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Mutation testing is a type of software testing proposed in the 1970s where program 
statements are deliberately changed to introduce simple errors so that test cases can be 
validated to determine if they can detect the errors.  The goal of mutation testing was to 
reduce complex program errors by preventing the related simple errors.  Test cases are 
executed against the mutant code to determine if one fails, detects the error and ensures 
the program is correct.  One major issue with this type of testing was it became intensive 
computationally to generate and test all possible mutations for complex programs. 
 
This dissertation used machine learning for the selection of mutation operators that 
reduced the computational cost of testing and improved test suite effectiveness.  The 
goals were to produce mutations that were more resistant to test cases, improve test case 
evaluation, validate then improve the test suite’s effectiveness, realize cost reductions by 
generating fewer mutations for testing and improving software reliability by detecting 
more errors. To accomplish these goals, experiments were conducted using sample 
programs to determine how well the reinforcement learning based algorithm performed 
with one live mutation, multiple live mutations and no live mutations. The experiments, 
measured by mutation score, were used to update the algorithm and improved accuracy 
for predictions.  The performance was then evaluated on multiple processor computers.  
 
One key result from this research was the development of a reinforcement algorithm to 
identify mutation operator combinations that resulted in live mutants.  During 
experimentation, the reinforcement learning algorithm identified the optimal mutation 
operator selections for various programs and test suite scenarios, as well as determined 
that by using parallel processing and multiple cores the reinforcement learning process 
for mutation operator selection was practical.  With reinforcement learning the mutation 
operators utilized were reduced by 50 – 100%. 

In conclusion, these improvements created a ‘live’ mutation testing process that evaluated 
various mutation operators and generated mutants to perform real-time mutation testing 
while dynamically prioritizing mutation operator recommendations. This has enhanced 
the software developer’s ability to improve testing processes.  The contributions of this 
paper’s research supported the shift-left testing approach, where testing is performed 
earlier in the software development cycle when error resolution is less costly. 
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Chapter 1 - Introduction 

     Mutation testing is a type of software testing proposed by (Lipton, 1971) where 

program statements are deliberately changed to introduce simple errors so that test cases 

can be validated to determine if they can detect the errors.  The goal of mutation testing is 

to reduce complex program errors by preventing the related simple errors.  For example, 

given a program that states if (a>=b) then c=1 else c=0 can be mutated by an operation 

replacing >= with < producing if (a<b) then c=1 else c=0.  When using test data of a=1, 

b=0 the result c should be 1 but the mutant produces c=0.  The test cases are executed 

against the mutant code to determine if one fails, detects the mutant and helps ensure the 

program is correct.  A mutation score is calculated as the percent of mutants caught.  One 

major issue with this type of testing from (Jia and Harman, 2011) is that it becomes 

computationally intensive to test all possible mutations for complex programs. 

     This dissertation will present a practical approach for the application of parallel 

machine learning within the context for mutation testing, including the selection of 

mutation operators to reduce the computational cost of testing and improve test suite 

effectiveness.  With this, the need to increase the usage of mutation testing for complex 

programs can be fulfilled. The proposal is to use reinforcement learning for mutation 

testing that improves mutation scores achieved previously (Strug & Strug, 2018, June) by 

predicting which mutation operators best identify deficient test coverage.   

     These improvements will assist with the creation of a ‘live’ mutation testing process 

within the .NET development environment that dynamically evaluates various mutation 

operators, generates mutants and prioritizes test cases to perform real-time mutation 

testing as code is modified.  This will enhance a software developer’s ability to improve 

testing processes and extend the work by (Derezińska & Trzpil, 2015).  The contribution 



2 
 

 
 

of this paper’s research will support the shift-left testing approach, where testing is 

performed earlier in the software development cycle when error resolution is less costly. 

 

Problem Statement and Goal 

     The problem is that continuous software testing can be a daunting process, even when 

testing is engrained into the development process.  Although attempts have been made to 

address this problem (Demeyer et al., 2018), the approach to limit testing without test 

case validation can discard pertinent tests.  Testing can also become dispensable to meet 

development deadlines. As discussed by (Martin et al., 2007) companies sometimes 

deploy limited testing resources to find software defects. When testing becomes 

incomplete it inevitably leads to faulty software.  These defects are becoming more of an 

issue as the reliance increases on software for essential services such as financial, 

transportation, and healthcare. 

     Many challenges lead to a lack of testing and faulty software.  First, software testing 

requires proper communication and documentation to define what is needed.  The 

potential for misinterpretation exists, which can lead to missing or invalid test scenarios.  

Even valid test scenarios can become a challenge to execute and evaluate, since applying 

all test scenarios can be labor-intensive and error-prone.  These challenges result in less 

than sufficient testing and increase the time developers spend on debugging.  According 

to recent reviews by (Campos & de Almeida Maia, 2017), the annual cost of debugging 

software has reached $312 billion globally.  

     To address this concern, testing must become more agile when integrated within the 

software development process. With the adoption of Continuous Integration and 
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Continuous Delivery, the goal as described by (Shahin et al., 2017) is to reduce the time 

to deliver software changes but lack of proper testing the goal cannot be fully realized.  

Continuous Testing, which as described by (Demeyer et al., 2018) improves testing 

feedback and must be incorporated with software delivery. To complement Continuous 

Delivery with Continuous Testing, the Test Suite which is composed of Test Cases must 

cover the software (i.e. test completeness) and identify defects that exist (i.e. test quality).  

Another factor that needs to be addressed for the software testing process is the amount 

of time and effort it can take to develop and execute a comprehensive test suite. 

     The goal is to assist software developers with an approach for comprehensive testing 

and improving testing effectiveness of their software implementation.  It will evaluate the 

factors that impact software quality then use parallel Reinforcement Learning (RL) for 

mutation operator selection to identify deficient testing more effectively than a 

classification-based approach (Strug & Strug, 2018, June).  This dissertation proposes a 

quantitative approach by measuring the faults detected by test suites built with RL-

assisted operator selection as compared to those developed without.  Through the 

implementation of these integrated mutation testing approaches, the expectation is an 

increase in the percentage of defects detected (Qu et al., 2007). 

