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Mutation testing is a type of software testing proposed in the 1970s where program
statements are deliberately changed to introduce simple errors so that test cases can be
validated to determine if they can detect the errors. The goal of mutation testing was to
reduce complex program errors by preventing the related simple errors. Test cases are
executed against the mutant code to determine if one fails, detects the error and ensures
the program is correct. One major issue with this type of testing was it became intensive
computationally to generate and test all possible mutations for complex programs.

This dissertation used machine learning for the selection of mutation operators that
reduced the computational cost of testing and improved test suite effectiveness. The
goals were to produce mutations that were more resistant to test cases, improve test case
evaluation, validate then improve the test suite’s effectiveness, realize cost reductions by
generating fewer mutations for testing and improving software reliability by detecting
more errors. To accomplish these goals, experiments were conducted using sample
programs to determine how well the reinforcement learning based algorithm performed
with one live mutation, multiple live mutations and no live mutations. The experiments,
measured by mutation score, were used to update the algorithm and improved accuracy
for predictions. The performance was then evaluated on multiple processor computers.

One key result from this research was the development of a reinforcement algorithm to
identify mutation operator combinations that resulted in live mutants. During
experimentation, the reinforcement learning algorithm identified the optimal mutation
operator selections for various programs and test suite scenarios, as well as determined
that by using parallel processing and multiple cores the reinforcement learning process
for mutation operator selection was practical. With reinforcement learning the mutation
operators utilized were reduced by 50 — 100%.

In conclusion, these improvements created a ‘live’ mutation testing process that evaluated
various mutation operators and generated mutants to perform real-time mutation testing
while dynamically prioritizing mutation operator recommendations. This has enhanced
the software developer’s ability to improve testing processes. The contributions of this
paper’s research supported the shift-left testing approach, where testing is performed
earlier in the software development cycle when error resolution is less costly.
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Chapter 1 - Introduction

Mutation testing is a type of software testing proposed by (Lipton, 1971) where
program statements are deliberately changed to introduce simple errors so that test cases
can be validated to determine if they can detect the errors. The goal of mutation testing is
to reduce complex program errors by preventing the related simple errors. For example,
given a program that states if (a>=b) then c=1 else c=0 can be mutated by an operation
replacing >= with < producing if (a<b) then c=1 else c=0. When using test data of a=1,
b=0 the result ¢ should be 1 but the mutant produces c=0. The test cases are executed
against the mutant code to determine if one fails, detects the mutant and helps ensure the
program is correct. A mutation score is calculated as the percent of mutants caught. One
major issue with this type of testing from (Jia and Harman, 2011) is that it becomes
computationally intensive to test all possible mutations for complex programs.

This dissertation will present a practical approach for the application of parallel
machine learning within the context for mutation testing, including the selection of
mutation operators to reduce the computational cost of testing and improve test suite
effectiveness. With this, the need to increase the usage of mutation testing for complex
programs can be fulfilled. The proposal is to use reinforcement learning for mutation
testing that improves mutation scores achieved previously (Strug & Strug, 2018, June) by
predicting which mutation operators best identify deficient test coverage.

These improvements will assist with the creation of a ‘live’ mutation testing process
within the .NET development environment that dynamically evaluates various mutation
operators, generates mutants and prioritizes test cases to perform real-time mutation
testing as code is modified. This will enhance a software developer’s ability to improve

testing processes and extend the work by (Derezinska & Trzpil, 2015). The contribution



of this paper’s research will support the shift-left testing approach, where testing is

performed earlier in the software development cycle when error resolution is less costly.

Problem Statement and Goal

The problem is that continuous software testing can be a daunting process, even when
testing is engrained into the development process. Although attempts have been made to
address this problem (Demeyer et al., 2018), the approach to limit testing without test
case validation can discard pertinent tests. Testing can also become dispensable to meet
development deadlines. As discussed by (Martin et al., 2007) companies sometimes
deploy limited testing resources to find software defects. When testing becomes
incomplete it inevitably leads to faulty software. These defects are becoming more of an
issue as the reliance increases on software for essential services such as financial,
transportation, and healthcare.

Many challenges lead to a lack of testing and faulty software. First, software testing
requires proper communication and documentation to define what is needed. The
potential for misinterpretation exists, which can lead to missing or invalid test scenarios.
Even valid test scenarios can become a challenge to execute and evaluate, since applying
all test scenarios can be labor-intensive and error-prone. These challenges result in less
than sufficient testing and increase the time developers spend on debugging. According
to recent reviews by (Campos & de Almeida Maia, 2017), the annual cost of debugging
software has reached $312 billion globally.

To address this concern, testing must become more agile when integrated within the

software development process. With the adoption of Continuous Integration and



Continuous Delivery, the goal as described by (Shahin et al., 2017) is to reduce the time
to deliver software changes but lack of proper testing the goal cannot be fully realized.
Continuous Testing, which as described by (Demeyer et al., 2018) improves testing
feedback and must be incorporated with software delivery. To complement Continuous
Delivery with Continuous Testing, the Test Suite which is composed of Test Cases must
cover the software (i.e. test completeness) and identify defects that exist (i.e. test quality).
Another factor that needs to be addressed for the software testing process is the amount
of time and effort it can take to develop and execute a comprehensive test suite.

The goal is to assist software developers with an approach for comprehensive testing
and improving testing effectiveness of their software implementation. It will evaluate the
factors that impact software quality then use parallel Reinforcement Learning (RL) for
mutation operator selection to identify deficient testing more effectively than a
classification-based approach (Strug & Strug, 2018, June). This dissertation proposes a
quantitative approach by measuring the faults detected by test suites built with RL-
assisted operator selection as compared to those developed without. Through the
implementation of these integrated mutation testing approaches, the expectation is an

increase in the percentage of defects detected (Qu et al., 2007).

Relevance and Significance

The research proposed in this paper will provide benefits to current software
development trends, by improving upon recent work by (Derezinska & Trzpil, 2015) that
helped facilitate mutation testing. This dissertation will address this through the use of
machine learning for mutation testing and test case selection. The general goal with

machine learning as states by (Lu et al., 1996) is to obtain knowledge from patterns



within data, using various approaches to accomplish this goal. Mutation testing (DeMillo
et al., 1979) is a process that replicates program faults to validate the program test suite.
The mutation operators are functions that replicate common programming errors, such as
using an incorrect operator. During mutation testing the mutants are either caught by a
test case and considered killed or not caught and are considered live. The mutation score
(Namin et al., 2008) is the number of mutants killed divided by the total number of
mutants and indicates the test suite’s effectiveness. Test case selection using machine
learning was presented by (Ghiduk et al., 2018) to improve the test case prioritization
process. Machine Learning has already started to have an impact on software testing
techniques in many ways, as discussed by (Briand, 2008). The software testing process
consumes and generates an enormous amount of data. If the evaluation of this data is not
performed in an automated or efficient manner, such as parallel machine learning, the test
results may not be accurate or complete.

To establish the importance of mutation testing for determining test effectiveness,
(Chekam et al., 2017) performed a comparison with other widely adopted test
effectiveness metrics, including statement coverage and branch coverage that avoids the
unreliable clean program assumption. Statement coverage is a minimal requirement that
measures the percentage of program statements that are exercised by the tests but since
this measure does not consider the program state and various conditions that can cause
the statements to execute differently. A stronger requirement called branch coverage is
also utilized. With branch coverage, it measures the percentage of program control flow
that is exercised by the tests. However, with both approaches, the measurement assumes

that the program is correct, but if the program contains defects these measurements may



be inadequate. By introducing program defects the mutation testing approach exercises
the tests more completely, thus providing a better measurement of the test effectiveness.
The most significant aspect of this dissertation is the introduction of machine learning
for test case selection and mutation testing during the early stages of the development
process, as opposed to later after the development process has been completed. This
supports the ability to develop software in an agile manner, using the Test-Driven
Development (TDD) process proposed by (Beck, 2003) and the Continuous Integration
(CI) process proposed by (Booch, 1994). With TDD, software requirements are
incrementally encoded as tests that developers must satisfy by coding application logic.
The TDD approach was incorporated with mutation testing by (Derezinska & Trzpil,
2015) to provide an interactive process for more agile mutation testing. Clis a
development practice where software developers frequently integrate code changes to a
shared source repository. Test case selection using reinforcement learning was utilized by
Netflix (Kirdey et al., 2019) to develop a system called Lerner that integrates with their
CI framework for test execution scheduling. Using TDD and CI helps to reduce program
defects by establishing and executing a test suite that ensures program logic is working as

expected.

Barriers and Issues

Much research has been conducted related to the issues with software testing
(Whittaker, 2000) which includes selecting, running and evaluating test scenarios. Some
additional issues are selecting the variable data to be used, execution paths to cover,
which test cases to automate and how to evaluate the test case results. For example, if a

method is supposed to find all occurrences of some string within an arbitrary text, how



can we determine that each instance will always be detected? Although there are many
approaches to address some of these issues, such as using category-partition for
generating test cases (Ostrand and Balcer, 1988) and using data flow and control flow for
evaluating test cases (Hutchins et al., 1994), the issues are not completely resolved since
software is still released with defects. To address the barrier and limitation with the
variable data, the test scenario evaluation needs to explore the possible combinations. If
the algorithmic approach is static, such partitioning there will be inherent limitation based
on the data provided. But if the algorithm is able to explore by taking various actions and
receive rewards for success, using the proposed reinforcement learning approach will
result in a more dynamic approach.

The category-partition method (CPM) for creating test suites uses a generator to
produce test specifications from functional specifications. The advantages of this method
are that the tester can easily modify the test specification when necessary and can control
the complexity and number of the tests by annotating the test specification with
constraints. One major barrier with the implementation of CPM is the size of the test suite
generated, which can be huge for complex programs. Given a method having five
parameter variables and two global variables with a minimum of two possible values per
variable the product of all choices which would result in 27 = 128 test cases. With non-
trivial programs, the number of variables, range of possible values and number of
methods is much higher, so the potential number of tests will be much higher as well.

With control flow, the test cases are selected with the goal to ensure that every source
statement is executed at least once. With data flow, the goal is to evaluate test cases to

ensure that they exercise the code such that execution proceeds from the definition of a



memory location to the use of that memory location for each DEF-USE pair. The
limitations with both approaches are that it is difficult to understand complex code logic,
which is necessary to achieve various coverage levels, then distinguish the feasible vs.
non-feasible paths and the process can be very time consuming for non-trivial programs.
The approach proposed in this research to utilize parallel processing will help reduce the
issue of time consumption by partitioning the problem, then allowing each component to
evaluate a subset of test cases simultaneously.

Lastly, there are barriers to measuring the testing progress that needs to be overcome
to realize an integrated testing approach. For the approach to be effective, the measure
should give an updated indication of the testing progress. One question posed by
(Whittaker, 2000) is if large numbers of defects are found is this good or bad? It could be
an indication of comprehensive testing or there may still be many undetected defects.
With the proposed approach of using mutation testing, the test suite effectiveness
becomes measurable using the mutation score. The mutations are defects and will be
generated with the intention of detection. If not detected, the test suite can be enhanced

to ensure testing is comprehensive.

Summary

This chapter introduced mutation testing, mutation operators and the importance of
software testing. The goal of the proposed research is to develop an approach to assist
software developers with improving testing effectiveness and the correctness of their
implementation based on given requirements. To complete this goal, the algorithm will
utilize parallelized reinforcement learning for mutation operator selection and should

result in a more efficient testing solution.



