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Abstract. In recent years, control charts monitoring the coefficient of variation
(CV), denoted as the ratio of the variance to the mean, is attracting significant
attention due to its ability to monitor processes in which the process mean and
process variance are not independent of each other. However, very few studies
have been done on charts to monitor downward process shifts, which is
important since downward process shifts show process improvement. In view of
the importance of today’s competitive manufacturing environment, this paper
proposes a one-sided chart to monitor the downward multivariate CV (MCV)
with variable sample size and sampling interval (VSSI), i.e. the VSSIp MCV
chart. This paper monitors the MCV as most industrial processes simultaneously
monitor at least two or more quality characteristics, while the VSSI feature is
incorporated, as it is shown that this feature brings about a significant
improvement of the chart. A Markov chain approach was adopted for designing a
performance measure of the proposed chart. The numerical comparison revealed
that the proposed chart outperformed existing MCV charts. The implementation
of the VSSIp MCYV chart is illustrated with an example.

Keywords: average time to signal; downward shifts; expected average time to signal;
multivariate coefficient of variation; variable sample size and sampling interval.

1 Introduction

Control charting is an important technique in Statistical Process Control (SPC).
It is seen as an efficient process monitoring technique in various industries for
detecting the presence of assignable causes, as can be seen from several
research publications (see Djauhari [1], Chen, et al. [2], Wang [3], Chong, et al.
[4]). In most real industry applications, it is common to deal with processes that
monitor two, three or more quality characteristics. In this case, great attention is
paid to multivariate process monitoring. Furthermore, when the process
standard deviation is in line with the process mean, existing traditional charts
that are used to monitor the process mean and process variance are unable to
correctly detect the process signals. In this case it is suitable to use the
coefficient of variation (CV). The CV is commonly used and its importance is
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shown through applications in many disciplines. Singh & Singh [5] used CV to
investigate video frame and region duplication forgery detection. Salmanpour,
et al. [6] applied CV to resolve the robot path-planning problem with multiple
objectives. Lengler & Steger [7] studied the CV of neuronal spike trains and
Zhou, et al. [8] suggested a G1-CV approach for the best development face
ventilation mode selection. The application of CV in chatter detection [9] and
spectrophotometric repeatability measurement [10] have also been discussed.
Ushigome, et al. [11] and Romano, et al. [12] investigated the CV of home
blood pressure and shear and tensile strength experiments, respectively.

Kang, et al. [13] were the first researchers to introduce a standard CV control
chart. In the last decade, numerous CV charts have been proposed to increase
the effectiveness of existing standard CV charts for detecting CV shifts, such as
those by Khaw, et al. [14], Yeong, et al. [15], Khaw & Chew [16], Lim, et al.
[17], etc. Conversely, Yeong, et al. [18] introduced two one-sided multivariate
CV (MCYV) charts (SH MCYV) to fill the research gap related to the multivariate
process. Khaw, et al. [19,20] discussed adaptive MCV and synthetic MCV
charts to increase the statistical performance of the SH MCV chart of Yeong, et
al. [18]. Later, run rules and variable parameter MCV charts were introduced
[21,22]. More recently, an exponentially weighted moving average (EWMA)
MCV chart was recommended by Giner-Bosch, et al. [23], whereas Haq &
Khoo [24] considered an adaptive EWMA MCYV chart.

Meanwhile, adaptive control charting methods are known to be practical when
compared to non-adaptive charts (Epprecht, et al. [25], Deheshvar, et al. [26]).
From the existing adaptive schemes, the variable sample size and sampling

interval (VSSI) scheme is one of the best adaptive schemes. After the VSSI X

chart [27] was developed, the VSSI scheme was extended to various types of
control charts. For example, Saha, et al. [28] developed an auxiliary information
based VSSI chart to monitor the process mean. Kosztyan & Katona [29] and
Khoo, et al. [30] applied risk-based VSSI and VSSI; S control charts,
respectively. A VSSI median chart with measurement errors and estimated
parameters have been suggested by Cheng & Wang [31].