 

Relevance and Significance 

     The research proposed in this paper will provide benefits to current software 

development trends, by improving upon recent work by (Derezińska & Trzpil, 2015) that 

helped facilitate mutation testing.  This dissertation will address this through the use of 

machine learning for mutation testing and test case selection.  The general goal with 

machine learning as states by (Lu et al., 1996) is to obtain knowledge from patterns 
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within data, using various approaches to accomplish this goal.  Mutation testing (DeMillo 

et al., 1979) is a process that replicates program faults to validate the program test suite.  

The mutation operators are functions that replicate common programming errors, such as 

using an incorrect operator. During mutation testing the mutants are either caught by a 

test case and considered killed or not caught and are considered live. The mutation score 

(Namin et al., 2008) is the number of mutants killed divided by the total number of  

mutants and indicates the test suite’s effectiveness.  Test case selection using machine 

learning was presented by (Ghiduk et al., 2018) to improve the test case prioritization 

process.  Machine Learning has already started to have an impact on software testing 

techniques in many ways, as discussed by (Briand, 2008). The software testing process 

consumes and generates an enormous amount of data. If the evaluation of this data is not 

performed in an automated or efficient manner, such as parallel machine learning, the test 

results may not be accurate or complete. 

     To establish the importance of mutation testing for determining test effectiveness, 

(Chekam et al., 2017) performed a comparison with other widely adopted test 

effectiveness metrics, including statement coverage and branch coverage that avoids the 

unreliable clean program assumption. Statement coverage is a minimal requirement that 

measures the percentage of program statements that are exercised by the tests but since 

this measure does not consider the program state and various conditions that can cause 

the statements to execute differently.  A stronger requirement called branch coverage is 

also utilized.  With branch coverage, it measures the percentage of program control flow 

that is exercised by the tests. However, with both approaches, the measurement assumes 

that the program is correct, but if the program contains defects these measurements may 
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be inadequate. By introducing program defects the mutation testing approach exercises 

the tests more completely, thus providing a better measurement of the test effectiveness. 

     The most significant aspect of this dissertation is the introduction of machine learning 

for test case selection and mutation testing during the early stages of the development 

process, as opposed to later after the development process has been completed.  This 

supports the ability to develop software in an agile manner, using the Test-Driven 

Development (TDD) process proposed by (Beck, 2003) and the Continuous Integration 

(CI) process proposed by (Booch, 1994).  With TDD, software requirements are 

incrementally encoded as tests that developers must satisfy by coding application logic.  

The TDD approach was incorporated with mutation testing by (Derezińska & Trzpil, 

2015) to provide an interactive process for more agile mutation testing.  CI is a 

development practice where software developers frequently integrate code changes to a 

shared source repository. Test case selection using reinforcement learning was utilized by 

Netflix (Kirdey et al., 2019) to develop a system called Lerner that integrates with their 

CI framework for test execution scheduling. Using TDD and CI helps to reduce program 

defects by establishing and executing a test suite that ensures program logic is working as 

expected. 

 

Barriers and Issues 

     Much research has been conducted related to the issues with software testing 

(Whittaker, 2000) which includes selecting, running and evaluating test scenarios. Some 

additional issues are selecting the variable data to be used, execution paths to cover, 

which test cases to automate and how to evaluate the test case results. For example, if a 

method is supposed to find all occurrences of some string within an arbitrary text, how 
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can we determine that each instance will always be detected?  Although there are many 

approaches to address some of these issues, such as using category-partition for 

generating test cases (Ostrand and Balcer, 1988) and using data flow and control flow for 

evaluating test cases (Hutchins et al., 1994), the issues are not completely resolved since 

software is still released with defects.  To address the barrier and limitation with the 

variable data, the test scenario evaluation needs to explore the possible combinations.  If 

the algorithmic approach is static, such partitioning there will be inherent limitation based 

on the data provided.  But if the algorithm is able to explore by taking various actions and 

receive rewards for success, using the proposed reinforcement learning approach will 

result in a more dynamic approach. 

     The category-partition method (CPM) for creating test suites uses a generator to 

produce test specifications from functional specifications. The advantages of this method 

are that the tester can easily modify the test specification when necessary and can control 

the complexity and number of the tests by annotating the test specification with 

constraints. One major barrier with the implementation of CPM is the size of the test suite 

generated, which can be huge for complex programs. Given a method having five 

parameter variables and two global variables with a minimum of two possible values per 

variable the product of all choices which would result in 27 = 128 test cases. With non-

trivial programs, the number of variables, range of possible values and number of 

methods is much higher, so the potential number of tests will be much higher as well. 

     With control flow, the test cases are selected with the goal to ensure that every source 

statement is executed at least once. With data flow, the goal is to evaluate test cases to 

ensure that they exercise the code such that execution proceeds from the definition of a 
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memory location to the use of that memory location for each DEF-USE pair. The 

limitations with both approaches are that it is difficult to understand complex code logic, 

which is necessary to achieve various coverage levels, then distinguish the feasible vs. 

non-feasible paths and the process can be very time consuming for non-trivial programs.  

The approach proposed in this research to utilize parallel processing will help reduce the 

issue of time consumption by partitioning the problem, then allowing each component to 

evaluate a subset of test cases simultaneously. 

     Lastly, there are barriers to measuring the testing progress that needs to be overcome 

to realize an integrated testing approach.  For the approach to be effective, the measure 

should give an updated indication of the testing progress.  One question posed by 

(Whittaker, 2000) is if large numbers of defects are found is this good or bad?  It could be 

an indication of comprehensive testing or there may still be many undetected defects.  

With the proposed approach of using mutation testing, the test suite effectiveness 

becomes measurable using the mutation score.  The mutations are defects and will be 

generated with the intention of detection.  If not detected, the test suite can be enhanced 

to ensure testing is comprehensive. 

