
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2021

Increasing Software Reliability using Mutation Testing and Increasing Software Reliability using Mutation Testing and

Machine Learning Machine Learning

Michael Allen Stewart

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item
This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Increasing Software Reliability using
Mutation Testing and Machine Learning

by

Michael Allen Stewart

A dissertation submitted in partial fulfillment of the requirements
 for the degree of Doctor of Philosophy

in
Computer Science

College of Computing and Engineering
Nova Southeastern University

2021

We hereby certify that this dissertation, submitted by Michael Allen Stewart
conforms to acceptable standards and is fully adequate in scope and quality
to fulfill the dissertation requirements for the degree of Doctor of Philosophy.

 10/6/21
Francisco J. Mitropoulos, Ph.D. Date
Chairperson of Dissertation Committee

 10/6/21
Michael J. Laszlo, Ph.D. Date
Dissertation Committee Member

 10/6/21

Sumitra Mukherjee, Ph.D. Date
Dissertation Committee Member

Approved:

 10/6/21

Meline Kevorkian, Ed.D. Date
Dean, College of Computing and Engineering

College of Computing and Engineering
Nova Southeastern University

2021

An Abstract of a Dissertation Submitted to Nova Southeastern University
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Increasing Software Reliability using

 Mutation Testing and Machine Learning

by
Michael Allen Stewart

October 2021

Mutation testing is a type of software testing proposed in the 1970s where program
statements are deliberately changed to introduce simple errors so that test cases can be
validated to determine if they can detect the errors. The goal of mutation testing was to
reduce complex program errors by preventing the related simple errors. Test cases are
executed against the mutant code to determine if one fails, detects the error and ensures
the program is correct. One major issue with this type of testing was it became intensive
computationally to generate and test all possible mutations for complex programs.

This dissertation used machine learning for the selection of mutation operators that
reduced the computational cost of testing and improved test suite effectiveness. The
goals were to produce mutations that were more resistant to test cases, improve test case
evaluation, validate then improve the test suite’s effectiveness, realize cost reductions by
generating fewer mutations for testing and improving software reliability by detecting
more errors. To accomplish these goals, experiments were conducted using sample
programs to determine how well the reinforcement learning based algorithm performed
with one live mutation, multiple live mutations and no live mutations. The experiments,
measured by mutation score, were used to update the algorithm and improved accuracy
for predictions. The performance was then evaluated on multiple processor computers.

One key result from this research was the development of a reinforcement algorithm to
identify mutation operator combinations that resulted in live mutants. During
experimentation, the reinforcement learning algorithm identified the optimal mutation
operator selections for various programs and test suite scenarios, as well as determined
that by using parallel processing and multiple cores the reinforcement learning process
for mutation operator selection was practical. With reinforcement learning the mutation
operators utilized were reduced by 50 – 100%.

In conclusion, these improvements created a ‘live’ mutation testing process that evaluated
various mutation operators and generated mutants to perform real-time mutation testing
while dynamically prioritizing mutation operator recommendations. This has enhanced
the software developer’s ability to improve testing processes. The contributions of this
paper’s research supported the shift-left testing approach, where testing is performed
earlier in the software development cycle when error resolution is less costly.

Acknowledgements

To all my professors and the staff at Nova Southeastern University, I would like to thank
you for the concepts you have taught me, including how to conduct research and guiding
me through the doctoral program. Particularly helpful to me during my time at NSU were
Dr. Francisco Mitropoulos, Dr. Sumitra Mukherjee, and Dr. Michael Laszlo, who I would
like to express my deepest appreciation in helping to focus on a dissertation topic and
make contributions to the fields of machine learning and software testing.

Several friends and colleagues have been supportive of my efforts to achieve this Ph.D.
In particular, I would like to recognize Ryan Yocum for the many discussions that have
furthered the application of this research. My employer Assurant Inc. has provided me
the opportunity to work full-time while pursuing multiple degrees.

Finally, I would like to thank my family and generations of relatives that have given me
the faith and ability to succeed. Mom, you have taught me how to be creative and enjoy
life. Dad, you taught me to always work hard and help others. To my wife Nadia and
children Julissa and Victoria, you have provided me love, support and the inspiration to
finish my academic journey. May this work be an inspiration to others as well.

v

Table of Contents

Abstract iii
List of Tables vii
List of Figures viii

Chapters

1. Introduction 1
 Problem Statement and Goal 2
 Relevance and Significance 3
 Barriers and Issues 5
 Summary 7

2. Review of the Literature 8
 Machine Learning 8
 Software Testing 14
 Parallel Processing 16
 Summary 17

3. Methodology 17
 Introduction 17
 Approach 17
 Experiment Design 23
 Implementation 24
 Datasets 32
 Measures 34
 Experiment 1: Learning Mutation Testing with One Live Mutation 35
 Experiment 2: Learning Mutation Testing with Multiple Live Mutations 36
 Experiment 3: Learning Mutation Testing with No Live Mutations 37
 Experiment 4: Comparing Mutation Testing Approaches with Two Cores 38
 Experiment 5: Comparing Mutation Testing Approaches with Four Cores 39
 Resources 40
 Summary 40

4. Results 41
 Introduction 41
 Experiment 1: Learning Mutation Testing with One Live Mutation 42
 Experiment 2: Learning Mutation Testing with Multiple Live Mutations 43
 Experiment 3: Learning Mutation Testing with No Live Mutations 44
 Experiment 4: Comparing Mutation Testing Approaches with Two Cores 45
 Experiment 5: Comparing Mutation Testing Approaches with Four Cores 47
 Summary 48

vi

5. Conclusions 51
 Conclusions 51
 Implications 51
 Recommendations 51

Appendices 53
A. Detailed Experiment Results 54

References 130

vii

List of Tables

1. Experiment 1 results format. 35
2. Experiment 2 results format. 36
3. Experiment 3 results format. 37
4. Experiment 4 results format. 38
5. Experiment 5 results format. 39
6. Learning Mutation Testing with One Live Mutation. 43
7. Learning Mutation Testing with Multiple Live Mutations. 44
8. Learning Mutation Testing with No Live Mutations. 46
9. Comparing Mutation Testing Approaches with Two Cores. 47
10. Comparing Mutation Testing Approaches with Four Cores. 48

viii

List of Figures

1. The general Reinforcement Learning approach. 10
2. Reinforcement Learning for Test Case Selection. 11
3. The Neural Network (NN) used by reinforcement learning. 13
4. The Normalized Average Percentage of Faults Detected (NAPFD). 14
5. Test Impact Analysis within Microsoft Azure DevOps Services. 15
6. Microsoft Visual Studio extension with mutation operators. 18
7. Microsoft Visual Studio extension with mutation test results. 18
8. IntelliCode within Microsoft Visual Studio. 19
9. Live Unit Testing within Microsoft Visual Studio. 20
10. IntelliTest within Microsoft Visual Studio. 21
11. Reinforcement Learning for Mutation Operator Selection. 22
12. Reinforcement Learning with Parallel Processing. 23
13. Mutation Testing with Parallel Deep Reinforcement Learning code map. 24
14. Reinforcement learning with experience reset when criteria not met. 27
15. Neural network configuration utilized for reinforcement learning. 28
16. Code map for the Mutation Testing application. 30
17. Sample programs with test suites for mutation experiments. 32
18. Code churn metrics within GitHub. 34
19. Mutation Testing with Parallel Deep Reinforcement Learning. 41
20. Possible mutants with one live mutant for experiment 1. 42
21. ML agent reward, loss and mutation performance for one live mutant. 42
22. Possible mutants with two live mutants for experiment 2. 43
23. ML agent reward, loss and mutation performance for multiple live mutants. 44
24. Possible mutants with no live mutants for experiment 3. 45
25. ML agent reward, loss and mutation performance for no live mutants. 45
26. Possible mutants with two live mutants for experiment 4. 46
27. Multiple threads with shared memory and two CPU cores. 47
28. Possible mutants with two live mutants for experiment 5. 48
29. Comparing Mutation Testing Approaches with Four Cores. 49
30. Mutation Testing with Reinforcement Learning in Visual Studio extension. 51

1

Chapter 1 - Introduction

 Mutation testing is a type of software testing proposed by (Lipton, 1971) where

program statements are deliberately changed to introduce simple errors so that test cases

can be validated to determine if they can detect the errors. The goal of mutation testing is

to reduce complex program errors by preventing the related simple errors. For example,

given a program that states if (a>=b) then c=1 else c=0 can be mutated by an operation

replacing >= with < producing if (a<b) then c=1 else c=0. When using test data of a=1,

b=0 the result c should be 1 but the mutant produces c=0. The test cases are executed

against the mutant code to determine if one fails, detects the mutant and helps ensure the

program is correct. A mutation score is calculated as the percent of mutants caught. One

major issue with this type of testing from (Jia and Harman, 2011) is that it becomes

computationally intensive to test all possible mutations for complex programs.

 This dissertation will present a practical approach for the application of parallel

machine learning within the context for mutation testing, including the selection of

mutation operators to reduce the computational cost of testing and improve test suite

effectiveness. With this, the need to increase the usage of mutation testing for complex

programs can be fulfilled. The proposal is to use reinforcement learning for mutation

testing that improves mutation scores achieved previously (Strug & Strug, 2018, June) by

predicting which mutation operators best identify deficient test coverage.

 These improvements will assist with the creation of a ‘live’ mutation testing process

within the .NET development environment that dynamically evaluates various mutation

operators, generates mutants and prioritizes test cases to perform real-time mutation

testing as code is modified. This will enhance a software developer’s ability to improve

testing processes and extend the work by (Derezińska & Trzpil, 2015). The contribution

2

of this paper’s research will support the shift-left testing approach, where testing is

performed earlier in the software development cycle when error resolution is less costly.

Problem Statement and Goal

 The problem is that continuous software testing can be a daunting process, even when

testing is engrained into the development process. Although attempts have been made to

address this problem (Demeyer et al., 2018), the approach to limit testing without test

case validation can discard pertinent tests. Testing can also become dispensable to meet

development deadlines. As discussed by (Martin et al., 2007) companies sometimes

deploy limited testing resources to find software defects. When testing becomes

incomplete it inevitably leads to faulty software. These defects are becoming more of an

issue as the reliance increases on software for essential services such as financial,

transportation, and healthcare.