Chapter 2 - Review of the Literature

The usage of machine learning, software testing and parallel processing are key
elements to achieve this dissertation’s goal of a more effective testing process. This goal
will be implemented by mutation testing and reinforcement learning. By using the
mutation score the testing effectiveness will be able to be measured. The following
sections review the relevant literature:

e Machine Learning
e Software Testing

e Parallel Processing

Machine Learning

The process of engineering test suites can be a formidable effort. Complex
applications can require many test cases within the test suite. These tests must consider
the inputs and outputs of the code they are testing. By using machine learning (Briand et
al., 2008) developed a process to learn relationships between the inputs and outputs as the
test suites are executed. With this information, the testers can understand the capabilities
of the test suite. Their process uses the C4.5 decision tree algorithm (Quinlan, 1993)
within the WEKA (Waikato Environment for Knowledge Analysis) machine learning
library (Frank et al., 2016) since it produces machine learning models that are easier to
interpret. The paper reported promising results by eliminating redundant test cases and a

significant reduction in the test suite size but also found a reduction in the number of



faults detected, leaving room for the test suite improvements that this paper’s research
hopes to obtain using machine learning to assist with identifying missing test cases.

Another use of machine learning for mutation testing was presented by (Guillaume,
2015) and (Kurtz Jr, 2018). Their basic approaches were to reduce the number of
mutants generated by randomly selecting a percentage of mutants or by reducing all
mutants for a given operator. Those approaches were compared with a machine learning
approach for mutation operator selection. The papers conclude that a machine learning
approach is significantly superior but anticipate future improvements by more advanced
machine learning approaches, such as multi-layer perceptron. This dissertation proposes
to explore these improvements among others.

Recently progress has been made using machine learning in the context of mutation
testing. With their earlier work (Strug & Strug, 2012) presented an approach that
represented mutants using a graph kernel to compare mutant similarities and then used k-
Nearest Neighbor (k-NN) machine learning algorithm to predict if a test would detect a
mutant, reducing the number of mutants executed. Additional research by (Strug & Strug,
2017) proposed an updated kernel called a hierarchical control flow graph (HCFG),
which is a combination of control flow diagram and hierarchical graphs. This limited
mutant execution in a more dynamic way by utilizing the structure of the program for
which the mutants were generated. In their next research, (Strug & Strug, 2018, June)
proposed to simplify the mutant evaluation process by using bytecode comparison instead
of source code control flow, which was more complicated. The latest research by (Strug
& Strug, 2018, September) takes an even more extreme approach by predicting the

mutation testing results (killed vs. live) based on machine learning models, without
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having to execute any mutation testing after the initial training process. A similar
approach was proposed by (Zhang et al., 2018) except they used a Random Forrest
machine learning algorithm (Liaw & Wiener, 2002), which is a generalization of tree-
based classification that uses multiple decision trees to correct overfitting, to create their
predictive mutation testing.

While those papers reduced mutation execution using machine learning, this
dissertation proposes a novel approach using machine learning to limit mutation
operators and generate mutants during program development, thus reducing the number
of mutations generated during an agile development process. The proposed research of
applying test case selection and mutation testing in real-time will help keep the test suite
more updated and predictable by measuring mutation score of the test suite over time. To
utilize a more effective machine learning algorithm, instead of using a supervised
learning approach, this paper proposes using a Reinforcement Learning (RL) approach as
presented by (Sutton & Barto, 1998). As shown in Figure 1, the agent learns to choose
actions in an environment by performing actions then observing the subsequent states and

rewards. It continues until the reward is consistent and acceptable.

—>
Agent

(Learning Algorithm)

States (S;) Reward (R;) Actions (A;)

Rir1— i
Environment 14—
+St+ o

Figure 1. The general Reinforcement Learning approach.

This is another key difference when compared with the supervised learning approach

presented by (Strug & Strug, 2018, June) and provides the advantage of agility.
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This approach is model-free, which means it has no initial concept of the environment’s
dynamics and utilizes online learning, where the agent is constantly learning while
running. This is appropriate for test case selection since there is no strict model to
identify faults and according to (Campos & de Almeida Maia, 2017), the existence of
faults is prevalent within software systems. For test selection, given previous test results
in each state the agent performs an action that prioritizes the test cases based on the
reward of failed tests from the environment during test cycle execution. This process was

proposed by (Spieker et al., 2018) and is shown in Figure 2.

Agent
(Learning Algorithm,
State Policy)

jpeet tiise Dur.atlon, Reward (Test Case Failure) Actlo_ns‘ s
Last Execution, (Test Case Prioritization)

Results Pass/Fail)

Environment
(Cl Cycle)

Figure 2. Reinforcement Learning for Test Case Selection.

One of the challenges with machine learning is determining the data elements, called
features, to use during training that will produce accurate predictions during testing. The
paper by (Jalbert & Bradbury, 2012) utilized the Support Vector Machine (SVM)
machine learning algorithm to categorize mutation scores (i.e. low, medium, high) which
reduces the mutation score prediction to a three-group classification problem. The
machine learning features include various class-level metrics (e.g. # of methods, # of
attributes, inheritance depth) and method-level metrics (e.g. # lines of code, # of
parameters, nested depth, cyclomatic complexity) as well as accumulated test case

metrics (e.g. average # test method lines of code, average # test parameters, average test
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cyclomatic complexity). To collect these metrics required using several Java tools, which
included an Eclipse IDE plugin for code metrics, EMMA for test metrics and Javalanche
for method-level mutations. This technique for predicting mutation score (# mutants
killed / total # mutants) achieved an accuracy of >50% using source code and test suite
metrics which outperformed the random accuracy of 33.33%.

In the work by (Zhang, et al., 2018) additional metrics were evaluated to investigate
the contribution of the 14 individual features, including propagation features (method
lines of code, method complexity), infection features (mutation operator, mutated
statement type), and execution features (number executed, number tests covering mutated
statement). The features were used by various classification algorithms, including
Random Forrest, Naive Bayes, SVM and C4.5 Decision Tree. It was determined that the
coverage features, including the number of times that the mutation was executed by tests
and the number of tests that covered the mutation, were the most important features.

Various source code and test metrics are evaluated as features by (Spieker et al., 2018)
using Reinforcement Learning (RL) to prioritize test case selection. In Figure 3, the
reward function utilized various features, including a count of test failures, each test
failure and test failure time. The states (i.e. test case metrics) are provided as inputs X; to
the network. Feedforward estimates the policy m based on current weights and activation
functions. The actions (i.e. test case priority) are output O, from the network. A random
factor is used for exploration and experience for replay training. During backpropagation,
weights W; are updated using error estimate or loss from loss function O, - O, using

gradient descent. Neural networks are shown effective for data mining (Lu et al., 1996).
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Forward Propagation (Predict)

States Policy » Actions
RelU
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Backpropagation (Learn)

Figure 3. The Neural Network (NN) used by reinforcement learning.

To evaluate the performance of the network, instead of only using percent of faults
detected (PFD) the results were compared using the normalized average percentage of
faults detected (NAPFD) from (Qu et al., 2007) as an evaluation metric. The goal of
using this metric is to detect as many faults m with the least test cases run n where p is the
faults detected by executed test cases divided by the faults detected by all test cases and
TF; is the number of test cases that detect fault F;. In the following example: m=8, n=3,
p=5/8. The NAPFD of 44% considers how fast faults are detected, as opposed to the
PFD of 62.5% as shown in Figure 4 illustrates a sample calculation of the NAPFD, which

1s used as a more accurate metric to assess the test suite’s effectiveness.

_TF +TF, +...+TF, v _§_O+2+O+2+1+1+1+0+
mxn 2n 8 8x3 2

NAPFD = p —0.44

X |00 ] i

3



14

__8 defects Test Cases
1 -« T, T; |T-
Tests not F

2 0.625 run 1 |
E E ] 5defects F F_? X X -
§§ a F(?
c o ol
g0 :»l F, X X
[} -
< ¢ [F; X

i | 3 l 5 s Fg X

tests tests
0.0 033 066 1.0 F 7 X
Fg

Percent of Test Suite Run

Figure 4. The Normalized Average Percentage of Faults Detected (NAPFD).

Software Testing

One challenge with software testing is the large number of tests required to evaluate
complex applications. When there are many test cases within the test suite, the tests can
be classified, ordered or prioritized to improve the overall effectiveness or reduce the
number of test executions required (Lenz et al., 2013). Some techniques for prioritizing
test cases were presented by (Rothermel et al., 2001) in the context of regression testing.
They define the prioritization problem, given test suite T, permutations PT of T and
function F from PT to real numbers award values so that the best ordering can be
determined. Although there are many factors to consider for the award value, some are
increased test coverage or faster fault detection. For an approximation of the fault
detection potential, the well-established method of mutation score from mutation analysis
(Jia and Harman, 2011) is utilized. In the work by (Vincenzi et al., 2006) an incremental
approach is taken to limit the time and resource constraints with mutation testing. The

mutation testing improvements proposed by this dissertation could improve past research
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by (Rothermel, et al., 2001) that present non-machine learning techniques for test case
prioritization, as well as provide guidance for future research.

The effort and time required to perform testing can also be mitigated by risk-driven
testing, as discussed by (Briand, 2008 and Spinellis et al., 2009) where fault prediction
models are used to identify potential fault locations and reduced testing effort by
prioritizing test cases based on potential risk. Another approach is using Test Impact
Analysis (TIA), which is a technique that helps determine which subset of tests need to
execute for a given set of code changes. Microsoft has spent significant effort to develop
the Test Impact Analysis approach. They have patented the process (Huene et al., 2011)
which generates dependency maps between source code changes and tests in automated
builds by using test coverage within a data store. It is incorporated within the Visual
Studio IDE and Azure DevOps Services. As illustrated in Figure 5, to reduce testing
effort during automated builds Test Impact Analysis' limits execution to only the test
cases that are necessary for code that has been added or updated. This figure illustrates
the ability to limit test case execution by selecting ‘Run only impacted tests’ that have

been impacted by related code changes.

Test filter criteria ()

Run only impacted tests (3

Mumber of builds after which all tests should be un ()
0

|:| Test mix contains Ul tests (@)

Figure 5. Test Impact Analysis within Microsoft Azure DevOps Services.

Ihttps://blogs.msdn.microsoft.com/devops/2017/03/02/accelerated-continuous-testing-with-

test-impact-analysis-part-1/
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For additional savings in mutation testing execution time, this dissertation considers a
related machine learning approach similar to that of (Menzies et al., 2007 and Huang et
al., 2017) using static code attributes (e.g. lines of code, lines of comments) and effort
aware attributes (e.g. lines added, line updated, lines deleted), as well as test case metrics
to assist with defect predictions. With the idea that the approaches could be combined to

improve test case and mutation operator selection.

Parallel Processing

The last significant aspect of this dissertation is the introduction of parallel processing,
to reduce the learning time which allows the process to become more practical in real-
world software development. The benefits of using parallel methods for reinforcement
learning were established by (Nair et al., 2015) but utilized a massively distributed
approach, which would not be practical in many software development situations where
developers work locally, possibly disconnected or with limited network resources. To
address this concern the work by (Mnih, Badia et al., 2016) evaluated various
asynchronous methods for deep reinforcement learning, including parallelization using
multiple threads locally on computers with multicore CPUs. As stated by (Etiemble,
2018) since the CPU frequency limit was reached there has been a shift towards
multicore processors and according to (Patterson, 2010) successful parallel software
improves processing efficiency by using the multiple cores. When developing a multi-
threaded approach, (Boehm, 2005) expressed the importance to consider concurrency
issues as well as the performance benefits and using a language that was originally

designed with thread support, such as C#.
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Summary

By applying machine learning techniques, the task of mapping input parameters to
outputs actions can be accomplished, but care must be taken on using the correct machine
learning approaches. The process of software testing can require significant effort in
terms of test execution, so choosing to execute fewer tests that still validate the
application correctness is beneficial. Reductions in the learning time can be achieved
with parallel processing techniques. In the next chapter, a description of the
methodology will be presented on how these techniques will be combined for the

proposed research to be completed.

Chapter 3 - Methodology

Introduction

The proposed research looks to build a ‘real-time’ process capable of selecting
mutation operators during mutation testing that increases the test suite effectiveness. To
achieve this, a parallel reinforcement learning algorithm must be implemented. The

algorithm will be measured by the loss and reward values defined earlier.