The VSSI MCYV chart [19] has superior performance in the detection of MCV
shifts when compared to other existing MCV charts. However, a downside of
this method is that the VSSI MCV chart was developed only for detecting
upward MCYV shifts. In most scenarios, the detection of downward MCV shifts
is crucial since they show process improvement. With the intention to fill the
research gap related to downward process monitoring and the excellent features
of the VSSI scheme, this paper extends the VSSI MCV chart of Khaw, et al.
[19] and proposes a one-sided downward VSSI (VSSIp) chart for monitoring
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downward MCYV shifts. Note that the one-sided VSSIp MCV chart can avoid
biased average time to signal (ATS) performance. The VSSI scheme in Aparisi
& Haro [32] was adopted to design the VSSIp MCV chart. The VSSIp MCV
chart gives the flexibility for practitioner to vary sample size n and sampling
interval h. The VSSI, MCV chart is expected to surpass the existing SHp MCV
chart.

Hereafter, Section 2 illustrates the fundamental properties of the SHp, MCV
chart. Section 3 describes the details of the VSSIp MCV chart. The performance
measures were evaluated using the Markov chain method. Performance
comparisons of the existing VSSI, MCV charts in terms of the ATS and
expected average time of signal (EATS) criteria are discussed in Section 4. In
Section 5, the new method’s implementation is illustrated with an example. In
the last section, the research findings and future recommendations are given.

2 The Downward SH MCV (SHp MCV) Chart

Let X4,X,,...,X,, refer to a multivariate n, from the p-variate normal
distribution with p and X. Here, p is the mean vector while £ denotes the
covariance matrix. Then, the MCV population statistics are denoted as

1
y=(u' Y ) (1)

[33]. The sample MCV, 7, is used for estimating y when p and X are unknown.
To derive ¥ from Eq. (1), X and S should be computed so that they can replace
[ and X, as follows:

X=13x @
no i=1
and
| - - —\T
s:no_lizl(xi-x)(xi—x) 3)

respectively. X denotes the sample mean while S is a sample covariance matrix
and they are independent. Hence, 7 is obtained as

y‘z(iTs*li)’% (4)

A chart is set up by using the Phase-I data. If the target in-control MCV, y, is
unknown, then it can be estimated from the in-control ¥, which can be assumed
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from the Phase-I data. Note that ¥, is computed based on the root mean square
estimator

)

where m and ?iz are defined as the number of in-control multivariate samples
from the Phase-I data used to estimate y, and the squared i-th Phase-I sample
MCV (fori=1,2, ..., m), respectively.

The cumulative distribution function (cdf) of the ¥ is derived as [18]

n,(n, — P)
F.(x|n,, p,8)=1-F, | ="~
7(X|n0 p ) F((no_l)pxz

P, no - p’é‘J 5 (6)

where Fr( - ) refers to the cdf of a non-central F distribution, together with p
and ny — p degrees of freedom and non-centrality parameter §, where p denotes
the number of quality characteristics, where Eq. (6) can be only considered
valid when ny > p as the degree of freedom for the non-central F distribution

must be positive. The non-centrality parameter is obtained as § = 0 where
Ty

the shift size 7 = 1 (in-control process). The out-of-control MCV is computed

as ¥y, = 1Yy, where T # 1. Consequently, the inverse cdf of 7 is [18]

1 o\ — 1
F (a|no,p,5>=J” . "’L]( 0

(n,—1)p 1-a|p,n, - p,5) |’

where F71( - ) refers to the inverse cdf of a non-central F distribution with p
and ny — p degrees of freedom and non-centrality parameter §.

Since the distribution of 7 is skewed, the one-sided downward SH MCV chart
for the downward MCV shifts is suggested [18]. Here, the SHp MCV chart
contains the lower control limit (LCL). The LCL of the SHp MCV chart is
specified with the Type-I error probability @. Then, the LCL can be obtained as

LCL=F '(a|n,p,d,), (8)

where 8, = % [18]. The probability for the SHp MCV chart for an out-of-
0
control signal detection is given as A = Pr(y < LCL).



116 XinYing Chew & Khai Wah Khaw

The performance measures for the SHp MCV chart were adopted from Yeong,
et al. [18]. Thus, the average run length (ARL) and out-of-control expected
average run length (EARL,;) of the SHp, MCV charts can be obtained as

1
ARL=— 9a
A (9a)
and
EARL, = j ARL,(LCL,1,n,,7,,7)f (¢)dz (9b)
Note that §; = (;;—0)2, where T # 1. Here, T = 1 will results in in-control ARL
0

(ARLy) while 7 # 1 results in out-of-control ARL (ARL,). When 7 # 1, the
values of 0 < 7 < 1 correspond to downward MCYV shifts, respectively. For the
EARL; computation using Eq. (9b), the in-control EARL (EARL,) is set to be
equal to ARL; and f;(r) is the probability density function (pdf) of z.
Additionally, t,,;, and T,,,, are the lower and upper bounds of 7, respectively.