 Many challenges lead to a lack of testing and faulty software. First, software testing

requires proper communication and documentation to define what is needed. The

potential for misinterpretation exists, which can lead to missing or invalid test scenarios.

Even valid test scenarios can become a challenge to execute and evaluate, since applying

all test scenarios can be labor-intensive and error-prone. These challenges result in less

than sufficient testing and increase the time developers spend on debugging. According

to recent reviews by (Campos & de Almeida Maia, 2017), the annual cost of debugging

software has reached $312 billion globally.

 To address this concern, testing must become more agile when integrated within the

software development process. With the adoption of Continuous Integration and

3

Continuous Delivery, the goal as described by (Shahin et al., 2017) is to reduce the time

to deliver software changes but lack of proper testing the goal cannot be fully realized.

Continuous Testing, which as described by (Demeyer et al., 2018) improves testing

feedback and must be incorporated with software delivery. To complement Continuous

Delivery with Continuous Testing, the Test Suite which is composed of Test Cases must

cover the software (i.e. test completeness) and identify defects that exist (i.e. test quality).

Another factor that needs to be addressed for the software testing process is the amount

of time and effort it can take to develop and execute a comprehensive test suite.

 The goal is to assist software developers with an approach for comprehensive testing

and improving testing effectiveness of their software implementation. It will evaluate the

factors that impact software quality then use parallel Reinforcement Learning (RL) for

mutation operator selection to identify deficient testing more effectively than a

classification-based approach (Strug & Strug, 2018, June). This dissertation proposes a

quantitative approach by measuring the faults detected by test suites built with RL-

assisted operator selection as compared to those developed without. Through the

implementation of these integrated mutation testing approaches, the expectation is an

increase in the percentage of defects detected (Qu et al., 2007).

Relevance and Significance

 The research proposed in this paper will provide benefits to current software

development trends, by improving upon recent work by (Derezińska & Trzpil, 2015) that

helped facilitate mutation testing. This dissertation will address this through the use of

machine learning for mutation testing and test case selection. The general goal with

machine learning as states by (Lu et al., 1996) is to obtain knowledge from patterns

4

within data, using various approaches to accomplish this goal. Mutation testing (DeMillo

et al., 1979) is a process that replicates program faults to validate the program test suite.

The mutation operators are functions that replicate common programming errors, such as

using an incorrect operator. During mutation testing the mutants are either caught by a

test case and considered killed or not caught and are considered live. The mutation score

(Namin et al., 2008) is the number of mutants killed divided by the total number of

mutants and indicates the test suite’s effectiveness. Test case selection using machine

learning was presented by (Ghiduk et al., 2018) to improve the test case prioritization

process. Machine Learning has already started to have an impact on software testing

techniques in many ways, as discussed by (Briand, 2008). The software testing process

consumes and generates an enormous amount of data. If the evaluation of this data is not

performed in an automated or efficient manner, such as parallel machine learning, the test

results may not be accurate or complete.

 To establish the importance of mutation testing for determining test effectiveness,

(Chekam et al., 2017) performed a comparison with other widely adopted test

effectiveness metrics, including statement coverage and branch coverage that avoids the

unreliable clean program assumption. Statement coverage is a minimal requirement that

measures the percentage of program statements that are exercised by the tests but since

this measure does not consider the program state and various conditions that can cause

the statements to execute differently. A stronger requirement called branch coverage is

also utilized. With branch coverage, it measures the percentage of program control flow

that is exercised by the tests. However, with both approaches, the measurement assumes

that the program is correct, but if the program contains defects these measurements may

5

be inadequate. By introducing program defects the mutation testing approach exercises

the tests more completely, thus providing a better measurement of the test effectiveness.

 The most significant aspect of this dissertation is the introduction of machine learning

for test case selection and mutation testing during the early stages of the development

process, as opposed to later after the development process has been completed. This

supports the ability to develop software in an agile manner, using the Test-Driven

Development (TDD) process proposed by (Beck, 2003) and the Continuous Integration

(CI) process proposed by (Booch, 1994). With TDD, software requirements are

incrementally encoded as tests that developers must satisfy by coding application logic.

The TDD approach was incorporated with mutation testing by (Derezińska & Trzpil,

2015) to provide an interactive process for more agile mutation testing. CI is a

development practice where software developers frequently integrate code changes to a

shared source repository. Test case selection using reinforcement learning was utilized by

Netflix (Kirdey et al., 2019) to develop a system called Lerner that integrates with their

CI framework for test execution scheduling. Using TDD and CI helps to reduce program

defects by establishing and executing a test suite that ensures program logic is working as

expected.

Barriers and Issues

 Much research has been conducted related to the issues with software testing

(Whittaker, 2000) which includes selecting, running and evaluating test scenarios. Some

additional issues are selecting the variable data to be used, execution paths to cover,

which test cases to automate and how to evaluate the test case results. For example, if a

method is supposed to find all occurrences of some string within an arbitrary text, how

6

can we determine that each instance will always be detected? Although there are many

approaches to address some of these issues, such as using category-partition for

generating test cases (Ostrand and Balcer, 1988) and using data flow and control flow for

evaluating test cases (Hutchins et al., 1994), the issues are not completely resolved since

software is still released with defects. To address the barrier and limitation with the

variable data, the test scenario evaluation needs to explore the possible combinations. If

the algorithmic approach is static, such partitioning there will be inherent limitation based

on the data provided. But if the algorithm is able to explore by taking various actions and

receive rewards for success, using the proposed reinforcement learning approach will

result in a more dynamic approach.

 The category-partition method (CPM) for creating test suites uses a generator to

produce test specifications from functional specifications. The advantages of this method

are that the tester can easily modify the test specification when necessary and can control

the complexity and number of the tests by annotating the test specification with

constraints. One major barrier with the implementation of CPM is the size of the test suite

generated, which can be huge for complex programs. Given a method having five

parameter variables and two global variables with a minimum of two possible values per

variable the product of all choices which would result in 27 = 128 test cases. With non-

trivial programs, the number of variables, range of possible values and number of

methods is much higher, so the potential number of tests will be much higher as well.

 With control flow, the test cases are selected with the goal to ensure that every source

statement is executed at least once. With data flow, the goal is to evaluate test cases to

ensure that they exercise the code such that execution proceeds from the definition of a

7

memory location to the use of that memory location for each DEF-USE pair. The

limitations with both approaches are that it is difficult to understand complex code logic,

which is necessary to achieve various coverage levels, then distinguish the feasible vs.

non-feasible paths and the process can be very time consuming for non-trivial programs.

The approach proposed in this research to utilize parallel processing will help reduce the

issue of time consumption by partitioning the problem, then allowing each component to

evaluate a subset of test cases simultaneously.

 Lastly, there are barriers to measuring the testing progress that needs to be overcome

to realize an integrated testing approach. For the approach to be effective, the measure

should give an updated indication of the testing progress. One question posed by

(Whittaker, 2000) is if large numbers of defects are found is this good or bad? It could be

an indication of comprehensive testing or there may still be many undetected defects.

With the proposed approach of using mutation testing, the test suite effectiveness

becomes measurable using the mutation score. The mutations are defects and will be

generated with the intention of detection. If not detected, the test suite can be enhanced

to ensure testing is comprehensive.

Summary

 This chapter introduced mutation testing, mutation operators and the importance of

software testing. The goal of the proposed research is to develop an approach to assist

software developers with improving testing effectiveness and the correctness of their

implementation based on given requirements. To complete this goal, the algorithm will

utilize parallelized reinforcement learning for mutation operator selection and should

result in a more efficient testing solution.

8

Chapter 2 - Review of the Literature

 The usage of machine learning, software testing and parallel processing are key

elements to achieve this dissertation’s goal of a more effective testing process. This goal

will be implemented by mutation testing and reinforcement learning. By using the

mutation score the testing effectiveness will be able to be measured. The following

sections review the relevant literature:

 Machine Learning

 Software Testing

 Parallel Processing

Machine Learning

 The process of engineering test suites can be a formidable effort. Complex

applications can require many test cases within the test suite. These tests must consider

the inputs and outputs of the code they are testing. By using machine learning (Briand et

al., 2008) developed a process to learn relationships between the inputs and outputs as the

test suites are executed. With this information, the testers can understand the capabilities

of the test suite. Their process uses the C4.5 decision tree algorithm (Quinlan, 1993)

within the WEKA (Waikato Environment for Knowledge Analysis) machine learning

library (Frank et al., 2016) since it produces machine learning models that are easier to

interpret. The paper reported promising results by eliminating redundant test cases and a

significant reduction in the test suite size but also found a reduction in the number of

9

faults detected, leaving room for the test suite improvements that this paper’s research

hopes to obtain using machine learning to assist with identifying missing test cases.

 Another use of machine learning for mutation testing was presented by (Guillaume,

2015) and (Kurtz Jr, 2018). Their basic approaches were to reduce the number of

mutants generated by randomly selecting a percentage of mutants or by reducing all

mutants for a given operator. Those approaches were compared with a machine learning

approach for mutation operator selection. The papers conclude that a machine learning

approach is significantly superior but anticipate future improvements by more advanced

machine learning approaches, such as multi-layer perceptron. This dissertation proposes

to explore these improvements among others.

 Recently progress has been made using machine learning in the context of mutation

testing. With their earlier work (Strug & Strug, 2012) presented an approach that

represented mutants using a graph kernel to compare mutant similarities and then used k-

Nearest Neighbor (k-NN) machine learning algorithm to predict if a test would detect a

mutant, reducing the number of mutants executed. Additional research by (Strug & Strug,

2017) proposed an updated kernel called a hierarchical control flow graph (HCFG),

which is a combination of control flow diagram and hierarchical graphs. This limited

mutant execution in a more dynamic way by utilizing the structure of the program for

which the mutants were generated. In their next research, (Strug & Strug, 2018, June)

proposed to simplify the mutant evaluation process by using bytecode comparison instead

of source code control flow, which was more complicated. The latest research by (Strug

& Strug, 2018, September) takes an even more extreme approach by predicting the

mutation testing results (killed vs. live) based on machine learning models, without

10

having to execute any mutation testing after the initial training process. A similar

approach was proposed by (Zhang et al., 2018) except they used a Random Forrest

machine learning algorithm (Liaw & Wiener, 2002), which is a generalization of tree-

based classification that uses multiple decision trees to correct overfitting, to create their

predictive mutation testing.