Approach

Since the idea is to integrate testing within the software development process, the
approach must be easily accessible to the software developer. The proposal is to enhance
with parallelized ML the approach by (Derezinska, 2006), (Derezinska & Szustek, 2007,
2008) and (Derezinska & Trzpil, 2015) where mutation testing is performed in .NET by

Visual Mutator?, a Visual Studio Integrated Development Environment (IDE) extension.
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Mutation testing starts with a selection of code, tests, mutation operators in Figure 6, then
mutant generation and finally test suite evaluation in Figure 7. Figure 6 illustrates the
ability to manually configure mutation testing within the IDE using all selected mutation
operators. Figure 7 illustrates the ability to automatically generate and execute first order

mutants (live vs. killed) to validate the test suite. The enhanced extension will utilize

reinforcement learning for mutation operator selection.
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Figure 6. Microsoft Visual Studio extension with mutation operators.
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Figure 7. Microsoft Visual Studio extension with mutation test results.

2 https://visualmutator.github.io/web/




19

To incorporate a more efficient mutation generation process, a machine learning
driven suggestion for mutation operators would be incorporated. The suggestions would
be based on mutation operator performance during reinforcement learning using code
repositories then made available to developers in the context of current program code,
similar to Microsoft’s IntelliCode feature® in Figure 8 that provides Artificial Intelligence

(AI) code completion suggestions as stars but requires offline supervised training.

Con s:wle.Lﬁ

@ x WriteLine o

S * Readline string Console.ReadLine()
@ % ReadKey Reads the next line of characters from the standard input stream.
F BackgroundColor * IntelliCode suggestion based on this context

Figure 8. IntelliCode within Microsoft Visual Studio.

To accomplish the research goals a quantitative approach will be utilized. During the
mutation operator selection process, data will be gathered on the number of mutations
generated, mutation score and testing execution time. This data can be used to measure
and compare the performance of mutants generated with and without the use of machine
learning mutation operator selection. The non-machine learning approaches to mutation
operator selection will be to 1. Select all operators, 2. Select operators randomly, 3.
Select a specific subset of operators. This will help to determine how effective machine
learning is at reducing the total number of mutants generated and reducing execution time
while continuing to provide an accurate analysis of the test suite.

To reduce test execution, an incremental process to perform mutation testing during
program coding would be developed, called ‘live’ mutation testing. Reinforcement
learning is appropriate for mutation operator selection since there is no strict model for
the impact of mutations on software system test suites.

3 https://docs.microsoft.com/en-us/visualstudio/intellicode/fag
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With ‘live’ mutation testing, the mutation operators will be selected, mutations will be
generated then tests will be selected and executed as the software is developed so missing
tests can be identified earlier. This will help to promote shift left (Demeyer et al., 2018)
where testing is brought closer to the beginning of the Software Development Lifecycle
(SDLC), as opposed to testing towards the end of the SDLC.

The ‘live’ unit testing feature* is already available within Microsoft’s Visual Studio
IDE and illustrated in Figure 9 where both test coverage evaluation and unit test
execution are performed in real-time for test results from the test suite. The test coverage
identifies the amount of code tested but ‘live’ unit testing does not guarantee test quality,

which is how well does the test suite perform at identifying potential defects?

17 =D 4 public static bool StartsWithLower(this String str)
18 {

X if (String.IsNullOrWhiteSpace(str))

v return false;

x Char ch = str[8];

x return Char.IslLower{ch);
1

- - public static int GetWordCount(this String str)
{

-_ string pattern = @"\w+";

- return Regex.Matches(str, pattern).Count;
}

Figure 9. Live Unit Testing within Microsoft Visual Studio.

With ‘live’ mutation testing the goal would be to identify a single syntactic error,
placing a higher emphasis on first order mutants (FOM), where mutants are generated by

applying a mutation operator once against the source code.

4 https://docs.microsoft.com/en-us/visualstudio/test/live-unit-testing
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This is opposed to testing later when there is more of a chance that multiple errors have
been introduced, reducing need for second order mutants (SOM) and higher order
mutants (HOM) that simulate multiple syntactic errors. HOMs are often constructed by
first formulating the FOMs, then joining them together, which takes longer to compute
(Ghiduk et al., 2018).

To execute test case selection and mutation testing the code libraries will need to have
associated test suites. With the introduction of Test-Driven Development (TDD) by
(Beck, 2003), more test cases are being created by the business and quality analysts that
play a role in test development. There are many tools available, including some
evaluated by (Honfi & Micskei, 2019) that allow for unit test generation. Microsoft’s
IntelliTest feature® in Figure 10 generates test suites based on program analysis. This
figure illustrates how it can automatically generate test suites with high code coverage
using automated white box analysis. Since the reachability of program statements is not
decidable, the goal (Tillmann & De Halleux, 2008) is to provide a good approximation

and high coverage of the program statements.

public static TriangleKind ClassifyBySidelengths(int[] lengths)
{
alidate(lengths);
ick A 1+,
b 51 = Tenathalels Quick Actions Ctrl+
int s2 = lengths[1]; Rename... Ctrl+R, Cerl+R
int £3 = lengths[2]; Organize Usings »
if (((s1 + s2) <= s3] 5% Show on Code Map Ctrl+
{ Find All References on Code Map
return T 7le
1 Show Related ltems on Code Map k
else if ((51 == 52) & Create Unit Tests
i :
eI S Create IntelliTest
} Run IntelliTest

Figure 10. IntelliTest within Microsoft Visual Studio.

5 https://docs.microsoft.com/en-us/visualstudio/test/intellitest-manual/introduction




22

Once the tests have been developed, programmers can focus on the task of implementing
more complex logic to satisfy the tests. TDD can also lead to a more accurate
representation of the requirements since the unit tests are more formalized using
structured syntax as opposed to using manual testing processes that rely on requirements
documentation with abstract natural language.

For machine learning to be successful, an evaluation of features will be performed,
including code metrics (e.g. total number of methods, total lines of code, operator
occurrence counts), effort metrics (e.g. new vs. updated classes, new vs. updated
methods, modified lines of code) and test metrics (e.g. total number of test cases, test
results, test duration, total number of mutants, live vs. killed mutants, mutation score).
Given the features, the algorithm would attempt a binary classification and predict usage
(i.e. select vs. deselect) for each mutation operation with the objective to limit mutants
necessary to evaluate the test suite’s effectiveness. For mutation testing, Figure 11

proposes agent prioritizing mutation operators for methods and classes within code repo.

State » -
(Repo, Class, Mettiod, —» (Learning Algorithm,
Mutation Operator, Boliey) Actions
Number of Mutants, Reward (Live Mutant) i ioritizati
i e (Mutation Operator Prioritization)
Mutation Score, Environment

Results Live/Killed) (Mutation Testing)

Figure 11. Reinforcement Learning for Mutation Operator Selection.

To constantly evaluate the results of the machine learning mutation operator advice,
there must be an efficient process to execute reinforcement learning. To meet this

demand the core concept of machine learning in Figure 12 the approach will utilize a
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parallel process having n multiple agents, each with a deep Q-network to predict mutation
operators based on rewards, as well as randomly sampled shared experience replay to
allow the agents to learn from each other. This improves on the approach of (Nair et al.,
2015) by using both multi-threaded agents and shared experience replay memory, which
was suggested as future work. The results can be evaluated with different network,

agent, environment configurations and without synchronization of network gradients
(Grounds & Kudenko, 2005) or parallelized stochastic gradient descent addressed by

(Recht et al., 2001).

Shared

Experience Replay

J

Deep Q-Network; | ,,. | Deep Q-Network,

Back Forward
Propagate Propagate
—>
‘ Agent, . Agent,
SHates Actions
Rewards I
I_ Environment; Environment,, < Initial
Environment

Figure 12. Reinforcement Learning with Parallel Processing.

Experiment Design
To evaluate the approach, as well as issues and barriers previously mentioned, several
experiments will be conducted and measured. The proposed experiments are as follows:

Experiment 1: Learning Mutation Testing with One Live Mutation
Experiment 2: Learning Mutation Testing with Multiple Live Mutations
Experiment 3: Learning Mutation Testing with No Live Mutations
Experiment 4: Comparing Mutation Testing Approaches with Two Cores
Experiment 5: Comparing Mutation Testing Approaches with Four Cores
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Implementation

The algorithm defined in Chapter 3 Methodology; Figure 12 was implemented as a
Windows application called Mutation Testing with Parallel Deep Reinforcement
Learning (MTPDRL)®. The experiments were conducted using Windows Form
(MutantTesterDRL.exe) for reinforcement learning and Windows Console
(MutantTesting.exe) for mutation testing applications with object-oriented programming
in C# using the custom classes in Figure 13. In addition, existing open-source libraries

were used, such as Deep-QLearning’, Mutty®and Cecil®.

ﬁ_n MutantTesterDRL exe

{{} DeepQLeaming

£ MustantT o 2% MutantTesterDRL Properties

4 DespOlearmShamdSingletan

@ MutantTesting.exe

11 MustartTasting CommuandLinelnberface Flag Parameters B & Lty el
. > @) Lty

0} MurtantTesting 41 MutantTesting Properties

Figure 13 Mutation Testing with Parallel Deep Reinforcement Learning code map.

8 https://github.com/mstewart1972/MutationTestingWithDeepParallelReinforcementLearning
"https://github.com/dubezOniner/Deep-Qlearning-Demo-csharp

& https://github.com/angusmcintosh/Mutty

9 https://github.com/jbevain/cecil
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MutantTesterDRL.exe

The DeepQLearning.FormDriver class is used to specify parameters and instantiate
instances of the DeepQLearning.FormAgent class as thread or process. The FormAgent
instantiates the DeepQLearning. DRLAgent.QAgent class which uses the DeepQLearn,

DeepQLearnShared or DeepQLearnSharedSingleton classes for reinforcement learning.

DeepQLearn

This class was part of the original Deep-QLearning library and utilizes the Trainer
class within the ConvNetSharp library to define and utilize neural networks as part of the
reinforcement learning process. There are multiple algorithms supported to update
network weights, including the classic Stochastic Gradient Descent but this research
utilized ADADELTA by (Zeiler, 2012). The idea with this method of updating the
network weights during backpropagation is to prevent the need for manual tuning of the
hyperparameters, such as learning rate or momentum and handle adverse conditions with

respect to the input data types and network layer units.

DeepQLearnShared

This class was added as an extension for reinforcement learning with shared
experience and inherits functionality from the DeepQLearn class. The shared experience
replay was implemented using a static ConcurrentDictionary, which is part of the NET
framework System.Collection.Concurrent namespace and is thread-safe. During

backpropagation agents will contribute round-robin towards the shared experience,
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replacing randomly when maximum experience limit is reached and randomly choose a

specified batch size number of elements for network training.

DeepQLearnSharedSingleton
This class was added as an extension for reinforcement learning with shared
experience but was implemented using the singleton pattern that ensures instantiation is

limited to a single instance. The class also allows serialization to save experience.

Experience
This class maintains the state0, action0, reward0, statel fields where an agent is in
state0 and does action0. The environment then assigns reward0 and provides new state,

statel. Experience stores this information, which is used during the Q-learning update.

World

This class implements the environment, which is comprised of agents and codebase.
The agents utilize actions (i.e., mutation operators) as a means to evaluate the codebase
(i.e., code pieces) for rewards (i.e., mutation score). For the experiments, mutation
operator selection was evaluated using different methods, including random or machine
learning. To maintain the reinforcement learning cycle, the world utilizes a clock that
ticks for each forward/backward propagation and can be set with a duration limit. To
ensure that the machine learning process converges, DeepQLearning. FormAgent
implements criteria (if average Q-learning loss is >=0.50, checking every 100 intervals),

that evaluates and resets the experience if the criteria is not met, as shown in Figure 14.
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Experience Allocation Over Time by Instance
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Figure 14. Reinforcement learning with experience reset when criteria not met.

Item
This class implements the rewards, red is positive, and green is negative, that the agent

can detect. As shown in Figure 14, items are placed at locations within the environment.