3 The Downward VSSI MCV (VSSIp MCV) Chart

The existing SHp MCV chart has a static sample size, ny and sampling interval,
hg. This chart consists of two regions and a border, i.e. the central and action
regions with LCL. Different from the SHp MCV chart, the VSSIp MCV chart
contains three regions and two borders, i.e. the central, warning and action
regions, with a lower warning limit (LWL) and LCL. The VSSI scheme can
vary ng and hy to enhance the sensitivity of the SHp MCV chart for detecting
small and moderate downward shifts. The sample size of the proposed chart can
be differentiated between a small and large sample size, i.e. n; and n,, where
n, < ASSy < n, while the sampling interval can be differentiated between
short and long sampling intervals, i.e. h; and h,, where hy < ASI, < h,. Note

that ASS, denotes the in-control average sample size whereas ASI, refers to the

in-control average sampling interval, where ASSyand ASI, of the VSSI, MCV
chart are equal to those of ny and hj of the SHp MCV chart for a fair statistical
comparison. The VSSIp MCV chart works as follows (Figure 1):

1. When the i-th sample MCV, #; plots in the central region, then the process
is said to be in-control and no further action is required. Hence, n; and h,
should be used to obtain the next sample MCV, ¥;,4.

2. When 7; plots in the warning region, then the process is said to be still in-
control. However, there is a high possibility for it to go out-of-control.
Hence, n, and h; should be used to compute 7; 4.
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3. When y; falls in the action region, the process is said to be out-of-control
because of the presence of assignable causes. In this case, the practitioner
should take corrective actions.

A

central region

LWL

warning region (n,.h,)

LCL

action region } (n,. 1)

Figure 1 Graphical view of the VSSIp MCV chart.

In this paper, the lower control limit of the VSSIp MCV chart can be computed
using Eq. (8), while the LWL is expressed as follows:

LWL=F '(a'In,,p.5,) (10)

where F)A,_l( - |ng, p, 8y) is the inverse CDF of 7 and 6§, = Z—;’ Here, the a'
0

value is determined to satisfy the desired ATS, value based on the in-control

process MCV and a’ > «a.

The Markov chain approach was developed for the formula derivation of the
ATS of the VSSID MCYV chart. ATS is defined as the average amount of time
for an out-of-control signal detection from time of a process shift occurrence.
Here, the Markov-chain model of the VSSID MCYV chart contains three states,
i.e. the central, warning and action region. States 1 to 2 and 3 denote the
transient states and absorbing state, respectively, as:

State 1: y € [LWL, +o0]
State 2: y € (LCL, LWL]
State 3: ¥ € (0, LCL).

The transition probabilities matrix (tpm), given a change 7 is given as:

R Ry P
P =| P\ P Py, (11)
Pi Py P

where P]Tk refers to the transition probability, which can be seen from the

previous state j to the current state k, when the MCV has a shift change 7. The
transient states in matrix P? in Eq. (11) are listed as follows:
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Pi=Pr(7>=LWL|n,p,5,)=1-F,(LWL|n,p,s,,)
P, =Pr(LCL<7<LWLJn,p,s,) (12a)
=F,(LWL|n,p,5,,)-F,(LCL|n,p,5,,) (12b)

P, =Pr(#>LWL|n,,p,5,)=1-F,(LWL|n,,p,s,,)

P,=Pr(LCL<7<LWL|n,,p,s,) (12¢)

=F, (LWLJn,,p,5,,)-F,(LCL|n,, p,5,,) (12d)
Subsequently, the ATS of the VSSIp MCV charts can be computed as

ATS=b"(1-Q) 't (13)

| and Q are the identity and transient state transition probability matrices with
2 x 2 dimension, respectively, whereas t7 = (h,, h;) is a sampling intervals
vector. Subsequently, bT = (b,,b,) represents the initial probability vector,
satisfying by + b, = 1. Here, b; and b, are the time spent proportions in the
central and warning regions, respectively. Both b; and b, are obtained based on
T = 1, where

_1-F,(LWL|n,,p,5,)