 While those papers reduced mutation execution using machine learning, this

dissertation proposes a novel approach using machine learning to limit mutation

operators and generate mutants during program development, thus reducing the number

of mutations generated during an agile development process. The proposed research of

applying test case selection and mutation testing in real-time will help keep the test suite

more updated and predictable by measuring mutation score of the test suite over time. To

utilize a more effective machine learning algorithm, instead of using a supervised

learning approach, this paper proposes using a Reinforcement Learning (RL) approach as

presented by (Sutton & Barto, 1998). As shown in Figure 1, the agent learns to choose

actions in an environment by performing actions then observing the subsequent states and

rewards. It continues until the reward is consistent and acceptable.

Figure 1. The general Reinforcement Learning approach.

This is another key difference when compared with the supervised learning approach

presented by (Strug & Strug, 2018, June) and provides the advantage of agility.

11

This approach is model-free, which means it has no initial concept of the environment’s

dynamics and utilizes online learning, where the agent is constantly learning while

running. This is appropriate for test case selection since there is no strict model to

identify faults and according to (Campos & de Almeida Maia, 2017), the existence of

faults is prevalent within software systems. For test selection, given previous test results

in each state the agent performs an action that prioritizes the test cases based on the

reward of failed tests from the environment during test cycle execution. This process was

proposed by (Spieker et al., 2018) and is shown in Figure 2.

Figure 2. Reinforcement Learning for Test Case Selection.

 One of the challenges with machine learning is determining the data elements, called

features, to use during training that will produce accurate predictions during testing. The

paper by (Jalbert & Bradbury, 2012) utilized the Support Vector Machine (SVM)

machine learning algorithm to categorize mutation scores (i.e. low, medium, high) which

reduces the mutation score prediction to a three-group classification problem. The

machine learning features include various class-level metrics (e.g. # of methods, # of

attributes, inheritance depth) and method-level metrics (e.g. # lines of code, # of

parameters, nested depth, cyclomatic complexity) as well as accumulated test case

metrics (e.g. average # test method lines of code, average # test parameters, average test

12

cyclomatic complexity). To collect these metrics required using several Java tools, which

included an Eclipse IDE plugin for code metrics, EMMA for test metrics and Javalanche

for method-level mutations. This technique for predicting mutation score (# mutants

killed / total # mutants) achieved an accuracy of >50% using source code and test suite

metrics which outperformed the random accuracy of 33.33%.

 In the work by (Zhang, et al., 2018) additional metrics were evaluated to investigate

the contribution of the 14 individual features, including propagation features (method

lines of code, method complexity), infection features (mutation operator, mutated

statement type), and execution features (number executed, number tests covering mutated

statement). The features were used by various classification algorithms, including

Random Forrest, Naïve Bayes, SVM and C4.5 Decision Tree. It was determined that the

coverage features, including the number of times that the mutation was executed by tests

and the number of tests that covered the mutation, were the most important features.

 Various source code and test metrics are evaluated as features by (Spieker et al., 2018)

using Reinforcement Learning (RL) to prioritize test case selection. In Figure 3, the

reward function utilized various features, including a count of test failures, each test

failure and test failure time. The states (i.e. test case metrics) are provided as inputs Xi to

the network. Feedforward estimates the policy π based on current weights and activation

functions. The actions (i.e. test case priority) are output Oa from the network. A random

factor is used for exploration and experience for replay training. During backpropagation,

weights Wi are updated using error estimate or loss from loss function Oa - Oe using

gradient descent. Neural networks are shown effective for data mining (Lu et al., 1996).

13

Figure 3. The Neural Network (NN) used by reinforcement learning.

 To evaluate the performance of the network, instead of only using percent of faults

detected (PFD) the results were compared using the normalized average percentage of

faults detected (NAPFD) from (Qu et al., 2007) as an evaluation metric. The goal of

using this metric is to detect as many faults m with the least test cases run n where p is the

faults detected by executed test cases divided by the faults detected by all test cases and

TFi is the number of test cases that detect fault Fi. In the following example: m=8, n=3,

p=5/8. The NAPFD of 44% considers how fast faults are detected, as opposed to the

PFD of 62.5% as shown in Figure 4 illustrates a sample calculation of the NAPFD, which

is used as a more accurate metric to assess the test suite’s effectiveness.

n

p

nm

TFTFTF
pNAPFD m

2
21

44.0

32
8
5

38

01112020

8

5

14

Figure 4. The Normalized Average Percentage of Faults Detected (NAPFD).

Software Testing

 One challenge with software testing is the large number of tests required to evaluate

complex applications. When there are many test cases within the test suite, the tests can

be classified, ordered or prioritized to improve the overall effectiveness or reduce the

number of test executions required (Lenz et al., 2013). Some techniques for prioritizing

test cases were presented by (Rothermel et al., 2001) in the context of regression testing.

They define the prioritization problem, given test suite T, permutations PT of T and

function F from PT to real numbers award values so that the best ordering can be

determined. Although there are many factors to consider for the award value, some are

increased test coverage or faster fault detection. For an approximation of the fault

detection potential, the well-established method of mutation score from mutation analysis

(Jia and Harman, 2011) is utilized. In the work by (Vincenzi et al., 2006) an incremental

approach is taken to limit the time and resource constraints with mutation testing. The

mutation testing improvements proposed by this dissertation could improve past research

15

by (Rothermel, et al., 2001) that present non-machine learning techniques for test case

prioritization, as well as provide guidance for future research.

 The effort and time required to perform testing can also be mitigated by risk-driven

testing, as discussed by (Briand, 2008 and Spinellis et al., 2009) where fault prediction

models are used to identify potential fault locations and reduced testing effort by

prioritizing test cases based on potential risk. Another approach is using Test Impact

Analysis (TIA), which is a technique that helps determine which subset of tests need to

execute for a given set of code changes. Microsoft has spent significant effort to develop

the Test Impact Analysis approach. They have patented the process (Huene et al., 2011)

which generates dependency maps between source code changes and tests in automated

builds by using test coverage within a data store. It is incorporated within the Visual

Studio IDE and Azure DevOps Services. As illustrated in Figure 5, to reduce testing

effort during automated builds Test Impact Analysis1 limits execution to only the test

cases that are necessary for code that has been added or updated. This figure illustrates

the ability to limit test case execution by selecting ‘Run only impacted tests’ that have

been impacted by related code changes.

Figure 5. Test Impact Analysis within Microsoft Azure DevOps Services.

1 https://blogs.msdn.microsoft.com/devops/2017/03/02/accelerated-continuous-testing-with-

test-impact-analysis-part-1/

16

 For additional savings in mutation testing execution time, this dissertation considers a

related machine learning approach similar to that of (Menzies et al., 2007 and Huang et

al., 2017) using static code attributes (e.g. lines of code, lines of comments) and effort

aware attributes (e.g. lines added, line updated, lines deleted), as well as test case metrics

to assist with defect predictions. With the idea that the approaches could be combined to

improve test case and mutation operator selection.

Parallel Processing

 The last significant aspect of this dissertation is the introduction of parallel processing,

to reduce the learning time which allows the process to become more practical in real-

world software development. The benefits of using parallel methods for reinforcement

learning were established by (Nair et al., 2015) but utilized a massively distributed

approach, which would not be practical in many software development situations where

developers work locally, possibly disconnected or with limited network resources. To

address this concern the work by (Mnih, Badia et al., 2016) evaluated various

asynchronous methods for deep reinforcement learning, including parallelization using

multiple threads locally on computers with multicore CPUs. As stated by (Etiemble,

2018) since the CPU frequency limit was reached there has been a shift towards

multicore processors and according to (Patterson, 2010) successful parallel software

improves processing efficiency by using the multiple cores. When developing a multi-

threaded approach, (Boehm, 2005) expressed the importance to consider concurrency

issues as well as the performance benefits and using a language that was originally

designed with thread support, such as C#.

17

Summary

 By applying machine learning techniques, the task of mapping input parameters to

outputs actions can be accomplished, but care must be taken on using the correct machine

learning approaches. The process of software testing can require significant effort in

terms of test execution, so choosing to execute fewer tests that still validate the

application correctness is beneficial. Reductions in the learning time can be achieved

with parallel processing techniques. In the next chapter, a description of the

methodology will be presented on how these techniques will be combined for the

proposed research to be completed.

Chapter 3 - Methodology

Introduction

 The proposed research looks to build a ‘real-time’ process capable of selecting

mutation operators during mutation testing that increases the test suite effectiveness. To

achieve this, a parallel reinforcement learning algorithm must be implemented. The

algorithm will be measured by the loss and reward values defined earlier.

Approach

 Since the idea is to integrate testing within the software development process, the

approach must be easily accessible to the software developer. The proposal is to enhance

with parallelized ML the approach by (Derezinska, 2006), (Derezińska & Szustek, 2007,

2008) and (Derezińska & Trzpil, 2015) where mutation testing is performed in .NET by

Visual Mutator2, a Visual Studio Integrated Development Environment (IDE) extension.

18

Mutation testing starts with a selection of code, tests, mutation operators in Figure 6, then

mutant generation and finally test suite evaluation in Figure 7. Figure 6 illustrates the

ability to manually configure mutation testing within the IDE using all selected mutation

operators. Figure 7 illustrates the ability to automatically generate and execute first order

mutants (live vs. killed) to validate the test suite. The enhanced extension will utilize

reinforcement learning for mutation operator selection.

Figure 6. Microsoft Visual Studio extension with mutation operators.

Figure 7. Microsoft Visual Studio extension with mutation test results.

2 https://visualmutator.github.io/web/

19

 To incorporate a more efficient mutation generation process, a machine learning

driven suggestion for mutation operators would be incorporated. The suggestions would

be based on mutation operator performance during reinforcement learning using code

repositories then made available to developers in the context of current program code,

similar to Microsoft’s IntelliCode feature3 in Figure 8 that provides Artificial Intelligence

(AI) code completion suggestions as stars but requires offline supervised training.