Agent

This class implements the agent and has partial observability within the environment,
limited to the module that it is processing. The agent has one eye that can detect item
properties using the Eye class, which for these experiments use static values since a
single module and class were utilized. The Cecil® library provides metadata on modules,
types and methods which would allow detecting properties, such as type.name,
type.methods.count, type.fields.count to learn within a larger codebase containing

multiple modules and types.
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The agent has 1 eye, can detect 3 item properties, can take 2 * number of mutation
operators possible actions and has temporal window of 4, so the number of inputs is
current state(1x3) + previous states(1x3x4) + actions(2"4x4) = 79. The item text and
integer values are word2vec® or one hot encoded as real numbers, which become inputs to

the network for forward propagation through the neural network, as shown in Figure 15.
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Figure 15. Neural network configuration utilized for reinforcement learning.

% https://github.com/tmteam/Word2vec.Tools
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The number of actions is 2”*number of mutation operators. During research it was
determined that the machine learning performed best with limited actions, so the
algorithm utilized a mutation category to limit the number of operators. Even though the
number of actions can vary between categories, it is fixed to 2°4=16 for the basic
arithmetic replacement categories (e.g., basic addition where + is replaced with -, *, /, %).
The output is an integer representing one of the possible combinations of the category
mutation operators, where each operator is either enabled or disabled, that the agent
chooses as action to take for mutation testing. The operation occurrence count of each

mutation operator combination utilized is maintained to analyze the agent results.

The reward function computed for backward propagation is favorable to mutation
operators that result in live mutations and unfavorable to operators that result in killed
mutations. This is accomplished using multiple conditions, as well as factors. First, the
reward = min_reward where min_reward = (1 / number mutation operators) * minFactor
when there are no live mutations, to promote disabling the most possible operators.
Second, reward = score reward + max_reward where score_reward is 1 - mutation score
and max_reward is number mutation operators * max_factor when score reward !=0,

which promotes enabling the most possible operators.

MutantTesting.exe
The MutantTester.MutationTester class and MutationTest() method performs mutation
testing based on parameters specified by the DeepQLearning. DRLAgent.Agent class

during the Backward() propagation method. The results from the MutantTesting.exe are
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parsed and the Reinforcement Learning reward is calculated for the

DeepQLearning. DRLAgent.DeepQLearn class to retain experience and adjust the

network weights using the Trainer class by the Train() method. The reward function

looks to select mutation operators that maximize the result of live mutations. A detailed

diagram of the mutation testing program is shown in Figure 16.
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Figure 16. Code map for the Mutation Testing application.

The BuildOriginalCode() method is called by MutationTest() method to compile the
.NET solution that contains the program source code for both the application logic and
the unit test suite. It utilizes the .NET command-line interface (CLI) and build command
to build the project and its dependencies into a set of binaries. The binaries include the

project's code in Intermediate Language (IL) files with a .dll extension.
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The GenerateMutants() method is called by MutationTest() method, which uses the
mutation operators passed to generate mutated copies of the original IL that was built.
The MutantGeneration.ReinforcementMutationCreation.ReinforcementMutationFinder
class and GetAllReinforcementInstructionMutations() method takes both the mutation
category (e.g., BA=basic addition replacements) and operators (e.g., 1111-all, 1000-
addToMul, ©100-addToSub, ©010-addToDiv, ©001-addToRem, ©000-none), which allows for
the reinforcement learning algorithm to choose various mutation operator combinations.

For IL manipulation, the MutantGeneration.MutationGenerators namespace contains
classes for the various mutation categories (e.g., InstructionMutationGenerators) that
implement the GenerateMutations() method to generate Mutation objects, for each of the
classes, methods, or instructions in each of the applications modules. In order to
decompile and alter the IL code, the Decompiler.DlIDecompiler class uses the
Mono.Cecil?® library.

Finally, the TestMutants() method is called by the MutationTest() method to execute
the unit test suite against all of the mutated assemblies. The DotnetTestFramework class
and the TestAsync() method supports the MSTest’, NUnit!? and xUnit!! testing
frameworks. It utilizes the .NET command-line interface (CLI) and test command to
execute the unit tests within the given solution and reports the success or failure of each
test. For each test suite execution, results from unit tests are returned as either test fail

(i.e., killed mutation) or test pass (i.e., live mutation).

% https://github.com/Microsoft/testfx-docs
0 https://nunit.org/
1 https://xunit.net/
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To perform mutation testing, sample programs with test suites were created as shown

in Figure 17. These programs perform basic arithmetic operations and corresponding test

methods that utilize the NUnit!? test framework. This allows the experiments to focus on

the backpropagation process for mutation operator selection results.

Program BasicMath

Method
public int Add(int FirstNumber, int SecondNumber)
{

return FirstNumber + SecondNumber;

Program BasicMath2

Method
public int Sub(int FirstNumber, int SecondNumber)
{

return FirstNumber - SecondNumber;

Program  BasicMath2

Method
public int Add(int FirstNumber, int SecondNumber)

{

return FirstNumber + SecondMumber;

Program BasicMath5

Method

public int Mod(int FirstNumber, int SecondNumber)
{

return FirstNumber % SecondNumber;

Test
public void AddTest()
{
// 1000-addToMul=live, 0100-addTeSub=kill, 0010-addToDiv=kill, 0001-addToRem=kill
BasicMathFunctions system = new BasicMathFunctions();
int expected = 4;
int actual = system.Add(2, 2);
Assert.AreEqual{expected, actual, "AddTest: The expected did not match the actual.");
}
Test
public void SubTest()
{
// 1000-subToMul=kill, 0100-subToAdd=kill, 0010-subToDiv=kill, 0001-subToRem=kill
BasicMathFunctions system = new BasicMathFunctions();
int expected = 2;
int actual = system.Sub(3, 1);
Assert.AreEqual({expected, actual, "SubTest: The expected did not match the actual.");
¥
Test
public void AddTest()
{
// 1000-addToMul=live, 0100-addToSub=live, 0010-addToDiv=kill, 0001-addToRem=kill
BasicMathFunctions system = new BasicMathFunctions();
int expected = 0;
int actual = system.Add(0, 0);
Assert.AreEqual(expected, actual, "AddTest: The expected did not match the actual.");
1
Test
public void ModTest()
{
// 1000-remToAdd=kill, 0100-remToSub=kill, 0010-remTaoDiv=live, 0001-remToMul=live
BasicMathFunctions system = new BasicMathFunctions();
int expected = 0;
int actual = system.Mod(0, 1);
Assert.AreEqual({expected, actual, "ModTest: The expected did not match the actual.");
}

Figure 17. Sample programs with test suites for mutation experiments.
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By using a reinforcement learning algorithm, some of the data required for learning is
generated by the agent itself by trial-and-error actions within the environments. This is
unlike supervised learning, where large amounts of labeled data with the correct input-
output pairs are explicitly presented. Most of the reinforcement learning happens online,
as the agent interacts with the environment over several iterations and eventually begins
to learn the policy that describes which actions to maximize the reward. This was one of
the driving factors for choosing RL as opposed to other ML approaches.

To perform additional mutation testing, additional code libraries can be identified.
Now that a number of high-profile C# software development organizations, including
Microsoft have transitioned to an open-source approach, including test suites available
for analysis. In the research from (Derezinska, 2006) the author evaluates mutation
testing operators using an array of subject C# programs, including NUnit!°, NHibernate,
NAnt and Microsoft’s Mono which in 2001 was an early attempt at open-sourcing the
.NET Common Language Infrastructure (CLI) for cross-platform portability. In
subsequent research on mutation testing tools from the same author (Derezinska, &
Szustek, 2008), only two years later there were more C# programs available for analysis.
These included Spring.NET, Castle.Core, NCover and CruiseControl. NET. Since then,
even more open-source C# libraries have been made available on GitHub with
Microsoft’s open-source re-development of the .NET Standard called .NET Core, which
includes runtime, framework, compiler and tool components. Using open-source projects
prevents the extra effort and potential legal issues with commercial data, as well as
allows future researchers to validate and contribute to the goals set forth by this

dissertation.
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To evaluate forward propagation of machine learning features, more complicated
programs with multiple classes and assemblies will be required. Additional data that is
required could be obtained using code, build and test metrics from the continuous

integration of open-source libraries on public GitHub repositories as shown in Figure 18.
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Figure 18. Code churn metrics within GitHub.

To perform test case selection evaluation, datasets are available that provide test case
results and have been used by previous research. This idea for ‘live’ mutation testing
uses an approach similar to that of (Madeyski, & Kawalerowicz, 2017) when capturing
data for their continuous defect prediction process. There are other public datasets
available, including Kaggle.com and governmental organizations, such as NASA that

have been used by previous research on software fault analysis (Menzies et al., 2007).

Measures
For an evaluation of reinforcement learning for mutation testing, the experiments will

use measurements: 1. Loss, 2. Reward, 3. Elapsed time, 4. Mutation score and 5. CPU %.
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Experiment 1: Learning Mutation Testing with One Live Mutation

The purpose of this experiment is to determine if reinforcement learning can identify
the optimal mutation operator selection for a program and test suite that has one possible
live mutation. The BasicMath program, unit test and basic addition mutation in Figure 23
will be used. In this scenario, the algorithm should identify that the combination of 1000
is the correct combination to turn off all but the one mutation operator (i.e., + to *) that
will produce live mutant and identify faulty test case. The environment will allow the
agent to run until the reward converges or 24 hours. This first experiment’s success
criteria are the ability for the reward function to converge and train the agent to
successfully navigate the environment, maximizing rewards and correct operator
selection. The failure criteria are the inability of reinforcement learning to train the agent
successfully or cause loss function to reside in local minima. These results will be
documented and utilized as justification for subsequent experiments. The result from this

experiment will be formatted as Table 1.

Experiment Results Format SUCCESS fail

testrun 1 2

average elapsed time (hh:mm:ss) hh:mm:ss hh:mm:ss

average loss # #

average reward # #

average mutants total # #

average mutants kill # #

average mutants live # #

average mutation score (kill/total) # #
0000,0001,0010,0011,0100,
0101,0110,0111,1001,1010,

mutation operator combination 1000 1011,1100,1101,1110,1111

Table 1. Experiment 1 results format.
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Experiment 2: Learning Mutation Testing with Multiple Live Mutations

The purpose of this experiment is to determine if reinforcement learning can identify
the optimal mutation operator selection for a program and test suite that has multiple live
mutations. The BasicMath5 program, unit test and basic modulo mutation in Figure 23
will be used. In this scenario, the algorithm should identify that the combination with
0011 is the correct combination to turn off all but two mutation operators (i.e., % to / and

% to *) that will produce live mutants and identify faulty test cases.

Experiment Results Format SUCCESS fail

testrun 1 2

average elapsed time (hh:mm:ss) hh:mm:ss hh:mm:ss

average loss # #

average reward # #

average mutants total # #

average mutants kill # #

average mutants live # #

average mutation score (kill/total) # #
0000,0001,0010,0100,0101,
0110,0111,1000,1001,1010,

mutation operator combination 0011 1011,1100,1101,1110,1111

Table 2. Experiment 2 results format.

The success criteria will be similar to the first experiment in that the agent must
successfully navigate the environment, maximizing rewards and correct operator

selection. The result from this experiment will be formatted as Table 2.
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Experiment 3: Learning Mutation Testing with No Live Mutations

The purpose of this experiment is to determine if reinforcement learning can identify
the optimal mutation operator selection for a program and test suite that has no possible
live mutations. In this scenario, since all mutations are killed, the algorithm should
identify 0000 is the correct combination to turn off all mutation operators since none will
produce live mutants that identify faulty test cases. The BasicMath2 program, unit test

and basic subtraction mutation in Figure 23 will be used.

Experiment Results Format success fail
testrun 1 2
average elapsed time (hh:mm:ss) hh:mm:ss hh:mm:ss
average loss # #
average reward i #
average mutants total i #
average mutants kill # #
average mutants live i #
average mutation score (kill/total) i# #

0001,0010,0011,0100, 0101,
0110,0111,1000,1001,1010,
mutation operator combination 0000 1011,1100,1101,1110,1111

Table 3. Experiment 3 results format.