" 1-F.(LCL|n, p,s,,) (1)
b, = F.(LWL|n,,p,5,)-F,(LCL|n,,p,5,) 14
1-F,(LCL|n,,p,3,)
subject to the specified values of ASS, and ASI,, where
ASS, =nb +n)b, (152)
ASI, =hb +hb, (15b)

Generally, T must be specified when computing the ATS. The EATS can be
applied to measure the chart’s performance when the exact value of t cannot be
specified [19]. The in-control EATS (EATS,) value of the VSSIp MCV chart is
set as ATS, value and the EATS, value is obtained as

EATS, = [ ATS, (LCL.LWL.n..n,.h.h,.a.a’.7,.7) f, (z)dz, (16)

L ERRERL EREVR)
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The actual shape of f;(7) is hard to be fitted if there is no information on f; (7).
In this circumstance, 7 can be assumed to follow a uniform distribution over the
interval (T,nin, Tmax)- Lhis distribution was adopted by most researchers, i.e.
Chong, et al. [34], Khaw, et al. [19], etc. Here, a uniform distribution can be
used if the random variable is uncertain, excluding its upper and lower bounds
[35]. Castagliola, et al. [36] have suggested the interval (T,in, Tmax) = [0.5,1)
for the downward EWMA CV? chart.

The optimization procedure to compute the optimal parameter combinations
(n4,ny, hy, a') of the VSSIp MCV chart for minimizing the ATS; and EATS,
values for detecting downward MCV shifts, T and shift interval (Tp,in, Tmax)
were considered in this study. Note that h, is set as 0.1 and ATS,= 370. The a'
parameter is used to obtain the LWL of the VSSIp MCV chart using Eq. (10).
The application of the optimization procedure is for

1. Min{nllnzlhzﬂl}ATsl (1), subject to constraint ATSy= 370, ASS, = n, and
ASIO = hO )
2. Min{nl,nz,hz,a’}EATsl(Tmin' Tmax), Subject to constraint EATS, = 370,

ASSO =Ny and ASIO = ho .

Subsequently, the procedure of optimization of the VSSIp MCV chart is given
as

Step 1: Specify ngy, hg, hy,p,t  (for ATSi(7)) or (Tmin Tmax) (for
EATSl (Tminr Tmax)~

Step 2: Letn; =p+1 andn, =ny + 1.

Step 3: Compute a using nonlinear equation solver, subject to constraint
ATSy=370. Then compute a’ and h, using Eq. (17) and Eq. (18) listed as
follows:

a':l—(n2_no)[l_F?(LCL|n0°p’é‘o)]+no_n1’ (17
n,—n

and

hzzho(nz_nl)_hl(no_nl). (18)
n,—n,

Step 4: Compute ATS,(t) value (or EATS; (Tnin Tmax) Value) using Eq. (13)
(or Eq. (16)) with the optimal parameter combination (n,,n,, h,, ') obtained
from Steps 1 to 3.
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Step S: Let ny + 1 while retaining the same value of n,.
Step 6: Repeat steps 3 to Suntilny = ny — 1.
Step 7: Resetn, top + 1 and letn, + 1.

Step 8: Repeat steps 3 to 7 until n, = 31. Here, n, = 31 can be viewed as a
guideline. The practitioner will decide the maximum value of the sample size by
depending on the characteristics of the process.

Step 9: Identify and select the parameter combination (nq,n,, h,,a’) that
minimizes the ATS;(7) value (or EATS;(Timin, Tmax) value) as the optimal
parameter (nq, n,, h,, @) combination.

4 Numerical Comparison

The existing SHp MCV chart has hy = 1. Since ATS = hy X ARL, then ATS =
ARL for the SHp MCV chart. For a fair performance comparison with the
existing SHp MCYV chart, the ASI,(= hy) of the VSSIp MCV chart is specified
as unity. In this study, the (nq,n,) parameter combinations were varied to
minimize the ATS; value, for detecting downward MCV shifts subject to
constraints 3<n; <ng<n,<3land 4<n;  <nyg<n, <31, forp=2
and 3, respectively, where ng =5 and 10 were considered. Note that these
constraints were adopted from Yeong, et al. [18] and Khaw, et al. [19]. Thus,
the computed (nq,n, hy, hy,a,a@’) parameter combinations using the
aforementioned optimization procedure were varied to minimize the ATS; and
EATS; values, for detecting downward MCV shifts, t € {0.5,0.6,0.7,0.8, 0.9}
and  (Tpax Tmin) € [0.5,1), where p€{2,3}, ny € {510} andy, €
{0.1,0.3,0.5}. We assume ATS,= 370.