Figure 8. IntelliCode within Microsoft Visual Studio.

 To accomplish the research goals a quantitative approach will be utilized. During the

mutation operator selection process, data will be gathered on the number of mutations

generated, mutation score and testing execution time. This data can be used to measure

and compare the performance of mutants generated with and without the use of machine

learning mutation operator selection. The non-machine learning approaches to mutation

operator selection will be to 1. Select all operators, 2. Select operators randomly, 3.

Select a specific subset of operators. This will help to determine how effective machine

learning is at reducing the total number of mutants generated and reducing execution time

while continuing to provide an accurate analysis of the test suite.

 To reduce test execution, an incremental process to perform mutation testing during

program coding would be developed, called ‘live’ mutation testing. Reinforcement

learning is appropriate for mutation operator selection since there is no strict model for

the impact of mutations on software system test suites.

3 https://docs.microsoft.com/en-us/visualstudio/intellicode/faq

20

With ‘live’ mutation testing, the mutation operators will be selected, mutations will be

generated then tests will be selected and executed as the software is developed so missing

tests can be identified earlier. This will help to promote shift left (Demeyer et al., 2018)

where testing is brought closer to the beginning of the Software Development Lifecycle

(SDLC), as opposed to testing towards the end of the SDLC.

 The ‘live’ unit testing feature4 is already available within Microsoft’s Visual Studio

IDE and illustrated in Figure 9 where both test coverage evaluation and unit test

execution are performed in real-time for test results from the test suite. The test coverage

identifies the amount of code tested but ‘live’ unit testing does not guarantee test quality,

which is how well does the test suite perform at identifying potential defects?

Figure 9. Live Unit Testing within Microsoft Visual Studio.

 With ‘live’ mutation testing the goal would be to identify a single syntactic error,

placing a higher emphasis on first order mutants (FOM), where mutants are generated by

applying a mutation operator once against the source code.

4 https://docs.microsoft.com/en-us/visualstudio/test/live-unit-testing

21

This is opposed to testing later when there is more of a chance that multiple errors have

been introduced, reducing need for second order mutants (SOM) and higher order

mutants (HOM) that simulate multiple syntactic errors. HOMs are often constructed by

first formulating the FOMs, then joining them together, which takes longer to compute

(Ghiduk et al., 2018).

 To execute test case selection and mutation testing the code libraries will need to have

associated test suites. With the introduction of Test-Driven Development (TDD) by

(Beck, 2003), more test cases are being created by the business and quality analysts that

play a role in test development. There are many tools available, including some

evaluated by (Honfi & Micskei, 2019) that allow for unit test generation. Microsoft’s

IntelliTest feature5 in Figure 10 generates test suites based on program analysis. This

figure illustrates how it can automatically generate test suites with high code coverage

using automated white box analysis. Since the reachability of program statements is not

decidable, the goal (Tillmann & De Halleux, 2008) is to provide a good approximation

and high coverage of the program statements.

Figure 10. IntelliTest within Microsoft Visual Studio.

5 https://docs.microsoft.com/en-us/visualstudio/test/intellitest-manual/introduction

22

Once the tests have been developed, programmers can focus on the task of implementing

more complex logic to satisfy the tests. TDD can also lead to a more accurate

representation of the requirements since the unit tests are more formalized using

structured syntax as opposed to using manual testing processes that rely on requirements

documentation with abstract natural language.

 For machine learning to be successful, an evaluation of features will be performed,

including code metrics (e.g. total number of methods, total lines of code, operator

occurrence counts), effort metrics (e.g. new vs. updated classes, new vs. updated

methods, modified lines of code) and test metrics (e.g. total number of test cases, test

results, test duration, total number of mutants, live vs. killed mutants, mutation score).

Given the features, the algorithm would attempt a binary classification and predict usage

(i.e. select vs. deselect) for each mutation operation with the objective to limit mutants

necessary to evaluate the test suite’s effectiveness. For mutation testing, Figure 11

proposes agent prioritizing mutation operators for methods and classes within code repo.

Figure 11. Reinforcement Learning for Mutation Operator Selection.

 To constantly evaluate the results of the machine learning mutation operator advice,

there must be an efficient process to execute reinforcement learning. To meet this

demand the core concept of machine learning in Figure 12 the approach will utilize a

23

parallel process having n multiple agents, each with a deep Q-network to predict mutation

operators based on rewards, as well as randomly sampled shared experience replay to

allow the agents to learn from each other. This improves on the approach of (Nair et al.,

2015) by using both multi-threaded agents and shared experience replay memory, which

was suggested as future work. The results can be evaluated with different network,

agent, environment configurations and without synchronization of network gradients

(Grounds & Kudenko, 2005) or parallelized stochastic gradient descent addressed by

(Recht et al., 2001).

Figure 12. Reinforcement Learning with Parallel Processing.

Experiment Design

 To evaluate the approach, as well as issues and barriers previously mentioned, several

experiments will be conducted and measured. The proposed experiments are as follows:

 Experiment 1: Learning Mutation Testing with One Live Mutation
 Experiment 2: Learning Mutation Testing with Multiple Live Mutations
 Experiment 3: Learning Mutation Testing with No Live Mutations
 Experiment 4: Comparing Mutation Testing Approaches with Two Cores
 Experiment 5: Comparing Mutation Testing Approaches with Four Cores

24

Implementation

 The algorithm defined in Chapter 3 Methodology; Figure 12 was implemented as a

Windows application called Mutation Testing with Parallel Deep Reinforcement

Learning (MTPDRL)6. The experiments were conducted using Windows Form

(MutantTesterDRL.exe) for reinforcement learning and Windows Console

(MutantTesting.exe) for mutation testing applications with object-oriented programming

in C# using the custom classes in Figure 13. In addition, existing open-source libraries

were used, such as Deep-QLearning7, Mutty8 and Cecil9.

Figure 13 Mutation Testing with Parallel Deep Reinforcement Learning code map.

6 https://github.com/mstewart1972/MutationTestingWithDeepParallelReinforcementLearning
7 https://github.com/dubezOniner/Deep-QLearning-Demo-csharp
8 https://github.com/angusmcintosh/Mutty
9 https://github.com/jbevain/cecil

25

MutantTesterDRL.exe

 The DeepQLearning.FormDriver class is used to specify parameters and instantiate

instances of the DeepQLearning.FormAgent class as thread or process. The FormAgent

instantiates the DeepQLearning.DRLAgent.QAgent class which uses the DeepQLearn,

DeepQLearnShared or DeepQLearnSharedSingleton classes for reinforcement learning.

DeepQLearn

 This class was part of the original Deep-QLearning library and utilizes the Trainer

class within the ConvNetSharp library to define and utilize neural networks as part of the

reinforcement learning process. There are multiple algorithms supported to update

network weights, including the classic Stochastic Gradient Descent but this research

utilized ADADELTA by (Zeiler, 2012). The idea with this method of updating the

network weights during backpropagation is to prevent the need for manual tuning of the

hyperparameters, such as learning rate or momentum and handle adverse conditions with

respect to the input data types and network layer units.

DeepQLearnShared

 This class was added as an extension for reinforcement learning with shared

experience and inherits functionality from the DeepQLearn class. The shared experience

replay was implemented using a static ConcurrentDictionary, which is part of the .NET

framework System.Collection.Concurrent namespace and is thread-safe. During

backpropagation agents will contribute round-robin towards the shared experience,

26

replacing randomly when maximum experience limit is reached and randomly choose a

specified batch size number of elements for network training.

DeepQLearnSharedSingleton

 This class was added as an extension for reinforcement learning with shared

experience but was implemented using the singleton pattern that ensures instantiation is

limited to a single instance. The class also allows serialization to save experience.

Experience

 This class maintains the state0, action0, reward0, state1 fields where an agent is in

state0 and does action0. The environment then assigns reward0 and provides new state,

state1. Experience stores this information, which is used during the Q-learning update.

World

 This class implements the environment, which is comprised of agents and codebase.

The agents utilize actions (i.e., mutation operators) as a means to evaluate the codebase

(i.e., code pieces) for rewards (i.e., mutation score). For the experiments, mutation

operator selection was evaluated using different methods, including random or machine

learning. To maintain the reinforcement learning cycle, the world utilizes a clock that

ticks for each forward/backward propagation and can be set with a duration limit. To

ensure that the machine learning process converges, DeepQLearning.FormAgent

implements criteria (if average Q-learning loss is >=0.50, checking every 100 intervals),

that evaluates and resets the experience if the criteria is not met, as shown in Figure 14.

27

Figure 14. Reinforcement learning with experience reset when criteria not met.

Item

 This class implements the rewards, red is positive, and green is negative, that the agent

can detect. As shown in Figure 14, items are placed at locations within the environment.

Agent

 This class implements the agent and has partial observability within the environment,

limited to the module that it is processing. The agent has one eye that can detect item

properties using the Eye class, which for these experiments use static values since a

single module and class were utilized. The Cecil8 library provides metadata on modules,

types and methods which would allow detecting properties, such as type.name,

type.methods.count, type.fields.count to learn within a larger codebase containing

multiple modules and types.

28

The agent has 1 eye, can detect 3 item properties, can take 2 ^ number of mutation

operators possible actions and has temporal window of 4, so the number of inputs is

current state(1x3) + previous states(1x3x4) + actions(2^4x4) = 79. The item text and

integer values are word2vec9 or one hot encoded as real numbers, which become inputs to

the network for forward propagation through the neural network, as shown in Figure 15.

Input Layer ϵ ℝ79 - Hidden Layer ϵ ℝ96 - Hidden Layer ϵ ℝ96 - Output Layer ϵ ℤ16

Figure 15. Neural network configuration utilized for reinforcement learning.

9 https://github.com/tmteam/Word2vec.Tools

29

 The number of actions is 2^number of mutation operators. During research it was

determined that the machine learning performed best with limited actions, so the

algorithm utilized a mutation category to limit the number of operators. Even though the

number of actions can vary between categories, it is fixed to 2^4=16 for the basic

arithmetic replacement categories (e.g., basic addition where + is replaced with -, *, /, %).