 

Summary 

     This chapter introduced mutation testing, mutation operators and the importance of 

software testing.  The goal of the proposed research is to develop an approach to assist 

software developers with improving testing effectiveness and the correctness of their 

implementation based on given requirements.  To complete this goal, the algorithm will 

utilize parallelized reinforcement learning for mutation operator selection and should 

result in a more efficient testing solution. 
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Chapter 2 - Review of the Literature 

 

     The usage of machine learning, software testing and parallel processing are key 

elements to achieve this dissertation’s goal of a more effective testing process.  This goal 

will be implemented by mutation testing and reinforcement learning.  By using the 

mutation score the testing effectiveness will be able to be measured.  The following 

sections review the relevant literature: 

 Machine Learning 

 Software Testing 

 Parallel Processing 

 

Machine Learning 

     The process of engineering test suites can be a formidable effort.  Complex 

applications can require many test cases within the test suite.  These tests must consider 

the inputs and outputs of the code they are testing.  By using machine learning (Briand et 

al., 2008) developed a process to learn relationships between the inputs and outputs as the 

test suites are executed. With this information, the testers can understand the capabilities 

of the test suite. Their process uses the C4.5 decision tree algorithm (Quinlan, 1993) 

within the WEKA (Waikato Environment for Knowledge Analysis) machine learning 

library (Frank et al., 2016) since it produces machine learning models that are easier to 

interpret. The paper reported promising results by eliminating redundant test cases and a 

significant reduction in the test suite size but also found a reduction in the number of 
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faults detected, leaving room for the test suite improvements that this paper’s research 

hopes to obtain using machine learning to assist with identifying missing test cases.  

     Another use of machine learning for mutation testing was presented by (Guillaume, 

2015) and (Kurtz Jr, 2018).  Their basic approaches were to reduce the number of 

mutants generated by randomly selecting a percentage of mutants or by reducing all 

mutants for a given operator.  Those approaches were compared with a machine learning 

approach for mutation operator selection.  The papers conclude that a machine learning 

approach is significantly superior but anticipate future improvements by more advanced 

machine learning approaches, such as multi-layer perceptron. This dissertation proposes 

to explore these improvements among others. 

     Recently progress has been made using machine learning in the context of mutation 

testing.  With their earlier work (Strug & Strug, 2012) presented an approach that 

represented mutants using a graph kernel to compare mutant similarities and then used k-

Nearest Neighbor (k-NN) machine learning algorithm to predict if a test would detect a 

mutant, reducing the number of mutants executed. Additional research by (Strug & Strug, 

2017) proposed an updated kernel called a hierarchical control flow graph (HCFG), 

which is a combination of control flow diagram and hierarchical graphs. This limited 

mutant execution in a more dynamic way by utilizing the structure of the program for 

which the mutants were generated.  In their next research, (Strug & Strug, 2018, June) 

proposed to simplify the mutant evaluation process by using bytecode comparison instead 

of source code control flow, which was more complicated.  The latest research by (Strug 

& Strug, 2018, September) takes an even more extreme approach by predicting the 

mutation testing results (killed vs. live) based on machine learning models, without 
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having to execute any mutation testing after the initial training process.  A similar 

approach was proposed by (Zhang et al., 2018) except they used a Random Forrest 

machine learning algorithm (Liaw & Wiener, 2002), which is a generalization of tree-

based classification that uses multiple decision trees to correct overfitting, to create their 

predictive mutation testing. 

     While those papers reduced mutation execution using machine learning, this 

dissertation proposes a novel approach using machine learning to limit mutation 

operators and generate mutants during program development, thus reducing the number 

of mutations generated during an agile development process.  The proposed research of 

applying test case selection and mutation testing in real-time will help keep the test suite 

more updated and predictable by measuring mutation score of the test suite over time.  To 

utilize a more effective machine learning algorithm, instead of using a supervised 

learning approach, this paper proposes using a Reinforcement Learning (RL) approach as 

presented by (Sutton & Barto, 1998).  As shown in Figure 1, the agent learns to choose 

actions in an environment by performing actions then observing the subsequent states and 

rewards.  It continues until the reward is consistent and acceptable. 

 

Figure 1. The general Reinforcement Learning approach.  

 

This is another key difference when compared with the supervised learning approach 

presented by (Strug & Strug, 2018, June) and provides the advantage of agility. 
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This approach is model-free, which means it has no initial concept of the environment’s 

dynamics and utilizes online learning, where the agent is constantly learning while 

running.  This is appropriate for test case selection since there is no strict model to 

identify faults and according to (Campos & de Almeida Maia, 2017), the existence of 

faults is prevalent within software systems.  For test selection, given previous test results 

in each state the agent performs an action that prioritizes the test cases based on the 

reward of failed tests from the environment during test cycle execution.  This process was 

proposed by (Spieker et al., 2018) and is shown in Figure 2. 

 

Figure 2. Reinforcement Learning for Test Case Selection. 

 

     One of the challenges with machine learning is determining the data elements, called 

features, to use during training that will produce accurate predictions during testing.  The 

paper by (Jalbert & Bradbury, 2012) utilized the Support Vector Machine (SVM) 

machine learning algorithm to categorize mutation scores (i.e. low, medium, high) which 

reduces the mutation score prediction to a three-group classification problem. The 

machine learning features include various class-level metrics (e.g. # of methods, # of 

attributes, inheritance depth) and method-level metrics (e.g. # lines of code, # of 

parameters, nested depth, cyclomatic complexity) as well as accumulated test case 

metrics (e.g. average # test method lines of code, average # test parameters, average test 
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cyclomatic complexity). To collect these metrics required using several Java tools, which 

included an Eclipse IDE plugin for code metrics, EMMA for test metrics and Javalanche 

for method-level mutations.  This technique for predicting mutation score (# mutants 

killed / total # mutants) achieved an accuracy of >50% using source code and test suite 

metrics which outperformed the random accuracy of 33.33%. 