The success criteria will be similar to the first two experiments in that the agent must
successfully navigate the environment, maximizing rewards and correct operator

selection. The result from this experiment will be formatted as Table 3.
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Experiment 4: Comparing Mutation Testing Approaches with Two Cores

The purpose of this experiment is to evaluate the impact of parallel deep
reinforcement learning selection of mutation operators vs. selection of all or random
operators using agents as multiple threads on the mutation testing and operating system
performance. During reinforcement learning, 2 agents with duration of 1500 intervals for
5 runs will be executed on a laptop with 2 physical cores, for total of 2*1500*5 = 15k
tests. Each run will execute until reward convergence is determinate, based on the
baseline experiment results. The average should mitigate the risk of anomalies. For this
experiment operating system performance metrics will be collected using Windows
process explorer, as proposed by (Huffman, 2014). This experiment will guide the
development of Visual Studio extension for mutation testing operator selection. The

BasicMath2 program, unit test and basic addition mutation in Figure 23 will be used.

Experiment Results Format success fail
test run 1 2
average elapsed time (hh:mm:ss) hh:mm:ss hh:mm:ss
average loss # #

average reward
average mutants total

average mutants kill
average mutants live
average mutation score (kill/total)

live mutant ratio (live: total)
configuration ranking

L= = = = -
| H [ ||

Table 4. Experiment 4 results format.

For this experiment a ranking will be assigned to the different configurations based on the
metric of live mutant ratio, which is calculated as average mutants live / average mutants
total. The success criteria will be similar to the previous experiment in that the agent
must successfully navigate the environment but in addition will include top configuration

ranking metric. The result from this experiment will be formatted as Table 4.
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Experiment 5: Comparing Mutation Testing Approaches with Four Cores

The purpose of this experiment is to evaluate the impact of parallel deep
reinforcement learning selection of mutation operators vs. selection of all or random
operators using agents as multiple threads on the mutation testing and operating system
performance. During reinforcement learning, 2 agents with duration of 1500 intervals for
5 runs will be executed on a laptop with 4 physical cores, for total of 2*1500*5 = 15k
tests. Each run will execute until reward convergence is determinate, based on the
baseline experiment results. The average should mitigate the risk of anomalies. For this
experiment operating system performance metrics will be collected using Windows
process explorer, as proposed by (Huffman, 2014). This experiment will also guide the
development of Visual Studio extension for mutation testing operator selection. The

BasicMath2 program, unit test and basic addition mutation in Figure 23 will be used.

Experiment Results Format SUCCESS fail
test run 1 2
average elapsed time (hh:mm:ss) hh:mm:ss hh:mm:ss
average loss i #

average reward
average mutants total

average mutants kill
average mutants live
average mutation score (kill/total)

live mutant ratio (live : total)
configuration ranking

LR - -
e N N E N E T

Table 5. Experiment 5 results format.

For this experiment a ranking will be assigned to the different configurations based on the
metric of live mutant ratio, which is calculated as average mutants live / average mutants
total. The success criteria will be similar to the previous experiment in that the agent
must successfully navigate the environment but in addition will include top configuration

ranking metric. The result from this experiment will be formatted as Table 5.
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Resources

For this research, the following basic and available resources were required:

Laptop — Developer machine with 2 physical Intel ® Core® CPU @2.50GHz
processors (4 logical processors), 16GB memory (L1 cache:256KB, L2
cache:1MB, L3 cache:8MB) and Windows 10 64-bit operating system.

Laptop — Developer machine with 4 physical Intel ® Xeon® CPU @3.00GHz
processors (8 logical processors), 16GB memory (L1 cache:256KB, L2
cache:1MB, L3 cache:8MB) and Windows 10 64-bit operating system.

Programming software — The C# programming language (Microsoft Corporation,
2013) and Visual Studio integrated development environment (IDE).

Analysis software — Windows process explorer (Microsoft Corporation, 2019).

Documentation software — Microsoft Office (2019).

Summary

The experiments will be performed while also running other developer applications,

including Visual Studio, Microsoft Outlook, Microsoft Word, Microsoft Excel, Microsoft

Teams, Chrome Internet Browser. This will help to determine the feasibility of running

the reinforcement learning process in real-world situations and provide a better estimate

of the metrics captured in the experiment results.
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Chapter 4 — Results

Introduction

The experiments previously designed were conducted. To execute the experiments a
sophisticated multi-thread, multi-process test-harness application described in the
implementation section was utilized, Mutation Testing with Parallel Deep Reinforcement
Learning (MTPDRL)® is shown in Figure 19. It was based on the Q-learning research by
(Mnih, Kavukcuoglu, et al., 2013) and the aforementioned Deep-QLearning® library that
implemented reinforcement learning using a single-threaded process. The MTPDRL
application was built to specify parameters, execute experiments and visualize data. The

output data was collected, aggregated and prepared for the following results.
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Figure 19. Mutation Testing with Parallel Deep Reinforcement Learning.
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Experiment 1: Learning Mutation Testing with One Live Mutation
The purpose of this experiment is to determine if reinforcement learning can identify
the optimal mutation operator selection for a program and test suite that has one possible

live mutation. The addition mutants possibly generated are shown in Figure 20.

Mutation +=>%  +=>- +=>/ +=>%
Live Mutants Killed Mutants
#0 #1
public int Add(int FirstNumber, int SecondNumber) public int Add(int FirstNumber, int SecondNumber)
{ {
return FirstNumber * SecondNumber; return FirstNumber - SecondNumber;
i H

#2
public int Add(int FirstNumber, int SecondNumber)

{

return FirstNumber / SecondNumber;
i
#3
public int Add(int FirstNumber, int SecondNumber)
{

return FirstNumber % SecondMNumber;

}

Figure 20. Possible mutants with one live mutant for experiment 1.

The testing indicated the learning algorithm convergence was definitive at 1500 cycles.
At that point, the machine learning actions shown in Figure 21 were evaluated and the

1000 combination had the highest occurrence and identified as recommended mutation.

Agent Accuracy Over Time Agent Completeness Over Time
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0.0363041484220281 Trend
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TS Livg.
e
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04 o

25 493 5173845 239617 5 73846 i 2037731 7731_ 1499.6109037
7384554601999.617384654501 1489.6173846545 4596199037731 _ 999,6199037731 _ 1499,619903773

Actions

([combination count

(D000, 38), (D001, 323, (D010, 34), 10017, 36}, (0100, 42). (0101, 39), (0110, 35), (0111, 32), (1000, 804), (1001, 42), (1010, 45}, (1011, 33)
(1100. 28), (1101, 36), (1110, 38), (1111, 32)

Figure 21. ML agent reward, loss and mutation performance for one live mutant.
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The results indicated that reinforcement learning using agent for mutation operator
selection was successful, obtaining high reward with low loss, generating and testing
fewer mutations after training for approximately ~11.5 hours vs. all operators executing
for ~18 hours as shown in Table 6. Additional details on the individual agent

performance from this and all experiments are available within the appendix.

Comparison fail SUCCESS

Metrics all mutation operators ML mutation operators
average elapsed time (hh:mm:ss) 17:54:14 11:31:02
average loss 0.042314674 0.036304149
average reward 0.291500000 0.886378750
average mutants total 4 at
average mutants kill 3 0
average mutants live 1 it
average mutation score (kill/total) 0.750 0.000
mutation operator combination 1111 1000
configuration ranking 2 1

Table 6. Learning Mutation Testing with One Live Mutation.

Experiment 2: Learning Mutation Testing with Multiple Live Mutations
The purpose of this experiment is to determine if reinforcement learning can identify
the optimal mutation operator selection for a program and test suite that has multiple live

mutations. The modulo mutants possibly generated are shown in Figure 22.

Mutation % =>+ % =>- % =>/ % => *

Live Mutants Killed Mutants

#2 #0

public int Mod(int FirstMumber, int SecondNumber) public int Mod(int FirstMumber, int SecondMNumber)

{ {
return FirstNumber / SecondNumber;

1 1

#3 #1

public int Mod(int FirstMumber, int SecondNumber) public int Mod(int FirstMumber, int SecondMNumber)

{ {

return FirstNumber * SecondNumber;

b }

return FirstNumber + SecondNumber;

return FirstNumber - SecondNumber;

Figure 22. Possible mutants with two live mutants for experiment 2.
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An observation was the learning algorithm, including shared agent experience continued
to converge after attempting various actions with multiple live mutants around 1500
cycles as shown in Figure 23 and the 0011 combination had the highest action occurrence

and thus was identified as recommended mutation.

Agent Accuracy Over Time Agent Completeness Over Time
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Trend Live
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2 " L . —ew Mutants
0.2 " 0.167635455936932 — Trend
Killed
14 | JU0IE LA Trend
0 I ] e Live
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02 ORI
04 i ——— — -1
459 6273564805 999.6273564905. 1459.627358490 4996296570441 999 6296570441 . 1459 629657044

Actions:

[combination count )

(D000, 32), (0001, 308), (0010, 59). (D011, 665), (D100. 43), (0101, 27, (0110, 37). (@111, 43}, (1000, 27), (1001, 37, (1010, 29), (1011, 34),
(1100. 43), (1101, 41), (1110, 47), (1111, 29)

Figure 23. ML agent reward, loss and mutation performance for multiple live mutants.

The results indicated that reinforcement learning using an agent for mutation operator
selection was successful, obtaining high reward with low loss, generating and testing

fewer mutations after training for approximately ~11 hours as shown in Table 7.

Comparison fail SUCCESS

Metrics all mutation operators ML mutation operators
average elapsed time (hh:mm:ss) 13:79:11 11:15:18
average loss 0.102743483 0.167635456
average reward 0.340250000 0.925886667
average mutants total 4 2
average mutants kill 2 0
average mutants live 2 s
average mutation score (kill/total) 0.500 0.000
mutation operator combination 1111 0011

Table 7. Learning Mutation Testing with Multiple Live Mutations.



45

Experiment 3: Learning Mutation Testing with No Live Mutations
The purpose of this experiment is to determine if reinforcement learning can identify
the optimal mutation operator selection for a program and test suite that has no possible

live mutations. The subtraction mutants possibly generated are shown in Figure 24.

Mutation -=>% =>4 =50 -=>%
Live Mutants Killed Mutants
#0
MNaone public int Sub{int FirstNumber, int SecondMNumber)
{
return FirstNumber * SecondNumber;
H
#1

public int Sub{int FirstNumber, int SecondMNumber)
{

return FirstNumber + SecondMNumber;
I
#2
public int Sub{int FirstNumber, int SecondMNumber)
{

return FirstNumber / SecondNumber;

1
#3

public int Sub{int FirstNumber, int SecondMNumber)
{

return FirstNumber % SecondMNumber;

t

Figure 24. Possible mutants with no live mutants for experiment 3.

An observation was the learning algorithm, including shared agent experience continued
to converge with multiple live mutants around 1500 cycles as shown in Figure 25 and the

0000 combination had the highest occurrence and identified as recommended mutation.
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(0000, 575, (0001, 39, (0010, 32), (0011, 37), (0100, 30, 0101, 34), (0110, 37, (0111, 42), (1000, 320, (1001, 37, (1010, 37, (1011, 32),
(1100, 30), (1107, 39), (1110, 29), (1111, 3%

Figure 25. ML agent reward, loss and mutation performance for no live mutants.



The results indicated that reinforcement learning using an agent for mutation operator
selection was successful, obtaining high reward with low loss, generating and testing

significantly fewer mutations after training for approximately ~11.5 hours as shown in

Table 8.

Comparison fail success

Metrics all mutation operators ML mutation operators
average elapsed time (hh:mm:ss) 12:26:58 11:28:59
average loss 0.015536947 0.015900206
average reward 0.000000000 0.153000000
average mutants total 4 0
average mutants kill 4 0
average mutants live 1] 0
average mutation score (kill/total) 1.000 Mal
mutation operator combination 1111 0000

Table 8. Learning Mutation Testing with No Live Mutations.