The output is an integer representing one of the possible combinations of the category

mutation operators, where each operator is either enabled or disabled, that the agent

chooses as action to take for mutation testing. The operation occurrence count of each

mutation operator combination utilized is maintained to analyze the agent results.

 The reward function computed for backward propagation is favorable to mutation

operators that result in live mutations and unfavorable to operators that result in killed

mutations. This is accomplished using multiple conditions, as well as factors. First, the

reward = min_reward where min_reward = (1 / number mutation operators) * minFactor

when there are no live mutations, to promote disabling the most possible operators.

Second, reward = score_reward + max_reward where score_reward is 1 - mutation score

and max_reward is number mutation operators * max_factor when score_reward != 0,

which promotes enabling the most possible operators.

MutantTesting.exe

 The MutantTester.MutationTester class and MutationTest() method performs mutation

testing based on parameters specified by the DeepQLearning.DRLAgent.Agent class

during the Backward() propagation method. The results from the MutantTesting.exe are

30

parsed and the Reinforcement Learning reward is calculated for the

DeepQLearning.DRLAgent.DeepQLearn class to retain experience and adjust the

network weights using the Trainer class by the Train() method. The reward function

looks to select mutation operators that maximize the result of live mutations. A detailed

diagram of the mutation testing program is shown in Figure 16.

Figure 16. Code map for the Mutation Testing application.

 The BuildOriginalCode() method is called by MutationTest() method to compile the

.NET solution that contains the program source code for both the application logic and

the unit test suite. It utilizes the .NET command-line interface (CLI) and build command

to build the project and its dependencies into a set of binaries. The binaries include the

project's code in Intermediate Language (IL) files with a .dll extension.

31

 The GenerateMutants() method is called by MutationTest() method, which uses the

mutation operators passed to generate mutated copies of the original IL that was built.

The MutantGeneration.ReinforcementMutationCreation.ReinforcementMutationFinder

class and GetAllReinforcementInstructionMutations() method takes both the mutation

category (e.g., BA=basic addition replacements) and operators (e.g., 1111-all, 1000-

addToMul, 0100-addToSub, 0010-addToDiv, 0001-addToRem, 0000-none), which allows for

the reinforcement learning algorithm to choose various mutation operator combinations.

 For IL manipulation, the MutantGeneration.MutationGenerators namespace contains

classes for the various mutation categories (e.g., InstructionMutationGenerators) that

implement the GenerateMutations() method to generate Mutation objects, for each of the

classes, methods, or instructions in each of the applications modules. In order to

decompile and alter the IL code, the Decompiler.DllDecompiler class uses the

Mono.Cecil8 library.

 Finally, the TestMutants() method is called by the MutationTest() method to execute

the unit test suite against all of the mutated assemblies. The DotnetTestFramework class

and the TestAsync() method supports the MSTest9, NUnit10 and xUnit11 testing

frameworks. It utilizes the .NET command-line interface (CLI) and test command to

execute the unit tests within the given solution and reports the success or failure of each

test. For each test suite execution, results from unit tests are returned as either test fail

(i.e., killed mutation) or test pass (i.e., live mutation).

9 https://github.com/Microsoft/testfx-docs
10 https://nunit.org/
11 https://xunit.net/

32

Datasets

 To perform mutation testing, sample programs with test suites were created as shown

in Figure 17. These programs perform basic arithmetic operations and corresponding test

methods that utilize the NUnit10 test framework. This allows the experiments to focus on

the backpropagation process for mutation operator selection results.

Figure 17. Sample programs with test suites for mutation experiments.

33

 By using a reinforcement learning algorithm, some of the data required for learning is

generated by the agent itself by trial-and-error actions within the environments. This is

unlike supervised learning, where large amounts of labeled data with the correct input-

output pairs are explicitly presented. Most of the reinforcement learning happens online,

as the agent interacts with the environment over several iterations and eventually begins

to learn the policy that describes which actions to maximize the reward. This was one of

the driving factors for choosing RL as opposed to other ML approaches.

 To perform additional mutation testing, additional code libraries can be identified.

Now that a number of high-profile C# software development organizations, including

Microsoft have transitioned to an open-source approach, including test suites available

for analysis. In the research from (Derezinska, 2006) the author evaluates mutation

testing operators using an array of subject C# programs, including NUnit10, NHibernate,

NAnt and Microsoft’s Mono which in 2001 was an early attempt at open-sourcing the

.NET Common Language Infrastructure (CLI) for cross-platform portability. In

subsequent research on mutation testing tools from the same author (Derezinska, &

Szustek, 2008), only two years later there were more C# programs available for analysis.

These included Spring.NET, Castle.Core, NCover and CruiseControl.NET. Since then,

even more open-source C# libraries have been made available on GitHub with

Microsoft’s open-source re-development of the .NET Standard called .NET Core, which

includes runtime, framework, compiler and tool components. Using open-source projects

prevents the extra effort and potential legal issues with commercial data, as well as

allows future researchers to validate and contribute to the goals set forth by this

dissertation.

34

 To evaluate forward propagation of machine learning features, more complicated

programs with multiple classes and assemblies will be required. Additional data that is

required could be obtained using code, build and test metrics from the continuous

integration of open-source libraries on public GitHub repositories as shown in Figure 18.

Figure 18. Code churn metrics within GitHub.

 To perform test case selection evaluation, datasets are available that provide test case

results and have been used by previous research. This idea for ‘live’ mutation testing

uses an approach similar to that of (Madeyski, & Kawalerowicz, 2017) when capturing

data for their continuous defect prediction process. There are other public datasets

available, including Kaggle.com and governmental organizations, such as NASA that

have been used by previous research on software fault analysis (Menzies et al., 2007).

Measures

 For an evaluation of reinforcement learning for mutation testing, the experiments will

use measurements: 1. Loss, 2. Reward, 3. Elapsed time, 4. Mutation score and 5. CPU %.

35

Experiment 1: Learning Mutation Testing with One Live Mutation

 The purpose of this experiment is to determine if reinforcement learning can identify

the optimal mutation operator selection for a program and test suite that has one possible

live mutation. The BasicMath program, unit test and basic addition mutation in Figure 23

will be used. In this scenario, the algorithm should identify that the combination of 1000

is the correct combination to turn off all but the one mutation operator (i.e., + to *) that

will produce live mutant and identify faulty test case. The environment will allow the

agent to run until the reward converges or 24 hours. This first experiment’s success

criteria are the ability for the reward function to converge and train the agent to

successfully navigate the environment, maximizing rewards and correct operator

selection. The failure criteria are the inability of reinforcement learning to train the agent

successfully or cause loss function to reside in local minima. These results will be

documented and utilized as justification for subsequent experiments. The result from this

experiment will be formatted as Table 1.

Table 1. Experiment 1 results format.

36

Experiment 2: Learning Mutation Testing with Multiple Live Mutations

 The purpose of this experiment is to determine if reinforcement learning can identify

the optimal mutation operator selection for a program and test suite that has multiple live

mutations. The BasicMath5 program, unit test and basic modulo mutation in Figure 23

will be used. In this scenario, the algorithm should identify that the combination with

0011 is the correct combination to turn off all but two mutation operators (i.e., % to / and

% to *) that will produce live mutants and identify faulty test cases.

Table 2. Experiment 2 results format.

The success criteria will be similar to the first experiment in that the agent must

successfully navigate the environment, maximizing rewards and correct operator

selection. The result from this experiment will be formatted as Table 2.

37

Experiment 3: Learning Mutation Testing with No Live Mutations

 The purpose of this experiment is to determine if reinforcement learning can identify

the optimal mutation operator selection for a program and test suite that has no possible

live mutations. In this scenario, since all mutations are killed, the algorithm should

identify 0000 is the correct combination to turn off all mutation operators since none will

produce live mutants that identify faulty test cases. The BasicMath2 program, unit test

and basic subtraction mutation in Figure 23 will be used.

Table 3. Experiment 3 results format.

The success criteria will be similar to the first two experiments in that the agent must

successfully navigate the environment, maximizing rewards and correct operator

selection. The result from this experiment will be formatted as Table 3.

38

Experiment 4: Comparing Mutation Testing Approaches with Two Cores

 The purpose of this experiment is to evaluate the impact of parallel deep

reinforcement learning selection of mutation operators vs. selection of all or random

operators using agents as multiple threads on the mutation testing and operating system

performance. During reinforcement learning, 2 agents with duration of 1500 intervals for

5 runs will be executed on a laptop with 2 physical cores, for total of 2*1500*5 = 15k

tests. Each run will execute until reward convergence is determinate, based on the

baseline experiment results. The average should mitigate the risk of anomalies. For this

experiment operating system performance metrics will be collected using Windows

process explorer, as proposed by (Huffman, 2014). This experiment will guide the

development of Visual Studio extension for mutation testing operator selection. The

BasicMath2 program, unit test and basic addition mutation in Figure 23 will be used.

Table 4. Experiment 4 results format.

For this experiment a ranking will be assigned to the different configurations based on the

metric of live mutant ratio, which is calculated as average mutants live / average mutants

total. The success criteria will be similar to the previous experiment in that the agent

must successfully navigate the environment but in addition will include top configuration

ranking metric. The result from this experiment will be formatted as Table 4.

39

Experiment 5: Comparing Mutation Testing Approaches with Four Cores

 The purpose of this experiment is to evaluate the impact of parallel deep

reinforcement learning selection of mutation operators vs. selection of all or random

operators using agents as multiple threads on the mutation testing and operating system

performance. During reinforcement learning, 2 agents with duration of 1500 intervals for

5 runs will be executed on a laptop with 4 physical cores, for total of 2*1500*5 = 15k

tests. Each run will execute until reward convergence is determinate, based on the

baseline experiment results. The average should mitigate the risk of anomalies. For this

experiment operating system performance metrics will be collected using Windows

process explorer, as proposed by (Huffman, 2014). This experiment will also guide the

development of Visual Studio extension for mutation testing operator selection. The

BasicMath2 program, unit test and basic addition mutation in Figure 23 will be used.

Table 5. Experiment 5 results format.