     In the work by (Zhang, et al., 2018) additional metrics were evaluated to investigate 

the contribution of the 14 individual features, including propagation features (method 

lines of code, method complexity), infection features (mutation operator, mutated 

statement type), and execution features (number executed, number tests covering mutated 

statement). The features were used by various classification algorithms, including 

Random Forrest, Naïve Bayes, SVM and C4.5 Decision Tree.  It was determined that the 

coverage features, including the number of times that the mutation was executed by tests 

and the number of tests that covered the mutation, were the most important features. 

     Various source code and test metrics are evaluated as features by (Spieker et al., 2018) 

using Reinforcement Learning (RL) to prioritize test case selection.  In Figure 3, the 

reward function utilized various features, including a count of test failures, each test 

failure and test failure time.  The states (i.e. test case metrics) are provided as inputs Xi to 

the network.  Feedforward estimates the policy π based on current weights and activation 

functions.  The actions (i.e. test case priority) are output Oa from the network.  A random 

factor is used for exploration and experience for replay training. During backpropagation, 

weights Wi are updated using error estimate or loss from loss function Oa - Oe using 

gradient descent.  Neural networks are shown effective for data mining (Lu et al., 1996). 
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Figure 3. The Neural Network (NN) used by reinforcement learning. 

 

     To evaluate the performance of the network, instead of only using percent of faults 

detected (PFD) the results were compared using the normalized average percentage of 

faults detected (NAPFD) from (Qu et al., 2007) as an evaluation metric. The goal of 

using this metric is to detect as many faults m with the least test cases run n where p is the 

faults detected by executed test cases divided by the faults detected by all test cases and 

TFi is the number of test cases that detect fault Fi.  In the following example: m=8, n=3, 

p=5/8.  The NAPFD of 44% considers how fast faults are detected, as opposed to the 

PFD of 62.5% as shown in Figure 4 illustrates a sample calculation of the NAPFD, which 

is used as a more accurate metric to assess the test suite’s effectiveness.  
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Figure 4. The Normalized Average Percentage of Faults Detected (NAPFD). 

 

Software Testing 

     One challenge with software testing is the large number of tests required to evaluate 

complex applications. When there are many test cases within the test suite, the tests can 

be classified, ordered or prioritized to improve the overall effectiveness or reduce the 

number of test executions required (Lenz et al., 2013).  Some techniques for prioritizing 

test cases were presented by (Rothermel et al., 2001) in the context of regression testing.  

They define the prioritization problem, given test suite T, permutations PT of T and 

function F from PT to real numbers award values so that the best ordering can be 

determined. Although there are many factors to consider for the award value, some are 

increased test coverage or faster fault detection. For an approximation of the fault 

detection potential, the well-established method of mutation score from mutation analysis 

(Jia and Harman, 2011) is utilized. In the work by (Vincenzi et al., 2006) an incremental 

approach is taken to limit the time and resource constraints with mutation testing. The 

mutation testing improvements proposed by this dissertation could improve past research 
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by (Rothermel, et al., 2001) that present non-machine learning techniques for test case 

prioritization, as well as provide guidance for future research. 

     The effort and time required to perform testing can also be mitigated by risk-driven 

testing, as discussed by (Briand, 2008 and Spinellis et al., 2009) where fault prediction 

models are used to identify potential fault locations and reduced testing effort by 

prioritizing test cases based on potential risk. Another approach is using Test Impact 

Analysis (TIA), which is a technique that helps determine which subset of tests need to 

execute for a given set of code changes. Microsoft has spent significant effort to develop 

the Test Impact Analysis approach. They have patented the process (Huene et al., 2011) 

which generates dependency maps between source code changes and tests in automated 

builds by using test coverage within a data store. It is incorporated within the Visual 

Studio IDE and Azure DevOps Services. As illustrated in Figure 5, to reduce testing 

effort during automated builds Test Impact Analysis1 limits execution to only the test 

cases that are necessary for code that has been added or updated.  This figure illustrates 

the ability to limit test case execution by selecting ‘Run only impacted tests’ that have 

been impacted by related code changes. 

 

Figure 5. Test Impact Analysis within Microsoft Azure DevOps Services.  

 

1 https://blogs.msdn.microsoft.com/devops/2017/03/02/accelerated-continuous-testing-with-

test-impact-analysis-part-1/ 
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     For additional savings in mutation testing execution time, this dissertation considers a 

related machine learning approach similar to that of (Menzies et al., 2007 and Huang et 

al., 2017) using static code attributes (e.g. lines of code, lines of comments) and effort 

aware attributes (e.g. lines added, line updated, lines deleted), as well as test case metrics 

to assist with defect predictions. With the idea that the approaches could be combined to 

improve test case and mutation operator selection. 

 

Parallel Processing 

     The last significant aspect of this dissertation is the introduction of parallel processing, 

to reduce the learning time which allows the process to become more practical in real-

world software development.  The benefits of using parallel methods for reinforcement 

learning were established by (Nair et al., 2015) but utilized a massively distributed 

approach, which would not be practical in many software development situations where 

developers work locally, possibly disconnected or with limited network resources.  To 

address this concern the work by (Mnih, Badia et al., 2016) evaluated various 

asynchronous methods for deep reinforcement learning, including parallelization using 

multiple threads locally on computers with multicore CPUs.  As stated by (Etiemble, 

2018) since the CPU frequency limit was reached there has been a shift towards 

multicore processors and according to (Patterson, 2010) successful parallel software 

improves processing efficiency by using the multiple cores.  When developing a multi-

threaded approach, (Boehm, 2005) expressed the importance to consider concurrency 

issues as well as the performance benefits and using a language that was originally 

designed with thread support, such as C#. 
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Summary 

     By applying machine learning techniques, the task of mapping input parameters to 

outputs actions can be accomplished, but care must be taken on using the correct machine 

learning approaches. The process of software testing can require significant effort in 

terms of test execution, so choosing to execute fewer tests that still validate the 

application correctness is beneficial.  Reductions in the learning time can be achieved 

with parallel processing techniques.  In the next chapter, a description of the 

methodology will be presented on how these techniques will be combined for the 

proposed research to be completed. 

