planck equation it 

was found that the  values varied from 0.99996 to 1.0000. This indicates that 
the fixed charge on the membrane structure was higher compared to the 

concentration of proteins and therefore the  values were not significantly 
influenced by the presence of charge solute in the solution. In contrast, the 

actual porosity (Ak) of the membrane was influenced by the type and charge of 
proteins. The Ak value increased by the decrease of the negative charge of the 

proteins or the increase of solution pH. When the concentration of solute on the 

membrane surface was high, the increase of Ak along with the increase of pH 

reduced the rejection of BSA significantly. This means that the rejection of 
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BSA was strongly influenced by the solution pH. Meanwhile, hemoglobin 

rejection was not affected by changes in the solution pH. The decrease of the 

negative charge along with the increase of the solution pH increased the 

porosity of the membrane, which then reduced the rejection of proteins. 
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