For this experiment a ranking will be assigned to the different configurations based on the

metric of live mutant ratio, which is calculated as average mutants live / average mutants

total. The success criteria will be similar to the previous experiment in that the agent

must successfully navigate the environment but in addition will include top configuration

ranking metric. The result from this experiment will be formatted as Table 5.

40

Resources

 For this research, the following basic and available resources were required:

 Laptop – Developer machine with 2 physical Intel ® Core® CPU @2.50GHz
processors (4 logical processors), 16GB memory (L1 cache:256KB, L2
cache:1MB, L3 cache:8MB) and Windows 10 64-bit operating system.

 Laptop – Developer machine with 4 physical Intel ® Xeon® CPU @3.00GHz
processors (8 logical processors), 16GB memory (L1 cache:256KB, L2
cache:1MB, L3 cache:8MB) and Windows 10 64-bit operating system.

 Programming software – The C# programming language (Microsoft Corporation,
2013) and Visual Studio integrated development environment (IDE).

 Analysis software – Windows process explorer (Microsoft Corporation, 2019).

 Documentation software – Microsoft Office (2019).

Summary

The experiments will be performed while also running other developer applications,

including Visual Studio, Microsoft Outlook, Microsoft Word, Microsoft Excel, Microsoft

Teams, Chrome Internet Browser. This will help to determine the feasibility of running

the reinforcement learning process in real-world situations and provide a better estimate

of the metrics captured in the experiment results.

41

Chapter 4 – Results

Introduction

 The experiments previously designed were conducted. To execute the experiments a

sophisticated multi-thread, multi-process test-harness application described in the

implementation section was utilized, Mutation Testing with Parallel Deep Reinforcement

Learning (MTPDRL)6 is shown in Figure 19. It was based on the Q-learning research by

(Mnih, Kavukcuoglu, et al., 2013) and the aforementioned Deep-QLearning6 library that

implemented reinforcement learning using a single-threaded process. The MTPDRL

application was built to specify parameters, execute experiments and visualize data. The

output data was collected, aggregated and prepared for the following results.

Figure 19. Mutation Testing with Parallel Deep Reinforcement Learning.

42

Experiment 1: Learning Mutation Testing with One Live Mutation

 The purpose of this experiment is to determine if reinforcement learning can identify

the optimal mutation operator selection for a program and test suite that has one possible

live mutation. The addition mutants possibly generated are shown in Figure 20.

Figure 20. Possible mutants with one live mutant for experiment 1.

The testing indicated the learning algorithm convergence was definitive at 1500 cycles.

At that point, the machine learning actions shown in Figure 21 were evaluated and the

1000 combination had the highest occurrence and identified as recommended mutation.

Figure 21. ML agent reward, loss and mutation performance for one live mutant.

43

The results indicated that reinforcement learning using agent for mutation operator

selection was successful, obtaining high reward with low loss, generating and testing

fewer mutations after training for approximately ~11.5 hours vs. all operators executing

for ~18 hours as shown in Table 6. Additional details on the individual agent

performance from this and all experiments are available within the appendix.

Table 6. Learning Mutation Testing with One Live Mutation.

Experiment 2: Learning Mutation Testing with Multiple Live Mutations

 The purpose of this experiment is to determine if reinforcement learning can identify

the optimal mutation operator selection for a program and test suite that has multiple live

mutations. The modulo mutants possibly generated are shown in Figure 22.

Figure 22. Possible mutants with two live mutants for experiment 2.

44

An observation was the learning algorithm, including shared agent experience continued

to converge after attempting various actions with multiple live mutants around 1500

cycles as shown in Figure 23 and the 0011 combination had the highest action occurrence

and thus was identified as recommended mutation.

Figure 23. ML agent reward, loss and mutation performance for multiple live mutants.

The results indicated that reinforcement learning using an agent for mutation operator

selection was successful, obtaining high reward with low loss, generating and testing

fewer mutations after training for approximately ~11 hours as shown in Table 7.

Table 7. Learning Mutation Testing with Multiple Live Mutations.

45

Experiment 3: Learning Mutation Testing with No Live Mutations

 The purpose of this experiment is to determine if reinforcement learning can identify

the optimal mutation operator selection for a program and test suite that has no possible

live mutations. The subtraction mutants possibly generated are shown in Figure 24.

Figure 24. Possible mutants with no live mutants for experiment 3.

An observation was the learning algorithm, including shared agent experience continued

to converge with multiple live mutants around 1500 cycles as shown in Figure 25 and the

0000 combination had the highest occurrence and identified as recommended mutation.

Figure 25. ML agent reward, loss and mutation performance for no live mutants.

46

The results indicated that reinforcement learning using an agent for mutation operator

selection was successful, obtaining high reward with low loss, generating and testing

significantly fewer mutations after training for approximately ~11.5 hours as shown in

Table 8.

Table 8. Learning Mutation Testing with No Live Mutations.

Experiment 4: Comparing Mutation Testing Approaches with Two Cores

 The purpose of this experiment is to evaluate the impact of parallel deep

reinforcement learning selection of mutation operators vs. selection of all or random

operators using agents as multiple threads on the mutation testing and operating system

performance. The addition mutants possibly generated are shown in Figure 26.

Figure 26. Possible mutants with two live mutants for experiment 4.

47

The results indicated that the machine learning mutation operator selection process was

able to outperform both the traditional approach of selecting all operators, as well as

random selection as shown in Table 9.

Table 9. Comparing Mutation Testing Approaches with Two Cores.

An observation was that the reinforcement learning selection was able to generate the

highest live to total mutant ratio, which resulted in a significant reduction in the mutation

testing elapsed time. The driver thread (MutantTesterDRL.exe) maintained references to

agent thread instances (MutantTesting.exe) but even while also running other developer

applications, had ~40% of CPU capacity still available as shown in Figure 27, which

indicates that the ‘live’ mutation testing process can execute background while

developers are coding and performing other tasks. This experiment provided guidance

for development of the Visual Studio extension for mutation testing operator selection.

Figure 27. Multiple threads with shared memory and two CPU cores.

48

Experiment 5: Comparing Mutation Testing Approaches with Four Cores

 The purpose of this experiment is to evaluate the impact of parallel deep

reinforcement learning selection of mutation operators vs. selection of all or random

operators using agents as multiple threads on the mutation testing and operating system

performance. The modulo mutants possibly generated are shown in Figure 28.

Figure 28. Possible mutants with two live mutants for experiment 5.

The results in Table 10 indicated that the machine learning mutation operator selection

process was able to outperform both the traditional approach of selecting all operators, as

well as random selection based on the live to total mutant ratio.

Table 10. Comparing Mutation Testing Approaches with Four Cores.

An observation depicted in Figure 29, was that the driver thread completed mutation

testing in a shorter elapsed time using 4 CPU cores and had ~70% of CPU capacity

49

available for other tasks. This indicates that additional agent threads might be utilized to

perform reinforcement learning against more complicated programs.

Figure 29. Comparing Mutation Testing Approaches with Four Cores.

Summary

 In summary, all required data was synthesized and the experiments were completed.

The results have provided valuable insight towards this dissertation and future research.

50

Chapter 5 - Conclusion

In conclusion, research regarding mutation testing, mutation selection and

machine learning has been conducted but much of it separately and not considering a

practical application by software developers using an Integrated Development

Environment. Less is available that combines mutation testing, mutation operator

selection and reinforcement learning using parallel processing in the Visual Studio IDE

for C# development. This dissertation contributes valuable insight and functionality in

that area. The results of the experiments demonstrated that the usage of reinforcement

learning for mutation operator selection was both effective and practical.

One key contribution from this research was the development of the

reinforcement algorithm to identify mutation operator combinations that result in live

mutations. This included a criterion to reset the shared experience and restart learning

such that the process was able to avoid local minima and always converge on a mutation

operator combination recommendation. The policy was consistently successful in

minimizing mutation score, with increasing reward and decreasing loss.

With experiments 1 – 3, it was found that the reinforcement learning algorithm

was able to identify the correct mutation operator selections for various programs and test

suite scenarios, without regard to the number of live mutations. This did not represent

every mutation scenario possible with complex programs but does provide evidence for

the scenarios evaluated that reinforcement learning was effective by identifying the

proper mutation operator combination to detect live mutations and generated 50 – 100%

fewer mutations as compared to using all mutation operators.

51

With experiments 4 and 5, it was determined that by using parallel processing and

multiple cores the reinforcement learning process for mutation operator selection was

practical. The number of tests (2*1500*5 = 15k) was increased to substantiate the initial

experiments results. Additionally, by increasing the number of cores from 2 to 4, there

was ~75% more CPU available for other processes to be performed. This combined with

tuning the number of concurrent agent threads learning and sharing experience allows for

a more complex, realistic codebase to be evaluated for mutation operator selection.

Finally, the required resources for additional research are currently available and

growing with the expansion of open-source usage and test-driven development. As

shown earlier, there is a need to eliminate software defects from both the software

reliance and software development cost perspectives. Given this, the goal of increasing

test suite effectiveness using mutation testing and reinforcement learning is possible.

Implications

 The implication from the dissertation experiments is that reinforcement learning can

be used in the manner required to facilitate mutation operator selection both during

software development and deployment. It provides an approach of making mutation

testing more viable, which is already considered the most accurate and dependable

approach for assessing test suite effectiveness (Strug & Strug, 2012).

Recommendations

 Based on experimentation results, the recommendation is to pursue research on

improving the machine learning hyper-parameters, incorporating additional machine

52

learning features for training against more complicated programs and development

required to implement this paper’s reinforcement learning approaches for mutation

operator selection as a Visual Studio extension. Transitioning from agents navigating a

simple program environment to a more complex, multi-module codebase. To further this

recommendation the following design extends the implementation to integrate

reinforcement learning within the development and testing environment (IDE).

Figure 30. Mutation Testing with Reinforcement Learning in Visual Studio extension.

MainToolWindow

 The interface would allow machine learning feedback to developers on mutation

operator selection based on agent traversal through the codebase. Forward propagation

using input based on proximity to the agent’s current code piece CIL instruction location

to adjacent CIL instructions in the library. Based on (Microsoft Corporation, 2020), the

CIL instruction set contains 235 possible instructions, so each could have corresponding

mutations. Once encoded, the input values fed through the network determine an action,

which would correspond to instruction replacements, thus generating a mutant library.