 

Chapter 3 - Methodology 

 

Introduction 

     The proposed research looks to build a ‘real-time’ process capable of selecting 

mutation operators during mutation testing that increases the test suite effectiveness.  To 

achieve this, a parallel reinforcement learning algorithm must be implemented.  The 

algorithm will be measured by the loss and reward values defined earlier. 

 

Approach 

     Since the idea is to integrate testing within the software development process, the 

approach must be easily accessible to the software developer.  The proposal is to enhance 

with parallelized ML the approach by (Derezinska, 2006), (Derezińska & Szustek, 2007, 

2008) and (Derezińska & Trzpil, 2015) where mutation testing is performed in .NET by 

Visual Mutator2, a Visual Studio Integrated Development Environment (IDE) extension. 
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Mutation testing starts with a selection of code, tests, mutation operators in Figure 6, then 

mutant generation and finally test suite evaluation in Figure 7.  Figure 6 illustrates the 

ability to manually configure mutation testing within the IDE using all selected mutation 

operators.  Figure 7 illustrates the ability to automatically generate and execute first order 

mutants (live vs. killed) to validate the test suite.  The enhanced extension will utilize 

reinforcement learning for mutation operator selection. 

 

 
Figure 6. Microsoft Visual Studio extension with mutation operators.  

 

 
Figure 7. Microsoft Visual Studio extension with mutation test results. 

 

2 https://visualmutator.github.io/web/ 
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     To incorporate a more efficient mutation generation process, a machine learning 

driven suggestion for mutation operators would be incorporated.  The suggestions would 

be based on mutation operator performance during reinforcement learning using code 

repositories then made available to developers in the context of current program code, 

similar to Microsoft’s IntelliCode feature3 in Figure 8 that provides Artificial Intelligence 

(AI) code completion suggestions as stars but requires offline supervised training. 

 

Figure 8. IntelliCode within Microsoft Visual Studio.  

 

     To accomplish the research goals a quantitative approach will be utilized.  During the 

mutation operator selection process, data will be gathered on the number of mutations 

generated, mutation score and testing execution time.  This data can be used to measure 

and compare the performance of mutants generated with and without the use of machine 

learning mutation operator selection. The non-machine learning approaches to mutation 

operator selection will be to 1. Select all operators, 2. Select operators randomly, 3. 

Select a specific subset of operators.  This will help to determine how effective machine 

learning is at reducing the total number of mutants generated and reducing execution time 

while continuing to provide an accurate analysis of the test suite. 

     To reduce test execution, an incremental process to perform mutation testing during 

program coding would be developed, called ‘live’ mutation testing.  Reinforcement 

learning is appropriate for mutation operator selection since there is no strict model for 

the impact of mutations on software system test suites.  

3 https://docs.microsoft.com/en-us/visualstudio/intellicode/faq  
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With ‘live’ mutation testing, the mutation operators will be selected, mutations will be 

generated then tests will be selected and executed as the software is developed so missing 

tests can be identified earlier.  This will help to promote shift left (Demeyer et al., 2018) 

where testing is brought closer to the beginning of the Software Development Lifecycle 

(SDLC), as opposed to testing towards the end of the SDLC.   

     The ‘live’ unit testing feature4 is already available within Microsoft’s Visual Studio 

IDE and illustrated in Figure 9 where both test coverage evaluation and unit test 

execution are performed in real-time for test results from the test suite. The test coverage 

identifies the amount of code tested but ‘live’ unit testing does not guarantee test quality, 

which is how well does the test suite perform at identifying potential defects? 

 

Figure 9. Live Unit Testing within Microsoft Visual Studio.  

 

     With ‘live’ mutation testing the goal would be to identify a single syntactic error, 

placing a higher emphasis on first order mutants (FOM), where mutants are generated by 

applying a mutation operator once against the source code.   

 

4 https://docs.microsoft.com/en-us/visualstudio/test/live-unit-testing  
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This is opposed to testing later when there is more of a chance that multiple errors have 

been introduced, reducing need for second order mutants (SOM) and higher order 

mutants (HOM) that simulate multiple syntactic errors. HOMs are often constructed by 

first formulating the FOMs, then joining them together, which takes longer to compute 

(Ghiduk et al., 2018). 

     To execute test case selection and mutation testing the code libraries will need to have 

associated test suites. With the introduction of Test-Driven Development (TDD) by 

(Beck, 2003), more test cases are being created by the business and quality analysts that 

play a role in test development.  There are many tools available, including some 

evaluated by (Honfi & Micskei, 2019) that allow for unit test generation.  Microsoft’s 

IntelliTest feature5 in Figure 10 generates test suites based on program analysis.  This 

figure illustrates how it can automatically generate test suites with high code coverage 

using automated white box analysis.  Since the reachability of program statements is not 

decidable, the goal (Tillmann & De Halleux, 2008) is to provide a good approximation 

and high coverage of the program statements. 

 

Figure 10. IntelliTest within Microsoft Visual Studio.  

5 https://docs.microsoft.com/en-us/visualstudio/test/intellitest-manual/introduction  
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Once the tests have been developed, programmers can focus on the task of implementing 

more complex logic to satisfy the tests.  TDD can also lead to a more accurate 

representation of the requirements since the unit tests are more formalized using 

structured syntax as opposed to using manual testing processes that rely on requirements 

documentation with abstract natural language. 

     For machine learning to be successful, an evaluation of features will be performed, 

including code metrics (e.g. total number of methods, total lines of code, operator 

occurrence counts), effort metrics (e.g. new vs. updated classes, new vs. updated 

methods, modified lines of code) and test metrics (e.g. total number of test cases, test 

results, test duration, total number of mutants, live vs. killed mutants, mutation score). 

Given the features, the algorithm would attempt a binary classification and predict usage 

(i.e. select vs. deselect) for each mutation operation with the objective to limit mutants 

necessary to evaluate the test suite’s effectiveness. For mutation testing, Figure 11 

proposes agent prioritizing mutation operators for methods and classes within code repo. 

 

Figure 11. Reinforcement Learning for Mutation Operator Selection. 