Experiment 4: Comparing Mutation Testing Approaches with Two Cores

The purpose of this experiment is to evaluate the impact of parallel deep
reinforcement learning selection of mutation operators vs. selection of all or random
operators using agents as multiple threads on the mutation testing and operating system

performance. The addition mutants possibly generated are shown in Figure 26.

Mutation +=> % +=>- +=>/ +=>%
Live Mutants Killed Mutants
#0 #2
public int Add(int FirstNumber, int SecondNumber) public int Add(int FirstNumber, int SecondNumber)
{ {
return FirstNumber * SecondNumber; return FirstNumber / SecondNumber;
H I
#1 #3
public int Add(int FirstNumber, int SecondNumber) public int Add(int FirstNumber, int SecondNumber)
{ {
return FirstNumber - SecondMNumber; return FirstNumber % SecondMNumber;
i I

Figure 26. Possible mutants with two live mutants for experiment 4.
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The results indicated that the machine learning mutation operator selection process was

able to outperform both the traditional approach of selecting all operators, as well as

random selection as shown in Table 9.

Comparison fail fail SUCCess

Metrics all mutation operators | random mutation operators | ML mutation operators
average elapsed time (hh:mm:ss) 33:53:02 16:25:42 13:52:11
average loss 0.130015461 0.126778509 0.152961444
average reward 0.549300000 0.504345667 0.798272917
average mutants total 4 2.5 14
average mutants kill pLd 157 0.3
average mutants live P 0.8 1.1
average mutation score (kill/total) 0.500 0.680 0.214
live mutant ratio (live: total) 0.500 0.320 0.786
configuration ranki P4 3 1

Table 9. Comparing Mutation Testing Approaches with Two Cores.

An observation was that the reinforcement learning selection was able to generate the

highest live to total mutant ratio, which resulted in a significant reduction in the mutation
testing elapsed time. The driver thread (MutantTesterDRL.exe) maintained references to
agent thread instances (MutantTesting.exe) but even while also running other developer
applications, had ~40% of CPU capacity still available as shown in Figure 27, which
indicates that the ‘live’ mutation testing process can execute background while
developers are coding and performing other tasks. This experiment provided guidance

for development of the Visual Studio extension for mutation testing operator selection.
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Figure 27. Multiple threads with shared memory and two CPU cores.
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Experiment 5: Comparing Mutation Testing Approaches with Four Cores

The purpose of this experiment is to evaluate the impact of parallel deep
reinforcement learning selection of mutation operators vs. selection of all or random
operators using agents as multiple threads on the mutation testing and operating system

performance. The modulo mutants possibly generated are shown in Figure 28.

Mutation % =>+ % =>- %=>/ %=>*
Live Mutants Killed Mutants
#2 #0
public int Mod(int FirstMumber, int SecondMumber) public int Mod(int FirstMumber, int SecondMumber)
{ {
return FirstNumber / SecondNumber; return FirstNumber + SecondNumber;
I H
#3 #1
public int Mod(int FirstMumber, int SecondMumber) public int Mod(int FirstMumber, int SecondMumber)
{ {
return FirstNumber * SecondMNumber; return FirstNumber - SecondNumber;
I H

Figure 28. Possible mutants with two live mutants for experiment 5.

The results in Table 10 indicated that the machine learning mutation operator selection
process was able to outperform both the traditional approach of selecting all operators, as

well as random selection based on the live to total mutant ratio.

Comparison fail fail SUCCESS

Metrics all mutation operators | random mutation operators | ML mutation operators
average elapsed time (hh:mm:ss) 12:47:25 10:15:41 10:13:36
average loss 0.069422835 0.126778509 0.143235069
average reward 0.540125000 0.504345667 0.863680540
average mutants total 4 a5 16
average mutants kill 2 1.3 0.3
average mutants live 2 0.4 1.3
average mutation score (kill/total) 0.500 0.765 0.188
live mutant ratio (live: total) 0.500 0.235 0.813
configuration ranking 2 3 1

Table 10. Comparing Mutation Testing Approaches with Four Cores.

An observation depicted in Figure 29, was that the driver thread completed mutation

testing in a shorter elapsed time using 4 CPU cores and had ~70% of CPU capacity
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available for other tasks. This indicates that additional agent threads might be utilized to

perform reinforcement learning against more complicated programs.

16232K 29020 Console Window Host
41692K 11288 NET Host
11.092K 14200 Console Window Host
61320 26248 NET Host

S5612K

3452K

25.080K 25400 MutantTest
16284 K 23520 Console Window Host
47790K

11.080K

©1.388 K]

55680 K|

45.300 K|

42068K

092K,

S7548K

18.080K

Figure 29. Comparing Mutation Testing Approaches with Four Cores.

Summary
In summary, all required data was synthesized and the experiments were completed.

The results have provided valuable insight towards this dissertation and future research.
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Chapter 5 - Conclusion

In conclusion, research regarding mutation testing, mutation selection and
machine learning has been conducted but much of it separately and not considering a
practical application by software developers using an Integrated Development
Environment. Less is available that combines mutation testing, mutation operator
selection and reinforcement learning using parallel processing in the Visual Studio IDE
for C# development. This dissertation contributes valuable insight and functionality in
that area. The results of the experiments demonstrated that the usage of reinforcement
learning for mutation operator selection was both effective and practical.

One key contribution from this research was the development of the
reinforcement algorithm to identify mutation operator combinations that result in live
mutations. This included a criterion to reset the shared experience and restart learning
such that the process was able to avoid local minima and always converge on a mutation
operator combination recommendation. The policy was consistently successful in
minimizing mutation score, with increasing reward and decreasing loss.

With experiments 1 — 3, it was found that the reinforcement learning algorithm
was able to identify the correct mutation operator selections for various programs and test
suite scenarios, without regard to the number of live mutations. This did not represent
every mutation scenario possible with complex programs but does provide evidence for
the scenarios evaluated that reinforcement learning was effective by identifying the
proper mutation operator combination to detect live mutations and generated 50 — 100%

fewer mutations as compared to using all mutation operators.



51

With experiments 4 and 5, it was determined that by using parallel processing and
multiple cores the reinforcement learning process for mutation operator selection was
practical. The number of tests (2*1500*5 = 15k) was increased to substantiate the initial
experiments results. Additionally, by increasing the number of cores from 2 to 4, there
was ~75% more CPU available for other processes to be performed. This combined with
tuning the number of concurrent agent threads learning and sharing experience allows for
a more complex, realistic codebase to be evaluated for mutation operator selection.

Finally, the required resources for additional research are currently available and
growing with the expansion of open-source usage and test-driven development. As
shown earlier, there is a need to eliminate software defects from both the software
reliance and software development cost perspectives. Given this, the goal of increasing

test suite effectiveness using mutation testing and reinforcement learning is possible.

Implications

The implication from the dissertation experiments is that reinforcement learning can
be used in the manner required to facilitate mutation operator selection both during
software development and deployment. It provides an approach of making mutation
testing more viable, which is already considered the most accurate and dependable

approach for assessing test suite effectiveness (Strug & Strug, 2012).

Recommendations
Based on experimentation results, the recommendation is to pursue research on

improving the machine learning hyper-parameters, incorporating additional machine
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learning features for training against more complicated programs and development
required to implement this paper’s reinforcement learning approaches for mutation
operator selection as a Visual Studio extension. Transitioning from agents navigating a
simple program environment to a more complex, multi-module codebase. To further this
recommendation the following design extends the implementation to integrate

reinforcement learning within the development and testing environment (IDE).
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H | Brogress
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Al Get current setup.

: Mutation Operator | Results:
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[¥] Div with Mul
[¥] Rem with Mul

Figure 30. Mutation Testing with Reinforcement Learning in Visual Studio extension.

MainToolWindow

The interface would allow machine learning feedback to developers on mutation
operator selection based on agent traversal through the codebase. Forward propagation
using input based on proximity to the agent’s current code piece CIL instruction location
to adjacent CIL instructions in the library. Based on (Microsoft Corporation, 2020), the
CIL instruction set contains 235 possible instructions, so each could have corresponding
mutations. Once encoded, the input values fed through the network determine an action,
which would correspond to instruction replacements, thus generating a mutant library.
The mutant software library would be tested, the mutation score calculated and used as a

reward for mutation operator suggestions against the entire codebase.
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Appendix A — Detailed Experiment Results

This appendix provides detailed results of experiments 1 through 5. As previously
mentioned, each experiment carried out in this study were conducted two developer
machines. The first with 2 physical Intel ® Core® CPU @2.50GHz processors (4 logical
processors), second with 4 logical Intel ® Xeon® CPU @3.00GHz processors (8 logical
processors), both with 16GB memory (L1 cache:256KB, L2 cache:1MB, L3 cache:8MB)
and Windows 10 64-bit operating system. The experiments were performed while also
running other developer applications, including Visual Studio, Microsoft Outlook,
Microsoft Word, Microsoft Excel, Microsoft Teams and Chrome Internet Browser. As
part of the experiment, the reinforcement learning agent configurations were tested and
evaluated, using the following metrics:

1. Loss, 2. Reward, 3. Elapsed time, 4. Mutation score, 5. CPU percentage.
Below are screenshots with a summary of each experiment’s agent hyperparameters,
architecture and detailed accuracy results, corresponding to the above evaluation
method. The code, program usage, agent files and screenshots are also included in the Git

repo available at https://github.com/mstewart1972/ParallelDeepReinforcementlearning.




Experiment 1: Learning Mutation Testing with One Live Mutation
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Experiment 2: Learning Mutation Testing with Multiple Live Mutations
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Experiment 3: Learning Mutation Testing with No Live Mutations
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Experiment 4: Comparing Mutation Testing Approaches with Two Cores

Machine Learning selection of mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:s 13:52:11 13:25:17 16:41:21 13:37:52 12:27:27 13:08:59
maximum action f 1100 1000 11207 1100” 0000” 1000
average mutation score 0.21
average mutant total 1.400000000000000 1.50 2.50 1.00 1.00 1.00
average killed count 0.300000000000000 0.50 1.00 0.00 0.00 0.00
average live count 1.100000000000000 1.00 1.50 1.00 1.00 1.00
average Q-learn loss 0.152961443509268 0.14190886 0.23263098 0.16998208 0.18783096 0.03245434
smooth-ish reward 0.798272916666644 0.73109833 0.68447875 0.82420500 0.82368542 0.92789708
Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action f 1100 1000 1110 1100 0100” 1000
average Q-learn loss 0.129909970188984 0.02063952 0.23266643 0.02208906 0.33723121 0.03692364
smooth-ish reward 0.877912166666663 0.93731750 0.68755750 0.92718417 0.91432917 0.92317250
test runs - instancel 1 2 3 4 5
maximum action 1100 1010 1110 1100” 1000” 1100
average Q-learn loss 0.176076553121387 0.26340732 0.23251918 0.31798466 0.03871289 0.02775872
smooth-ish reward 0.759268833333329 0.52539917 0.68189000 0.72255917 0.93304167 0.93345417
Test Summary 1 2 3 4 5
maximum action " 1100
average Q-learn loss 0.152993261655185 0.14202342 0.2325928 0.17003686 0.18797205 0.03234118
smooth-ish reward 0.818590499999996 0.73135833 0.68472375 0.82487167 0.92368542 0.92831333
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8l Mutation Testing Deep O Leaming Agent (Instance 1)
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95 Mutation Testing with Parallel Deep Reinforcement Learning
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sl Mutation Testing Deep Q Learning Agent (Instance 1)