The mutant software library would be tested, the mutation score calculated and used as a

reward for mutation operator suggestions against the entire codebase.

53

Appendices

54

Appendix A – Detailed Experiment Results

 This appendix provides detailed results of experiments 1 through 5. As previously

mentioned, each experiment carried out in this study were conducted two developer

machines. The first with 2 physical Intel ® Core® CPU @2.50GHz processors (4 logical

processors), second with 4 logical Intel ® Xeon® CPU @3.00GHz processors (8 logical

processors), both with 16GB memory (L1 cache:256KB, L2 cache:1MB, L3 cache:8MB)

and Windows 10 64-bit operating system. The experiments were performed while also

running other developer applications, including Visual Studio, Microsoft Outlook,

Microsoft Word, Microsoft Excel, Microsoft Teams and Chrome Internet Browser. As

part of the experiment, the reinforcement learning agent configurations were tested and

evaluated, using the following metrics:

1. Loss, 2. Reward, 3. Elapsed time, 4. Mutation score, 5. CPU percentage.

Below are screenshots with a summary of each experiment’s agent hyperparameters,

architecture and detailed accuracy results, corresponding to the above evaluation

method. The code, program usage, agent files and screenshots are also included in the Git

repo available at https://github.com/mstewart1972/ParallelDeepReinforcementLearning.

55

Experiment 1: Learning Mutation Testing with One Live Mutation

Machine Learning selection of mutation operators:

56

Selection of all mutation operators:

57

58

Experiment 2: Learning Mutation Testing with Multiple Live Mutations

Machine Learning selection of mutation operators:

59

Selection of all mutation operators:

60

61

Experiment 3: Learning Mutation Testing with No Live Mutations

Machine Learning selection of mutation operators:

62

Selection of all mutation operators:

63

64

Experiment 4: Comparing Mutation Testing Approaches with Two Cores

Machine Learning selection of mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 13:52:11 13:25:17 16:41:21 13:37:52 12:27:27 13:08:59
maximum action 1100 1000 1110 1100 0000 1000
average mutation score 0.21
average mutant total 1.400000000000000 1.50 2.50 1.00 1.00 1.00
average killed count 0.300000000000000 0.50 1.00 0.00 0.00 0.00
average live count 1.100000000000000 1.00 1.50 1.00 1.00 1.00
average Q-learn loss 0.152961443509268 0.14190886 0.23263098 0.16998208 0.18783096 0.03245434
smooth-ish reward 0.798272916666644 0.73109833 0.68447875 0.82420500 0.82368542 0.92789708

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 1100 1000 1110 1100 0100 1000
average Q-learn loss 0.129909970188984 0.02063952 0.23266643 0.02208906 0.33723121 0.03692364
smooth-ish reward 0.877912166666663 0.93731750 0.68755750 0.92718417 0.91432917 0.92317250

test runs - instance1 1 2 3 4 5
maximum action 1100 1010 1110 1100 1000 1100
average Q-learn loss 0.176076553121387 0.26340732 0.23251918 0.31798466 0.03871289 0.02775872
smooth-ish reward 0.759268833333329 0.52539917 0.68189000 0.72255917 0.93304167 0.93345417

Test Summary 1 2 3 4 5
maximum action 1100
average Q-learn loss 0.152993261655185 0.14202342 0.2325928 0.17003686 0.18797205 0.03234118
smooth-ish reward 0.818590499999996 0.73135833 0.68472375 0.82487167 0.92368542 0.92831333

65

1

66

67

2

68

69

3

70

71

4

72

73

5

74

75

Random selection of mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 16:25:42 14:04:03 17:18:30 15:43:58 16:37:36 18:24:25
maximum action n/a
average mutation score 0.68
average mutant total 2.500000000000000 3.00 1.50 3.00 2.00 3.00
average killed count 1.700000000000000 2.00 1.00 2.00 1.50 2.00
average live count 0.800000000000000 1.00 0.50 1.00 0.50 1.00
average Q-learn loss 0.126778508637186 0.14235967 0.18430662 0.08087368 0.07788896 0.14846361
smooth-ish reward 0.504345666666664 0.51459125 0.49512833 0.50377042 0.50956583 0.49867250

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.128149205757168 0.08421698 0.1836353 0.07598023 0.07868408 0.21822945
smooth-ish reward 0.496130999999998 0.49842083 0.49088250 0.49715583 0.50225583 0.49194000

test runs - instance1 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.125384138198002 0.20050770 0.18492067 0.08572057 0.07710995 0.07866180
smooth-ish reward 0.513328999999998 0.53178167 0.49937417 0.51188500 0.51739583 0.50620833

Test Summary 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.126766671977585 0.14236234 0.18427798 0.0808504 0.07789702 0.14844562
smooth-ish reward 0.504729999999998 0.51510125 0.49512833 0.50452042 0.50982583 0.49907417

76

1

77

78

2

79

80

3

81

82

4

83

84

5

85

86

Selection of all mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 33:53:02 27:54:42 31:34:26 29:23:43 47:28:55 33:03:23
maximum action 1111 1111 1111 1111 1111 1111
average mutation score 0.50
average mutant total 4.000000000000000 4.00 4.00 4.00 4.00 4.00
average killed count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average live count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average Q-learn loss 0.130015461338638 0.19346480 0.15993372 0.02538319 0.16592559 0.10536999
smooth-ish reward 0.549300000000006 0.55600000 0.54450000 0.55900000 0.54075000 0.54625000

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.147755993065651 0.19429196 0.16163483 0.03144009 0.16463137 0.18678172
smooth-ish reward 0.549200000000006 0.556 0.54350000 0.56000000 0.54050000 0.54600000

test runs - instance1 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.112318751023727 0.19269247 0.15820126 0.01933407 0.16728760 0.02407835
smooth-ish reward 0.549400000000006 0.55600000 0.54550000 0.55800000 0.54100000 0.54650000

Test Summary 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.130037372044689 0.19349222 0.15991805 0.02538708 0.16595948 0.10543004
smooth-ish reward 0.549300000000006 0.556 0.5445 0.559 0.54075 0.54625

87

1

88

89

2

90

91

3

92

93

4

94

95

5

96

97

Experiment 5: Comparing Mutation Testing Approaches with Four Cores

Machine Learning selection of mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 10:13:36 10:22:46 9:11:04 11:15:18 9:57:36 10:21:16
maximum action 0011 0011 0011 0011 0011 1010
average mutation score 0.19
average mutant total 1.600000000000000 2.00 1.00 2.00 1.00 2.00
average killed count 0.300000000000000 0.50 0.00 0.00 0.00 1.00
average live count 1.300000000000000 1.50 1.00 2.00 1.00 1.00
average Q-learn loss 0.143239068857956 0.15217368 0.17610090 0.16763546 0.18783096 0.03245434
smooth-ish reward 0.863680539999990 0.72000687 0.92092667 0.92588667 0.82368542 0.92789708

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 0011 1010 0001 0011 0010 1010
average Q-learn loss 0.199138194214970 0.26993381 0.33307358 0.01852873 0.33723121 0.03692364
smooth-ish reward 0.839621833333324 0.51259083 0.92681750 0.92119917 0.91432917 0.92317250

test runs - instance1 1 2 3 4 5
maximum action 0011 0011 0011 0011 0001 1010
average Q-learn loss 0.087410055368777 0.03445029 0.01929006 0.31683832 0.03871289 0.02775872
smooth-ish reward 0.928332833333323 0.92774583 0.91552583 0.93189667 0.93304167 0.93345417

Test Summary 1 2 3 4 5
maximum action 0011
average Q-learn loss 0.143274124791873 0.15219205 0.17618182 0.16768352 0.18797205 0.03234118
smooth-ish reward 0.883977333333324 0.72016833 0.92117167 0.92654792 0.92368542 0.92831333

98

1

99

100

2

101

102

3

103

104

4

105

106

5

107

108

Random selection of mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 10:15:41 10:25:46 10:24:11 9:55:55 10:22:26 10:10:06
maximum action n/a
average mutation score 0.76
average mutant total 1.700000000000000 1.50 2.00 1.00 2.50 1.50
average killed count 1.300000000000000 1.00 1.50 1.00 1.50 1.50
average live count 0.400000000000000 0.50 0.50 0.00 1.00 0.00
average Q-learn loss 0.126778508637186 0.14235967 0.18430662 0.08087368 0.07788896 0.14846361
smooth-ish reward 0.504345666666664 0.51459125 0.49512833 0.50377042 0.50956583 0.49867250

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.128149205757168 0.08421698 0.1836353 0.07598023 0.07868408 0.21822945
smooth-ish reward 0.496130999999998 0.49842083 0.49088250 0.49715583 0.50225583 0.49194000

test runs - instance1 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.125384138198002 0.20050770 0.18492067 0.08572057 0.07710995 0.07866180
smooth-ish reward 0.513328999999998 0.53178167 0.49937417 0.51188500 0.51739583 0.50620833

Test Summary 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.126766671977585 0.14236234 0.18427798 0.0808504 0.07789702 0.14844562
smooth-ish reward 0.504729999999998 0.51510125 0.49512833 0.50452042 0.50982583 0.49907417

109

1

110

111

2

112

113

3

114

115

4

116

117

5

118

119

Selection of all mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 12:47:25 13:29:11 12:27:50 12:38:47 12:48:19 12:32:59
maximum action 1111 1111 1111 1111 1111 1111
average mutation score 0.50
average mutant total 4.000000000000000 4.00 4.00 4.00 4.00 4.00
average killed count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average live count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average Q-learn loss 0.069422834806760 0.10274348 0.02194500 0.09959513 0.02372138 0.09910919
smooth-ish reward 0.540125000000007 0.54025000 0.54000000 0.54012500 0.54000000 0.54025000

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.087709932997378 0.02751675 0.02694109 0.18117582 0.02543883 0.17747719
smooth-ish reward 0.540150000000007 0.54050000 0.54000000 0.53975000 0.54000000 0.54050000

test runs - instance1 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.051118165259630 0.17796982 0.01689678 0.01800141 0.02198234 0.02074047
smooth-ish reward 0.540100000000007 0.54000000 0.54000000 0.54050000 0.54000000 0.54000000

120

1

121

122

2

123

124

3

125

126

4

127

128

5

129

130

References

Beck, K. (2003). Test-driven development: by example. Addison-Wesley Professional.