     

     To constantly evaluate the results of the machine learning mutation operator advice, 

there must be an efficient process to execute reinforcement learning.  To meet this 

demand the core concept of machine learning in Figure 12 the approach will utilize a 
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parallel process having n multiple agents, each with a deep Q-network to predict mutation 

operators based on rewards, as well as randomly sampled shared experience replay to 

allow the agents to learn from each other. This improves on the approach of (Nair et al., 

2015) by using both multi-threaded agents and shared experience replay memory, which 

was suggested as future work.  The results can be evaluated with different network, 

agent, environment configurations and without synchronization of network gradients 

(Grounds & Kudenko, 2005) or parallelized stochastic gradient descent addressed by 

(Recht et al., 2001). 

 

Figure 12. Reinforcement Learning with Parallel Processing.  

 

Experiment Design 

     To evaluate the approach, as well as issues and barriers previously mentioned, several 

experiments will be conducted and measured.  The proposed experiments are as follows: 

 Experiment 1: Learning Mutation Testing with One Live Mutation 
 Experiment 2: Learning Mutation Testing with Multiple Live Mutations  
 Experiment 3: Learning Mutation Testing with No Live Mutations  
 Experiment 4: Comparing Mutation Testing Approaches with Two Cores 
 Experiment 5: Comparing Mutation Testing Approaches with Four Cores 
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Implementation 

     The algorithm defined in Chapter 3 Methodology; Figure 12 was implemented as a 

Windows application called Mutation Testing with Parallel Deep Reinforcement 

Learning (MTPDRL)6.  The experiments were conducted using Windows Form 

(MutantTesterDRL.exe) for reinforcement learning and Windows Console 

(MutantTesting.exe) for mutation testing applications with object-oriented programming 

in C# using the custom classes in Figure 13.  In addition, existing open-source libraries 

were used, such as Deep-QLearning7, Mutty8 and Cecil9. 

 

Figure 13 Mutation Testing with Parallel Deep Reinforcement Learning code map.  

 

6 https://github.com/mstewart1972/MutationTestingWithDeepParallelReinforcementLearning   
7 https://github.com/dubezOniner/Deep-QLearning-Demo-csharp  
8 https://github.com/angusmcintosh/Mutty   
9 https://github.com/jbevain/cecil  
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MutantTesterDRL.exe 

     The DeepQLearning.FormDriver class is used to specify parameters and instantiate 

instances of the DeepQLearning.FormAgent class as thread or process.  The FormAgent 

instantiates the DeepQLearning.DRLAgent.QAgent class which uses the DeepQLearn, 

DeepQLearnShared or DeepQLearnSharedSingleton classes for reinforcement learning.  

 

DeepQLearn 

     This class was part of the original Deep-QLearning library and utilizes the Trainer 

class within the ConvNetSharp library to define and utilize neural networks as part of the 

reinforcement learning process.  There are multiple algorithms supported to update 

network weights, including the classic Stochastic Gradient Descent but this research 

utilized ADADELTA by (Zeiler, 2012).  The idea with this method of updating the 

network weights during backpropagation is to prevent the need for manual tuning of the 

hyperparameters, such as learning rate or momentum and handle adverse conditions with 

respect to the input data types and network layer units. 

 

DeepQLearnShared 

     This class was added as an extension for reinforcement learning with shared 

experience and inherits functionality from the DeepQLearn class.  The shared experience 

replay was implemented using a static ConcurrentDictionary, which is part of the .NET 

framework System.Collection.Concurrent namespace and is thread-safe.  During 

backpropagation agents will contribute round-robin towards the shared experience, 
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replacing randomly when maximum experience limit is reached and randomly choose a 

specified batch size number of elements for network training. 

 

DeepQLearnSharedSingleton 

     This class was added as an extension for reinforcement learning with shared 

experience but was implemented using the singleton pattern that ensures instantiation is 

limited to a single instance. The class also allows serialization to save experience. 

 

Experience 

     This class maintains the state0, action0, reward0, state1 fields where an agent is in 

state0 and does action0.  The environment then assigns reward0 and provides new state, 

state1.  Experience stores this information, which is used during the Q-learning update. 

 

World 

     This class implements the environment, which is comprised of agents and codebase.  

The agents utilize actions (i.e., mutation operators) as a means to evaluate the codebase 

(i.e., code pieces) for rewards (i.e., mutation score).  For the experiments, mutation 

operator selection was evaluated using different methods, including random or machine 

learning.  To maintain the reinforcement learning cycle, the world utilizes a clock that 

ticks for each forward/backward propagation and can be set with a duration limit.  To 

ensure that the machine learning process converges, DeepQLearning.FormAgent 

implements criteria (if average Q-learning loss is >=0.50, checking every 100 intervals), 

that evaluates and resets the experience if the criteria is not met, as shown in Figure 14.   
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Figure 14. Reinforcement learning with experience reset when criteria not met. 

 

Item 

     This class implements the rewards, red is positive, and green is negative, that the agent 

can detect.  As shown in Figure 14, items are placed at locations within the environment. 

 

Agent 

     This class implements the agent and has partial observability within the environment, 

limited to the module that it is processing.  The agent has one eye that can detect item 

properties using the Eye class, which for these experiments use static values since a 

single module and class were utilized.  The Cecil8 library provides metadata on modules, 

types and methods which would allow detecting properties, such as type.name, 

type.methods.count, type.fields.count to learn within a larger codebase containing 

multiple modules and types.    
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The agent has 1 eye, can detect 3 item properties, can take 2 ^ number of mutation 

operators possible actions and has temporal window of 4, so the number of inputs is  

current state(1x3) + previous states(1x3x4) + actions(2^4x4) = 79.  The item text and 

integer values are word2vec9 or one hot encoded as real numbers, which become inputs to 

the network for forward propagation through the neural network, as shown in Figure 15.   

 

Input Layer ϵ ℝ79 - Hidden Layer ϵ ℝ96 -  Hidden Layer ϵ ℝ96 - Output Layer ϵ ℤ16 

Figure 15. Neural network configuration utilized for reinforcement learning. 