Table 1 presents the optimal parameter (nq,n,, h,,a’) combinations of the
VSSIp MCV chart that minimize the ATS; and EATS,; values, for 7 €
{0.5,0.6,0.7,0.8,0.9} and (Tpmax,Tmin) € [0.5,1), where p € {2,3}, ngy €
{5,10} and y, € {0.1,0.3,0.5}. For example, from Table 1, to minimize the
ATS; value for detecting downward MCV shift T = 0.5, when p = 2, ny = 5,
h,; = 0.1 and y, = 0.1, the optimal parameter combination (n,,n,, h,,a') is 3,
10, 1.360 and 0.2876. These optimal parameter combinations presented in Table
1 were used to compute the ATS; and EATS; values for the VSSIp, MCV chart
in Table 2. Table 2 presents the ATS; and EATS, values for the VSSI, MCV
and SHp MCV charts [18], for 7 € {0.5,0.6,0.7,0.8,0.9} and (T;nax) Tmin) €
[0.5,1), where p € {2,3}, ng € {5,10} and ¥, € {0.1,0.3,0.5}. In order to show
the superior performance of the proposed chart, the downward variable
sampling interval (VSI) and variable sample size (VSS) charts were included in
the performance comparison by letting n; =n, =ny and hy = h, = hy,
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respectively. The VSSIp MCV chart outperformed the VSI, MCV, VSSp, MCV
and SHp MCYV [18] charts, for detecting downward MCYV shifts in terms of the
ATS, and EATS, criteria. For instance, in Table 2, when p =2 , ny =5,
Yo = 0.3 and 7 = 0.7, the VSSI, MCV, VSIp, MCV, VSSp; MCV and SHp
MCV charts yielded ATS; = 15.68, 33.33, 18.12 and 135.30, respectively.
Another example can be shown from Table 3, when p = 3, n, = 10, y, = 0.1
and (Tmax Tmin) = [0.5,1), the VSSI, MCV, VSIp, MCV, VSSp, MCV and
SHp MCYV charts yielded EATS,;=57.47, 61.74, 71.82 and 203.86, respectively.
The results show that the VSSIp MCV charts yielded the best ATS; and EATS;
values to detect small and moderate downward MCV shifts.

5 Example

The implementation of the VSSIp MCV chart is demonstrated with the dataset
from Khatun, et al. [37]. The data deal with the measurements of a spring, i.e.
spring inner diameter (X;) and spring elasticity (X,). The Phase-I data consist
of m = 10 samples, each with n, = 5. Table 4 presents the Phase-I sample
means, sample variances, and sample covariances. The Phase-I in-control
sample MCV is assumed based on the root mean square method, expressed in

10
Eq. (5) as /% 7. =0.001042. Consequently, the LCL of the SHp MCV chart

[18] can be computed using Eq. (8) as follows:

LCL=F," [0.0027‘5,2, jz 0.000129 (19)

0.001042°

for the upward SHp MCV chart. Here, « is set as 0.0027 to satisfy ATS,=370.
Figure 2 shows the SHp MCV chart. The Phase-I process is declared in-control
as all the y; are plotted above the LCL of the SHp MCV chart.

Suppose that a practitioner wants to find an unexpected decrease in MCV shifts
of the process for the Phase-II process monitoring. The VSSI, MCV chart was
designed to compute the ATS; for the downward MCV shift T = 0.7. The
optimal parameter (n,,n,, hy, h,, @', @) combination for the VSSI, MCV chart
is obtained using the aforementioned optimization procedure in Section 3 as
(ny,ny, hy, hy,a',) = (4, 31, 0.1, 1.0346, 0.0396, 0.0027), subject to
ATS¢=370. Subsequently, the LCL = 0.0001 and LWL = 0.0009 can be
obtained using Eq. (8) and Eq. (10). Note that the pair (n4,h,) is first
considered since the initial probabilities obtained from Eq. (14a) and Eq. (14b)
show that b; = 0.75 > b, = 0.25 for the VSSIp MCV chart. Thus, State 1 is
used as the initial state.
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Table 4 Phase-I data.