Boehm, H. J. (2005). Threads cannot be implemented as a library. ACM Sigplan Notices, 40(6),
261-268.

Booch, G. (1994). Object-oriented analysis and design with applications. Redwood City, Calif:
Benjamin/Cummings Pub. Co...

Briand, L. C. (2008, August). Novel applications of machine learning in software testing. In Quality
Software, 2008. QSIC'08. The Eighth International Conference on (pp. 3-10). IEEE.

Briand, L. C., Labiche, Y., & Bawar, Z. (2008, August). Using machine learning to refine black-box
test specifications and test suites. In Quality Software, 2008. QSIC'08. The Eighth International
Conference on (pp. 135-144). IEEE.

Campos, E. C., & de Almeida Maia, M. (2017, November). Common bug-fix patterns: a large-
scale observational study. In Empirical Software Engineering and Measurement (ESEM), 2017
ACM/IEEE International Symposium on (pp. 404-413). IEEE.

Chekam, T. T., Papadakis, M., Le Traon, Y., & Harman, M. (2017, May). An empirical study on
mutation, statement and branch coverage fault revelation that avoids the unreliable clean
program assumption. In Software Engineering (ICSE), 2017 IEEE/ACM 39th International
Conference on (pp. 597-608). IEEE.

Demeyer, S., Verhaeghe, B., Etien, A., Anquetil, N., & Ducasse, S. (2018, March). Evaluating the
efficiency of continuous testing during test-driven development. In Validation, Analysis and
Evolution of Software Tests (VST), 2018 IEEE Workshop on (pp. 21-25). IEEE.

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1979). Papers on Program Testing (No. GIT-ICS-
79/04). GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION AND COMPUTER
SCIENCE.

Derezinska, A. (2006, October). Quality assessment of mutation operators dedicated for C#
programs. In 2006 Sixth International Conference on Quality Software (QSIC'06) (pp. 227-234).
IEEE.

Derezińska, A., & Szustek, A. (2007). CREAM-a System for Object-oriented Mutation of C#
Programs. In Annals Gdansk University of Technology Faculty of ETI (Vol. 13, No. 5, pp. 389-
406). Information Technology.

Derezinska, A., & Szustek, A. (2008, June). Tool-supported advanced mutation approach for
verification of C# programs. In 2008 Third International Conference on Dependability of Computer
Systems DepCoS-RELCOMEX (pp. 261-268). IEEE.

Derezińska, A., & Rudnik, M. (2012, May). Quality evaluation of object-oriented and standard
mutation operators applied to C# programs. In International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation (pp. 42-57). Springer, Berlin, Heidelberg.

Derezińska, A., & Trzpil, P. (2015). Mutation Testing Process Combined with Test-Driven
Development in. NET Environment. In Theory and Engineering of Complex Systems and
Dependability (pp. 131-140). Springer, Cham.

131

Etiemble, D. (2018). 45-year CPU evolution: one law and two equations. arXiv preprint
arXiv:1803.00254.

Ghiduk, A. S., Girgis, M. R., & Shehata, M. H. (2018). Reducing the Cost of Higher-Order
Mutation Testing. Arabian Journal for Science and Engineering, 1-14.

Grounds, M., & Kudenko, D. (2005). Parallel reinforcement learning with linear function
approximation. In Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent
Learning (pp. 60-74). Springer, Berlin, Heidelberg.

Guillaume, S. J. (2015). Mutant Selection Using Machine Learning Techniques. Machine
Learning: Theory and Applications, 24.

Honfi, D., & Micskei, Z. (2019). Classifying generated white-box tests: an exploratory study.
Software Quality Journal, 27(3), 1339-1380.

Huang, Q., Xia, X., & Lo, D. (2017, September). Supervised vs unsupervised models: A holistic
look at effort-aware just-in-time defect prediction. In Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on (pp. 159-170). IEEE.

Huene, P. C., Cunningham, J. A., & Vidolov, B. V. (2011). U.S. Patent No. 8,079,018.
Washington, DC: U.S. Patent and Trademark Office.

Huffman, C. (2014). Windows Performance Analysis Field Guide. Elsevier.

Hutchins, M., Foster, H., Goradia, T., & Ostrand, T. (1994, May). Experiments on the
effectiveness of dataflow-and control-flow-based test adequacy criteria. In Proceedings of 16th
International conference on Software engineering (pp. 191-200). IEEE.

Jalbert, K., & Bradbury, J. S. (2012, June). Predicting mutation score using source code and test
suite metrics. In Proceedings of the First International Workshop on Realizing AI Synergies in
Software Engineering (pp. 42-46). IEEE Press.

Jia, Y., & Harman, M. (2011). An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5), 649-678.

Kirdey, S., Cureton, K., Rick, S., & Ramanathan, S. (2019). Lerner — using RL agents for test
case scheduling [Web log post]. Retrieved March 5, 2020, from https://netflixtechblog.com

Kurtz Jr, R. G. (2018). Improving Mutation Testing with Dominator Mutants (Doctoral dissertation,
George Mason University).

Lenz, A. R., Pozo, A., & Vergilio, S. R. (2013). Linking software testing results with a machine
learning approach. Engineering Applications of Artificial Intelligence, 26(5-6), 1631-1640.

Liaw, A., & Wiener, M. (2002). Classification and regression by RandomForest. R news, 2(3), 18-
22.

Lipton, R. J. (1971). Fault diagnosis of computer programs.

Lu, H., Setiono, R., & Liu, H. (1996). Effective data mining using neural networks. IEEE
transactions on knowledge and data engineering, 8(6), 957-961.

132

Martin, D., Rooksby, J., Rouncefield, M., & Sommerville, I. (2007, May). 'Good' organisational
reasons for 'Bad' software testing: An ethnographic study of testing in a small software company.
In Proceedings of the 29th international conference on Software Engineering (pp. 602-611). IEEE
Computer Society.

Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to learn defect
predictors. IEEE transactions on software engineering, 33(1), 2-13.

Microsoft Corporation (2013), C# Language Specification Version 5.0. Available from:
http://www.microsoft.com/en-us/download/details.aspx?id=7029

Microsoft Corporation (2019), Process Explorer v16.31. Available from:
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

Microsoft Corporation (2020), Partition III: CIL Instruction Set - Microsoft Download Center.
Available from: https://download.microsoft.com/download/7/3/3/733ad403-90b2-4064-a81e-
01035a7fe13c/ms%20partition%20iii.pdf

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lillicrap, T. P., Silver, D., & Kavukcuoglu,
K. (2016, June). Asynchronous methods for deep reinforcement learning. In International
conference on machine learning (pp. 1928-1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A., Panneershelvam, V.,
Suleyman, M., Beattie, C., Petersen, S., Legg, S., Mnih, V., Kavukcuoglu, K., & Silver, D. (2015).
Massively parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296.

Namin, A. S., Andrews, J., & Murdoch, D. (2008, May). Sufficient mutation operators for
measuring test effectiveness. In 2008 ACM/IEEE 30th International Conference on Software
Engineering (pp. 351-360). IEEE.

Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying and
generating functional tests. Communications of the ACM, 31(6), 676-686.

Patterson, D. (2010). The trouble with multi-core. IEEE Spectrum, 47(7), 28-32.

Qu, X., Cohen, M. B., & Woolf, K. M. (2007, October). Combinatorial interaction regression
testing: A study of test case generation and prioritization. In 2007 IEEE International Conference
on Software Maintenance (pp. 255-264). IEEE.

Quinlan, J. R. (1993). C 4.5: programs for machine learning. San Mateo, CA: Morgan Kaufmann.

Recht, B., Re, C., Wright, S., & Niu, F. (2011). Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in neural information processing systems (pp. 693-701).

Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases for
regression testing. IEEE Transactions on software engineering, 27(10), 929-948.

Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous integration, delivery and deployment: a
systematic review on approaches, tools, challenges and practices. IEEE Access, 5, 3909-3943.

Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2018). Reinforcement learning for automatic
test case prioritization and selection in continuous integration. arXiv preprint arXiv:1811.04122.

133

Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams, P. J., Samoladas, I., & Stamelos,
I. (2009). Evaluating the quality of open source software. Electronic Notes in Theoretical
Computer Science, 233, 5-28.

Strug, J., & Strug, B. (2012, November). Machine learning approach in mutation testing. In IFIP
International Conference on Testing Software and Systems (pp. 200-214). Springer, Berlin,
Heidelberg.

Strug, J., & Strug, B. (2017, September). Using classification for cost reduction of applying
mutation testing. In Computer Science and Information Systems (FedCSIS), 2017 Federated
Conference on (pp. 99-108). IEEE.

Strug, J., & Strug, B. (2018, June). Cost Reduction in Mutation Testing with Bytecode-Level
Mutants Classification. In International Conference on Artificial Intelligence and Soft
Computing (pp. 714-723). Springer, Cham.

Strug, J., & Strug, B. (2018, September). Evaluation of the prediction-based approach to cost
reduction in mutation testing. In International Conference on Information Systems Architecture
and Technology (pp. 340-350). Springer, Cham.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.

Tillmann, N., & De Halleux, J. (2008, April). Pex–white box test generation for. net. In
International conference on tests and proofs (pp. 134-153). Springer, Berlin, Heidelberg.

Vincenzi, A. M. R., Simao, A. S., Delamaro, M. E., & Maldonado, J. C. (2006). Muta-Pro: Towards
the definition of a mutation testing process. Journal of the Brazilian Computer Society, 12(2), 49-
61.

Whittaker, J. A. (2000). What is software testing? And why is it so hard?. IEEE software, 17(1),
70-79.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y., & Zhang, L. (2018). Predictive mutation
testing. IEEE Transactions on Software Engineering.

	Increasing Software Reliability using Mutation Testing and Machine Learning
	Share Feedback About This Item

	Microsoft Word - stewart_dissertation_report-20211010.docx