 

9 https://github.com/tmteam/Word2vec.Tools    
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     The number of actions is 2^number of mutation operators.  During research it was 

determined that the machine learning performed best with limited actions, so the 

algorithm utilized a mutation category to limit the number of operators.  Even though the 

number of actions can vary between categories, it is fixed to 2^4=16 for the basic 

arithmetic replacement categories (e.g., basic addition where + is replaced with -, *, /, %).  

The output is an integer representing one of the possible combinations of the category 

mutation operators, where each operator is either enabled or disabled, that the agent 

chooses as action to take for mutation testing.  The operation occurrence count of each 

mutation operator combination utilized is maintained to analyze the agent results. 

 

     The reward function computed for backward propagation is favorable to mutation 

operators that result in live mutations and unfavorable to operators that result in killed 

mutations.  This is accomplished using multiple conditions, as well as factors.  First, the 

reward = min_reward where min_reward = (1 / number mutation operators) * minFactor 

when there are no live mutations, to promote disabling the most possible operators.  

Second, reward = score_reward + max_reward where score_reward is 1 - mutation score 

and max_reward is number mutation operators * max_factor when score_reward != 0, 

which promotes enabling the most possible operators. 

 

MutantTesting.exe 

     The MutantTester.MutationTester class and MutationTest() method performs mutation 

testing based on parameters specified by the DeepQLearning.DRLAgent.Agent class 

during the Backward() propagation method.  The results from the MutantTesting.exe are 
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parsed and the Reinforcement Learning reward is calculated for the 

DeepQLearning.DRLAgent.DeepQLearn class to retain experience and adjust the 

network weights using the Trainer class by the Train() method.  The reward function 

looks to select mutation operators that maximize the result of live mutations. A detailed 

diagram of the mutation testing program is shown in Figure 16. 

 

Figure 16. Code map for the Mutation Testing application. 

 

     The BuildOriginalCode() method is called by MutationTest() method to compile the 

.NET solution that contains the program source code for both the application logic and 

the unit test suite.  It utilizes the .NET command-line interface (CLI) and build command 

to build the project and its dependencies into a set of binaries. The binaries include the 

project's code in Intermediate Language (IL) files with a .dll extension. 
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     The GenerateMutants() method is called by MutationTest() method, which uses the 

mutation operators passed to generate mutated copies of the original IL that was built. 

The MutantGeneration.ReinforcementMutationCreation.ReinforcementMutationFinder 

class and GetAllReinforcementInstructionMutations() method takes both the mutation 

category (e.g., BA=basic addition replacements) and operators (e.g., 1111-all, 1000-

addToMul, 0100-addToSub, 0010-addToDiv, 0001-addToRem, 0000-none), which allows for 

the reinforcement learning algorithm to choose various mutation operator combinations.  

     For IL manipulation, the MutantGeneration.MutationGenerators namespace contains 

classes for the various mutation categories (e.g., InstructionMutationGenerators) that 

implement the GenerateMutations() method to generate Mutation objects, for each of the 

classes, methods, or instructions in each of the applications modules. In order to 

decompile and alter the IL code, the Decompiler.DllDecompiler class uses the 

Mono.Cecil8 library. 

     Finally, the TestMutants() method is called by the MutationTest() method to execute 

the unit test suite against all of the mutated assemblies. The DotnetTestFramework class 

and the TestAsync() method supports the MSTest9, NUnit10 and xUnit11 testing 

frameworks. It utilizes the .NET command-line interface (CLI) and test command to 

execute the unit tests within the given solution and reports the success or failure of each 

test.  For each test suite execution, results from unit tests are returned as either test fail 

(i.e., killed mutation) or test pass (i.e., live mutation).   

 

9 https://github.com/Microsoft/testfx-docs   
10 https://nunit.org/  
11 https://xunit.net/  
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Datasets 

     To perform mutation testing, sample programs with test suites were created as shown 

in Figure 17.  These programs perform basic arithmetic operations and corresponding test 

methods that utilize the NUnit10 test framework.  This allows the experiments to focus on 

the backpropagation process for mutation operator selection results.  

 

 

 

 

Figure 17. Sample programs with test suites for mutation experiments. 
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     By using a reinforcement learning algorithm, some of the data required for learning is 

generated by the agent itself by trial-and-error actions within the environments.  This is 

unlike supervised learning, where large amounts of labeled data with the correct input-

output pairs are explicitly presented.  Most of the reinforcement learning happens online, 

as the agent interacts with the environment over several iterations and eventually begins 

to learn the policy that describes which actions to maximize the reward. This was one of 

the driving factors for choosing RL as opposed to other ML approaches. 

     To perform additional mutation testing, additional code libraries can be identified.  

Now that a number of high-profile C# software development organizations, including 

Microsoft have transitioned to an open-source approach, including test suites available 

for analysis. In the research from (Derezinska, 2006) the author evaluates mutation 

testing operators using an array of subject C# programs, including NUnit10, NHibernate, 

NAnt and Microsoft’s Mono which in 2001 was an early attempt at open-sourcing the 

.NET Common Language Infrastructure (CLI) for cross-platform portability. In 

subsequent research on mutation testing tools from the same author (Derezinska, & 

Szustek, 2008), only two years later there were more C# programs available for analysis.  

These included Spring.NET, Castle.Core, NCover and CruiseControl.NET.  Since then, 

even more open-source C# libraries have been made available on GitHub with 

Microsoft’s open-source re-development of the .NET Standard called .NET Core, which 

includes runtime, framework, compiler and tool components.  Using open-source projects 

prevents the extra effort and potential legal issues with commercial data, as well as 

allows future researchers to validate and contribute to the goals set forth by this 

dissertation. 
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     To evaluate forward propagation of machine learning features, more complicated 

programs with multiple classes and assemblies will be required.  Additional data that is 

required could be obtained using code, build and test metrics from the continuous 

integration of open-source libraries on public GitHub repositories as shown in Figure 18.   

 

Figure 18. Code churn metrics within GitHub. 