125

Sample means

Sample variances and covariances

Sample Spring inner Sprin;

number P . 8 p . 'g 2 2 Vi
) diameter elasticity St S%i S12i

(X1, (X2i)

1 28.24 45.93 0.0044 0.0484 -0.0127 0.0008
2 28.33 45.88 0.0118 0.0029 -0.0022 0.0009
3 28.31 45.69 0.0016 0.0169 -0.0036 0.0007
4 28.26 45.89 0.0006 0.0118 0.0007 0.0008
5 28.31 45.84 0.0011 0.0222 -0.0003 0.0011
6 28.28 45.89 0.0034 0.0134 -0.0063 0.0004
7 28.33 45.78 0.0040 0.0071 -0.0036 0.0008
8 28.31 45.78 0.0025 0.0081 0.0009 0.0014
9 28.32 45.80 0.0027 0.0492 0.0070 0.0017
10 28.32 45.80 0.0009 0.0077 0.0017 0.0010

0.0018

0.0016 -

0.0014 4

0.0012

7, 0.0010-

0.0008

0.0006 4

0.0004

0.0002 LCL

0.0000_ T T T T T T T T T

1 2 4 5 6 7 8 9 10

Sample Number i

Figure 2 SHp MCYV chart for the Phase-I process.

Figure 3 presents the VSSIp MCV chart. In Table 5, the VSSIp MCV chart does
not detect any out-of-control signal. However, the processing time has been
shortened to 6.61 hours (or equivalently 6 hours 37 minutes) instead of 10
hours. Conversely, when the out-of-control signals are detected, the practitioner
should look into the underlying process for identifying the assignable cause(s).
After that, immediate corrective action should be taken to revert the out-of-
control process to the normal condition.
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Table 5 Phase-II data.
Phase-II data
Sample variances and
Sample means . .
Sample covariances n h Cumulative
number Spring inner Spring Yi r111 ) l‘;l ) time
0) diameter elasticity s, s2; S12i (ormy or ftz (in hours)
(X1:) (X2

1 28.27 45.83 0.0075  0.0695 -0.0207 0.0009 4 1.0346 1.0346
2 28.30 45.83 0.0018  0.0136 -0.0044 0.0004 4 1.0346 2.0692
3 28.34 45.75 0.0004  0.0154 0.0010 0.0007 31 0.1 2.1692
4 28.29 45.84 0.0055  0.0291 -0.0099 0.0013 31 0.1 2.2692
5 28.25 45.92 0.0013  0.0472 0.0012 0.0013 4 1.0346 3.3038
6 28.30 45.80 0.0032  0.0160 -0.0066 0.0004 4 1.0346 4.3384
7 28.32 45.89 0.0061  0.0122 -0.0023 0.0016 31 0.1 4.4384
8 28.25 45.88 0.0003  0.0193 -0.0017 0.0004 4 1.0346 5.4730
9 28.27 45.84 0.0074  0.0111 0.0020 0.0021 31 0.1 5.5730
10 28.25 45.95 0.0052  0.0337 -0.0119 0.0007 4 1.0346 6.6076

0.0025

0.0020

0.0015 -

e
0.0010
X LWL
0.0005 w \
LCL
0.0000 T T T T
0 2 4 6 8 10
Cumulative Time (in Hours)
Figure 3 VSSID MCYV chart for the Phase-II process.
6 Conclusion

A one-sided VSSIp MCV chart was proposed to monitor the downward MCV
shifts in terms of the ATS, and EATS; criteria. In the existing literature, the
existing VSSIp MCV chart only monitors upward MCV shifts. In certain
scenarios, the detection of downward MCV shifts is very important as it shows
process improvement. This research circumvents this problem by proposing a
one-sided VSSIp MCV chart. Additionally, the proposed one-sided chart is also



The VSSIb MCV chart 127

able to circumvent biased ATS and EATS performances. The VSSI, MCV
chart outperforms the SHp MCV chart in detecting small and moderate
downward MCV shifts in terms of the ATS; and EATS; criteria. The
application of the proposed chart was illustrated using an example with a real
dataset. The one-sided VSSIp MCV chart is flexible in allows the n and h
parameters to be varied by referring to the current process quality. This
flexibility is able to increase the effectiveness of the process monitoring system
and save production costs at the same time. In future research, the design of the
one-sided VSSIp MCYV chart can be further extended with measurement errors
as well as estimated process parameters.
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