Visualization
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85! Mutation Testing with Parallel Deep Reinforcement Learning = O X
inls e [ o o Agent Accuracy Over Time
1 Average
Cl Destroy S Load —
= = 2 P et
Fastest Fast Normal Slow os Loss
—ww Reward
Leaming Trend
Methog |36adete __~<[Rate [p07 | Momentum Hetcly LT Decay Ce Loss
Restart Interval Restart Loss L2 Decay 04 L1} Trend
. Shared 0.2 = 0.16998207970911
Max My (@ Static () Singleton
: = 0
Mo Environment
Category |BA- Basic Additon + [Operators |4 Height Width |710 g
Solution [Ciidata\MyPhDide] Source [ClassLibranyt.da | [ Obstruct [ Random: [ 1 infinte
Charts i 04 1
Ereeey i’ ] Heward: [ kers MP“;'E" [89 | susrsaorars 43 ss1ssamazes 9% sapesmzaas 1498 6a1edar.
in Factor
Experience Allocation Over Time by Instance Agent Completeness Over Time
2500 1 5 Average
- 0 Mutants
Count
4 Average
2000 Killed
Count
4 & WEE 50 Average
1500 s 3 Live
Count
——_ Mutants
Trend
1000 Killed
Trend
| 1 T L
ik 1 | Trend
START(year-month-day_hours:minsisecs):2021-05-23_08:21:31 | END{year-month-day_hours:mins:secs}:2021-05-23_21:59:23 | ELAPSED(day.hours_mins:secs):00.13_37:52
85 Mutation Testing Deep Q Learning Agent (Instance 0) - s
Visualization Output
expenence shared replay size: 2131 i o
exploration epsilon: 0.05 foent IRcy e e
age: 1501 1
average (Heaming loss: 0.0220850555204038 )
smooth-sh reward: 0.927184166666657 o
Cument Mutation Categary: BA 0.8
Cument Mutation Operator: 1000 g
Cument Total Mutants Court: 1
Curment Kiled Mutarts Count: 0 0.6
Cument Live Mutants Count: 1 =
Curment Mutation Score: 0
Cument Reward: 1.01 04
Actions:
{combination.count} 0.2
(DDDO, 33}, (D001, 33), (D010, 29), (0011, 36), (0100, 193), (0101, 34), (D110, 36), (0111, 36), (1000, 300), (1007, 34), (1010, 39), (1011, 43),
(1100, 537), (1101, 41), (1110, 34), (1111, 43) 0
Mutation Operations: 0000-na mutation, 1000-2dd ToMul, 0100-add ToSub, 0010-addToDiv, 0001-addToRem s o R e = = e e = e = A MRS
Simulation speed: Very Fast SRESBERE8E82R8888¢Y
Agent Completeness Over Time
5
4
2
1
0
o coooggd
S5S8528 8§
E-ECEEZEE

Controls

| e
Start | Cortin | Stop || Save || Load | Resst | < MME‘F&WW&

Reward |5.0

Batch

L1 decay El O




95! Mutation Testing Deep O Leamning Agent (Instance T)

Visualization

experience shared replay size: 2131
exploration epsilon: 0.05
age: 1034

smooth-ish reward: 0.722555166666659
Current Mutation Category: BA

Current Mutation Operator: 1100
Current Total Mutants Count: 2

Current Killed Mutants Count: 0

Current Live Mutants Count: 2

Cument Mutation Score: 0

Current Reward: 1.02

Actions
{combination count)

Simulation speed: Yery Fast

Controls
Start | Contin | Stop || Save || Load

average Q4eaming loss: 0.31758466400723%

Leay

Reset |

{0000, 31), (0001, 41}, (0010, 41), (0011, 43), (0100, 35), (0101, 36}, (0110, 38), (0111, 35), (1000, 21), (1001, 37), (1010, 38), (1011, 34),
(1100, 495), (1107, 24), (1110, 42), (1111, 42)

Mutation Operations: 0000-no mutation, 1000-addToMul, 0100-2dd ToSub, 0010-add ToDiv, 0001-add ToRem

ming Method |sdadetta | Max Factor
T = T T IR S

= X
Output
Agent Accuracy Over Time
Agent Accuracy Over Time
Agent Accuracy Over Time
08
06 B
04
02
0
a 200 400 600 800 1000
100 300 500 700 800 110
Lgent Completeness Over Time
Agent Completeness Over Time
Agent Completeness Over Time
25
2 — -
15
1
05
o

a 200 400 800 800 1000

100 300 200 700 800 110

70



4

85 Mutation Testing with Parallel Deep Reinforcement Learning - O X
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5! Mutation Testing Deep O Learning Agent (Instance 1) = x
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5 Mutation Testing with Parallel Deep Reinforcement Learning
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85l Mutation Testing Deep G Learning Agent (Instance 1)
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Random selection of mutation operators:

Results

Test Metrics Test Average Test Results

test runs 1 2 3 4 5

avg elapsed time (hh:mm:s 16:25:42 14.04:03 17:18:30 15:43:58 16:37:36 18:24:25

maximum action n/a

average mutation score 0.68

average mutant total 2.500000000000000 3.00 1.50 3.00 2.00 3.00

average killed count 1.700000000000000 2.00 1.00 2.00 1.50 2.00

average live count 0.800000000000000 1.00 0.50 1.00 0.50 1.00

average Q-learn loss 0.126778508637186 0.14235967 0.18430662 0.08087368 0.07788896 0.14846361

smooth-ish reward 0.504345666666664 0.51459125 0.49512833 0.50377042 0.50956583 0.49867250

Test Metrics Test Average Test Results

test runs - instance0 1 2 3 4 5

maximum action n/a

average Q-learn loss 0.128149205757168 0.08421698 0.1836353 0.07598023 0.07868408 0.21822945

smooth-ish reward 0.496130999999998 0.49842083 0.49088250 0.49715583 0.50225583 0.49194000

test runs - instancel 1 2 3 4 5

maximum action n/a

average Q-learn loss 0.125384138198002 0.20050770 0.18492067 0.08572057 0.07710995 0.07866180

smooth-ish reward 0.513328999999998 0.53178167 0.49937417 0.51188500 0.51739583 0.50620833
Test Summary 1 2 3 4 5

maximum action n/a

average Q-learn loss 0.126766671977585 0.14236234 0.18427798 0.0808504 0.07789702 0.14844562

smooth-ish reward 0.504729999999998 0.51510125 0.49512833 0.50452042 0.50982583 0.49907417
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85 Mutation Testing Deep Q Learning Agent {Instance 1) - X

Visualization Qutput
::’nr:'r:;: :E:Ii:: r;p[\g{ [ Agent Accuracy Over Time
age: 1519 08

average GHeaming loss: 0 200507700255261
smooth-ish reward: 0.531781666666663
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Cument Mutation Operator: 1011 0.6
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Current Killed Mutants Count: 2
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Cument Mutation Score: 0.666666666666667 04
Cument Reward: 0.363333333333333
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sl Mutation Testing with Parallel Deep Reinforcement Learning - m] X
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=

Mutation Operations: 0000-no mutation, 1000-add ToMul, 0100-add To Sub, 0010-addToDiv, 0001-addToRem
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85! Mutation Testing Deep Q) Learning Agent (Instance 1)

Visualization

expenence shared replay size: 3000
exploration epsilon: 0.05

age: 1510

average G4eaming loss: 0.184920668653477
smoothish reward: 0 493374166666665
Cument Mutation Category: BA

Cument Mutation Operator: 0101

Curment Total Mutants Count: 2

Curment Kiled Mutants Court: 1

Cument Live Mutants Count: 1

Curment Mutation Score: 0.5

Curment Reward: 0.52

Actions:
{combination count)

99), (1100, 82), (1107, 87), (1110,99), (1111, 89)

Mutation Operations; 00000 mutation, 1000-add ToMul, 0700-add TeSub, 0010-add ToDiv, 0007-addToRem
Simulation speed: Very Fast
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s Mutation Testing with Parallel Deep Reinforcement Learning = O x
Controls :
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5l Mutation Testing Deep Q Learning Agent (Instance 1) = b 4

Visualization
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85! Mutation Testing with Parallel Deep Reinforcement Learning — m] X
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85 Mutation Testing Deep Q Learning Agent {Instance 1)

Visualization

expernence shared replay size: 2596
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Selection of all mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:s 33:53:02 27:54:42  31:34:26  29:23:43  47:28:55  33:03:23
maximum action f 1| [ 111” 11" 1111” 111" 1111
average mutation score 0.50
average mutant total 4.000000000000000 4.00 4.00 4.00 4.00 4.00
average killed count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average live count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average Q-learn loss 0.130015461338638 0.19346480 0.15993372 0.02538319 0.16592559 0.10536999
smooth-ish reward 0.549300000000006 0.55600000 0.54450000 0.55900000 0.54075000 0.54625000
Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.147755993065651 0.19429196 0.16163483 0.03144009 0.16463137 0.18678172
smooth-ish reward 0.549200000000006 0.556 0.54350000 0.56000000 0.54050000 0.54600000
test runs - instancel 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.112318751023727 0.19269247 0.15820126 0.01933407 0.16728760 0.02407835
smooth-ish reward 0.549400000000006 0.55600000 0.54550000 0.55800000 0.54100000 0.54650000
Test Summary 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.130037372044689 0.19349222 0.15991805 0.02538708 0.16595948 0.10543004
smooth-ish reward 0.549300000000006 0.556 0.5445 0.559 0.54075 0.54625
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5 Mutation Testing with Parallel Deep Reinforcement Learning - m] X
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a5l Mutation Testing Deep Q Leaming Agent {Instance 1) - b4
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g Mutation Testing with Parallel Deep Reinforcement Learning = O X
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o) Mutation Testing Deep Q) Learning Agent (Instance 1)

Visualization
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{combination count)
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85! Mutation Testing with Parallel Deep Reinforcement Learning = m] s
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85l Mutation Testing Deep Q) Learning Agent (Instance 1) = X
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sl Mutation Testing Deep O Learning Agent (Instance 1)

Visualization
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85l Mutation Testing with Parallel Deep Reinforcement Learming = ] *
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55 Mutation Testing Deep ) Learning Agent (Instance 1) o be
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Cumrent Mutation Score: 0.5
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{combination.court)
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Oh, (1110, 0}, (1111, 1505)

Mutation Operations: 0000-no mutation, 1000-addToMul, 0100-addToSub, 0010-add TaDiv, 0001-addToRem 0
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Experiment 5: Comparing Mutation Testing Approaches with Four Cores

Machine Learning selection of mutation operators:

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:s 10:13:36 10:22:46 9:11:04 11:15:18 9:57:36 10:21:16
maximum action f oo11| [ o0o11” oo11” 0o11” oo11” 1010
average mutation score 0.19
average mutant total 1.600000000000000 2.00 1.00 2.00 1.00 2.00
average killed count 0.300000000000000 0.50 0.00 0.00 0.00 1.00
average live count 1.300000000000000 1.50 1.00 2.00 1.00 1.00
average Q-learn loss 0.143239068857956 0.15217368 0.17610090 0.16763546 0.18783096 0.03245434
smooth-ish reward 0.863680539999990 0.72000687 0.92092667 0.92588667 0.82368542 0.92789708
Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 0011 1010 0001 0011 0010 1010
average Q-learn loss 0.199138194214970 0.26993381 0.33307358 0.01852873 0.33723121 0.03692364
smooth-ish reward 0.839621833333324 0.51259083 0.92681750 0.92119917 0.91432917 0.92317250
test runs - instancel 1 2 3 4 5
maximum action 0011 0011 0011 0011 0001 1010
average Q-learn loss 0.087410055368777 0.03445029 0.01929006 0.31683832 0.03871289 0.02775872
smooth-ish reward 0.928332833333323 0.92774583 0.91552583 0.93189667 0.93304167 0.93345417
Test Summary 1 2 3 4 5
maximum action 0011
average Q-learn loss 0.143274124791873 0.15219205 0.17618182 0.16768352 0.18797205 0.03234118
smooth-ish reward 0.883977333333324 0.72016833 0.92117167 0.92654792 0.92368542 0.92831333




1

5 Mutation Testing with Parallel Deep Reinforcement Learning = O X
Controls .
. Agent Accuracy Over T
[Crate || Sat | [Comtiwe || S0 | — e,
, ] 2 __ fversge
1 Threa Process Average
[ Fastest | | Fost | [ Nomal | | Siow | \ — Loss
151 Reward
| 7" Trend

m-mm-w-umg ‘i -
Trend

Restart Interval Restatt Loss [05 |Totdl [1oo0_| Bum [100 | L2Decay [o.001 | 10 | L

Experience Exploration \

] Shared
afow |0 | Sam Cagen|l | =0 ®ps]|
Environment . 0.720006465666655
Category [BO- Basic Moduio ~Opersiors [4 | Height [s00 | width [710 == Tﬂ'ﬁﬁm?m

s ‘ﬂ-S\TE F‘Pﬁls [C . 1"' [ Obstruct [] Random [] Infinte

* Reward - Purish [6.0 |
3 ll]ﬂm?w)s 4995958535271 999.5958535271_ 1499.5958535272
Hmmgapmsuﬂwudlzm MalFadnr-MhFadu -0. 5

Experience Allocation Over Time by Instance Agent Completeness Over Time
- 5 Average
-
0 :“'“h“"
Average
4 Killed
Count
Average
Ea ALY ! — Live
HER) ¢
o Mutants
Trend
Killed
Trend
e Live
Trend
0 500 1000 1500 _ 9995384483681
START(year-month-day_h i :2021-07-02_23:04:42 | END(year-month-day_hours:mins:secs}):2021-07-03_09:27:28 | ELAPSED(day.hours_mins:secs):00.10_22:46
) Mutation Testing Deep Q Leamning Agent (Instance 0) W= X
Visualization Output
weneneeahared mﬁ-ﬂm 2851 A T
wu?;’" epaon Agent Accuracy Over Time
verage Geaming loss: 0.269933808384379 05 — fuerage
amelh-ld‘! reward: 0.512590833333322 Average
(Cument Mutation Category: BO et | —
(Current Mutation Operator: 1010 ”
(Current Total Mutants Count: 2 0.4
Cumrent Kiled Mutants Count: 1 o
Cumrent Live Mutants Count: 1
Cument Mutation Score: 0.5
Current Reward: 0.52
Actions: 02
[(combination.court)
(0000. 36). (0001, ZI) (0010. 39), (0011, -W) (0100. 38). (0101, 42). (0110, 31). (0111, 34). (1000. 36), (1001, 42). (1010. 963). (1011, 37),
(1100, 36, (1101, 33). (1110, 40), (1117, 40)
0
Mutation ions: 0000-no mutation. 1000-remToAdd. 0100+emToSub. 0010+em ToDiv. 0001remToMul =
iyl ¢ ° ¢ e 0 500 1000 1500
Agent Completeness Over Time
5 Total
= Mutants
Count
Killed
~—— Mutants
Count
Live
'l —— Mutants
| Count

1000 1500

[lo | Total 1 Rate [001 | Lidecay [0 | [ Chats [] Obstuct
tems

75 le_ | Bum [100 | Momertum [09 | L2decay [0.001] & Shared [ Random
[16 ] Mutation Sokuion [C:\data\MyPhD\doctoralresearchwinter2021\Goc| Mdation Source [ClassLibrary di




5 Mutation Testing Deep Q Learning Agent (Instance 1)

Visualization

g shared replay size: 2851
exploration epsion: 0.05

age: 1454

average Geaming loss: 0.0344502946429595
smoothish reward: 0.927745833333323
(Current Mutation Category:

|Actions:

(combination count)
(0000, 28). (0001, 255), (0010. 251). (0011. 434), (0100, 32). (0101, 39). (0110. 40). (0111, 28), (1000, 35). (1001. 31). (1010. 34). (1011,
49), (1100, 41), (1101, 22). (1110, 35), (1111, 40)

Mutation Operations: 0000:no mutation. 1000-remToAdd. 0100+em ToSub. 0010+emToDiv, 0001-rem ToMul
Simulation speed: Very Fast

Controls

i —
e 2 B PR R
[EEsscerl [NEsa ) [omall (RSO vetation Catnooy [B0 | Operstors [¢__| Actons [16

Agent Accuracy Over Time
Agent Accuracy Over Time
.
0.8 -
L—
06 S
1"
o
0.4
02
0
o 200 600 800 1000 1200 1400
Agent Completeness Over Time
Agent Completeness Over Time
c
4

Mutation Solution |C:\data\MyPhD'\doctoral research'winter2021\coc

200 400 600 800 1000 1200 1400

— Average

_ Average
Loss

Rete [001 | Lidecay[0 | [ Chats [ Obstnct

[« | Bum [100 | Momentum [09 | L2decay [0001] &) Shared (] Random

F_-_-_’

Mutation Source |ClassLibrary1.di

99



2

5 Mutation Testing with Parallel Deep Reinforcement Learning = O X
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5 Mutation Testing Deep Q Leaming Agent (Instance 1)

Visualization
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| Mutation Testing with Parallel Deep Reinforcement Learning = O X
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ma [ Shared 2= 0.167635455336932
Max[3000 ] Mn ® Static O Singleton i [ =
Environment 0
Category |BO- Basc Moduo viowmlg Height (500 | Width
Sokdion [FSTesExampie] S [ClossLian 1t | [ Obstruct [] Random [] Infinte 0.2
Charts olicy
frvad Punsh [60_| = 4396273554005 999 6273584905 1488 627358400
Frequency 10| [ Experience [] Reward [] kems MalFm"hFad
Experience Allocation Over Time by Instance Agent Completeness Over Time
N 5 Average
-0 Mutants
4 Average
Killed
Count
Average
w— Liye:
Count
e —-- Mutants
iy Ja=
- Trend
1 ||| I —-n e
0 500 1000 1500 4 499.6296570441 _ 5996296570441 1499 629657044
START(year-month-day_h i :2021-06-15_16:47:07 | END(year-month-day_hours:mins:secs}):2021-06-16_04:02:25 | ELAPSED(day.hours_mins:secs):00.11_15:18
& Mutation Testing Deep Q Learning Agent (Instance 0) e X
Visualization Output
experience shared replay size: 2943 "
Wﬁ?&?!ﬂw")ﬁ Agent Accuracy Over Time
:e:l-age Qdeaming loss: 0.0185287274696591 1 e m
smoothsh reward: 0.921199166666655 —
Cument Mutation Category: BO 08 T Loss
Cument Mutation Operator: 000°
Current Total Mutants Count: 1
Curent Kiled Mutants Court: 0 06
Current Live Mutants Count: 1 ) y,
Current Mutation Score: 0
Cument Reward: 1.01 .
Actions:
(cor .count) 02
(0000, 32), (0001, 308), (0010, 59), (0011, 665), (0100, 43), (0101, 27), (0110, 37), (2111, 43), (1000, 27), (1001, 37), (1010, 29), (1011, 34), :
(1100. 43). (1101. 41).(1110. 47), (1111. 29)
Mutation Operations: 00000 mutation, 1000remToAdd, 0100-emToSub, 0010+emToDiv. 0001semToMul o
oad: Very Fast 0 500 1000 1500
Agent Completeness Over Time
35 Total
3 Count
Killed
25 ~—— Mutants
Count
2 Live
— Mutants
15 ’ Count
1 i . T u
05 T
1 O

0 500 1000 1500

Rewand [50 | Betch[10 | Total [1000 | Rate [0.01 | Lidecay [0 | [ Chats [] Obstruct
[05_| Min Factor [0.75 |Purish [£0 | tems [+ | Bum [100 | Momentum [05 | L2decay
6 | Mutation Sokuion [C s MyPhD\doctoralvesearchwrter2021 cor| Muation Source [CassLbraryidi |

102



& Mutation Testing Deep Q Learning Agent (Instance 1) e X
Visualization Output
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skl Mutation Testing with Parallel Deep Reinforcement Learning
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& Mutation Testing Deep Q Learning Agent (Instance 1)

Visualzation
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#) Mutation Testing with Parallel Deep Reinforcement Learning

Controls .
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& Mutation Testing Deep Q Learning Agent (Instance 1) e X
Visualization Output
hared replay size: 2992 .
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(1100 37). (1101, 36). (1110, 34). (1111.37)
Mutation Operations: 00000 mutation, 1000+emToAdd, 0100+emToSub, 0010+emToDiv. 0001 remToMdl o
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Random selection of mutation operators:

Results

Test Metrics Test Average Test Results

test runs 1 2 3 4 5

avg elapsed time (hh:mm:s 10:15:41 10:25:46 10:24:11 9:55:55 10:22:26 10:10:06

maximum action n/a

average mutation score 0.76

average mutant total 1.700000000000000 1.50 2.00 1.00 2.50 1.50

average killed count 1.300000000000000 1.00 1.50 1.00 1.50 1.50

average live count 0.400000000000000 0.50 0.50 0.00 1.00 0.00

average Q-learn loss 0.126778508637186 0.14235967 0.18430662 0.08087368 0.07788896 0.14846361

smooth-ish reward 0.504345666666664 0.51459125 0.49512833 0.50377042 0.50956583 0.49867250

Test Metrics Test Average Test Results

test runs - instance0 1 2 3 4 5

maximum action n/a

average Q-learn loss 0.128149205757168 0.08421698 0.1836353 0.07598023 0.07868408 0.21822945

smooth-ish reward 0.496130999999998 0.49842083 0.49088250 0.49715583 0.50225583 0.49194000

test runs - instancel 1 2 3 4 5

maximum action n/a

average Q-learn loss 0.125384138198002 0.20050770 0.18492067 0.08572057 0.07710995 0.07866180

smooth-ish reward 0.513328999999998 0.53178167 0.49937417 0.51188500 0.51739583 0.50620833
Test Summary 1 2 3 4 5

maximum action n/a

average Q-learn loss 0.126766671977585 0.14236234 0.18427798 0.0808504 0.07789702 0.14844562

smooth-ish reward 0.504729999999998 0.51510125 0.49512833 0.50452042 0.50982583 0.49907417
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#) Mutation Testing with Parallel Deep Reinforcement Learming

O
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8 Mutation Testing Deep Q Learning Agent (Instance 1)

Visualization
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5 Mutation Testing with Parallel Deep Reinforcement Learning — O X
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5 Mutation Testing Deep Q Learning Agent (Instance 1) - %
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#) Mutation Testing with Parallel Deep Reinforcement Learning
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B Mutation Testing Deep Q Leaming Agent (Instance 1)
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B Mutation Testing with Parallel Deep Reinforcement Learning O
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8 Mutation Testing Deep Q Learning Agent (Instance 1)
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8 Mutation Testing Deep Q Learning Agent (Instance 1)

age: 1493
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Selection of all mutation operators:

Results

Test Metrics Test Average Test Results

test runs 1 2 3 4 5
avg elapsed time (hh:mm:s 12:47:25 13:29:11 12:27:50 12:38:47 12:48:19 12:32:59
maximum action d 11| [ 11117 11117 11117 11117 1111
average mutation score 0.50

average mutant total 4.000000000000000 4.00 4.00 4.00 4.00 4.00
average killed count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average live count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average Q-learn loss 0.069422834806760 0.10274348 0.02194500 0.09959513 0.02372138 0.09910919
smooth-ish reward 0.540125000000007 0.54025000 0.54000000 0.54012500 0.54000000 0.54025000
Test Metrics Test Average Test Results

test runs - instance0 1 2 3 4 5
maximum action f 11| [ 11117 111" 11117 111" 1111
average Q-learn loss 0.087709932997378 0.02751675 0.02694109 0.18117582 0.02543883 0.17747719
smooth-ish reward 0.540150000000007 0.54050000 0.54000000 0.53975000 0.54000000 0.54050000
test runs - instancel 1 2 3 4 5
maximum action d 11| [ 11117 11117 11117 11117 1111
average Q-learn loss 0.051118165259630 0.17796982 0.01689678 0.01800141 0.02198234 0.02074047
smooth-ish reward 0.540100000000007 0.54000000 0.54000000 0.54050000 0.54000000 0.54000000
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8 Mutation Testing with Parallel Deep Reinforcement Learning
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8 Mutation Testing Deep Q Learning Agent (Instance 1) i X
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8 Mutation Testing with Parallel Deep Reinforcement Learning O X
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& Mutation Testing Deep Q Learning Agent (Instance 1)
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