 

     To perform test case selection evaluation, datasets are available that provide test case 

results and have been used by previous research.  This idea for ‘live’ mutation testing 

uses an approach similar to that of (Madeyski, & Kawalerowicz, 2017) when capturing 

data for their continuous defect prediction process. There are other public datasets 

available, including Kaggle.com and governmental organizations, such as NASA that 

have been used by previous research on software fault analysis (Menzies et al., 2007).   

 

Measures 

     For an evaluation of reinforcement learning for mutation testing, the experiments will 

use measurements: 1. Loss, 2. Reward, 3. Elapsed time, 4. Mutation score and 5. CPU %. 
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Experiment 1: Learning Mutation Testing with One Live Mutation 

     The purpose of this experiment is to determine if reinforcement learning can identify 

the optimal mutation operator selection for a program and test suite that has one possible 

live mutation.  The BasicMath program, unit test and basic addition mutation in Figure 23 

will be used.  In this scenario, the algorithm should identify that the combination of 1000 

is the correct combination to turn off all but the one mutation operator (i.e., + to *) that 

will produce live mutant and identify faulty test case. The environment will allow the 

agent to run until the reward converges or 24 hours.  This first experiment’s success 

criteria are the ability for the reward function to converge and train the agent to 

successfully navigate the environment, maximizing rewards and correct operator 

selection.  The failure criteria are the inability of reinforcement learning to train the agent 

successfully or cause loss function to reside in local minima.  These results will be 

documented and utilized as justification for subsequent experiments.  The result from this 

experiment will be formatted as Table 1. 

 

Table 1. Experiment 1 results format. 
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Experiment 2: Learning Mutation Testing with Multiple Live Mutations 

     The purpose of this experiment is to determine if reinforcement learning can identify 

the optimal mutation operator selection for a program and test suite that has multiple live 

mutations.  The BasicMath5 program, unit test and basic modulo mutation in Figure 23 

will be used.  In this scenario, the algorithm should identify that the combination with 

0011 is the correct combination to turn off all but two mutation operators (i.e., % to / and 

% to *) that will produce live mutants and identify faulty test cases.  

 

Table 2. Experiment 2 results format. 

 

The success criteria will be similar to the first experiment in that the agent must 

successfully navigate the environment, maximizing rewards and correct operator 

selection.  The result from this experiment will be formatted as Table 2. 
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Experiment 3: Learning Mutation Testing with No Live Mutations 

     The purpose of this experiment is to determine if reinforcement learning can identify 

the optimal mutation operator selection for a program and test suite that has no possible 

live mutations.  In this scenario, since all mutations are killed, the algorithm should 

identify 0000 is the correct combination to turn off all mutation operators since none will 

produce live mutants that identify faulty test cases.  The BasicMath2 program, unit test 

and basic subtraction mutation in Figure 23 will be used. 

 

Table 3. Experiment 3 results format. 

 

The success criteria will be similar to the first two experiments in that the agent must 

successfully navigate the environment, maximizing rewards and correct operator 

selection.  The result from this experiment will be formatted as Table 3. 
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Experiment 4: Comparing Mutation Testing Approaches with Two Cores 

     The purpose of this experiment is to evaluate the impact of parallel deep 

reinforcement learning selection of mutation operators vs. selection of all or random 

operators using agents as multiple threads on the mutation testing and operating system 

performance.  During reinforcement learning, 2 agents with duration of 1500 intervals for 

5 runs will be executed on a laptop with 2 physical cores, for total of 2*1500*5 = 15k 

tests. Each run will execute until reward convergence is determinate, based on the 

baseline experiment results.  The average should mitigate the risk of anomalies.  For this 

experiment operating system performance metrics will be collected using Windows 

process explorer, as proposed by (Huffman, 2014).  This experiment will guide the 

development of Visual Studio extension for mutation testing operator selection.  The 

BasicMath2 program, unit test and basic addition mutation in Figure 23 will be used. 

 

Table 4. Experiment 4 results format. 

 

For this experiment a ranking will be assigned to the different configurations based on the 

metric of live mutant ratio, which is calculated as average mutants live / average mutants 

total.  The success criteria will be similar to the previous experiment in that the agent 

must successfully navigate the environment but in addition will include top configuration 

ranking metric.  The result from this experiment will be formatted as Table 4. 
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Experiment 5: Comparing Mutation Testing Approaches with Four Cores 

     The purpose of this experiment is to evaluate the impact of parallel deep 

reinforcement learning selection of mutation operators vs. selection of all or random 

operators using agents as multiple threads on the mutation testing and operating system 

performance.  During reinforcement learning, 2 agents with duration of 1500 intervals for 

5 runs will be executed on a laptop with 4 physical cores, for total of 2*1500*5 = 15k 

tests. Each run will execute until reward convergence is determinate, based on the 

baseline experiment results.  The average should mitigate the risk of anomalies.  For this 

experiment operating system performance metrics will be collected using Windows 

process explorer, as proposed by (Huffman, 2014).  This experiment will also guide the 

development of Visual Studio extension for mutation testing operator selection.  The 

BasicMath2 program, unit test and basic addition mutation in Figure 23 will be used. 

 

Table 5. Experiment 5 results format. 

 

For this experiment a ranking will be assigned to the different configurations based on the 

metric of live mutant ratio, which is calculated as average mutants live / average mutants 

total.  The success criteria will be similar to the previous experiment in that the agent 

must successfully navigate the environment but in addition will include top configuration 

ranking metric.  The result from this experiment will be formatted as Table 5. 
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Resources 

 

     For this research, the following basic and available resources were required: 

 Laptop – Developer machine with 2 physical Intel ® Core® CPU @2.50GHz 
processors (4 logical processors), 16GB memory (L1 cache:256KB, L2 
cache:1MB, L3 cache:8MB) and Windows 10 64-bit operating system. 
 

 Laptop – Developer machine with 4 physical Intel ® Xeon® CPU @3.00GHz 
processors (8 logical processors), 16GB memory (L1 cache:256KB, L2 
cache:1MB, L3 cache:8MB) and Windows 10 64-bit operating system. 
 

 Programming software – The C# programming language (Microsoft Corporation, 
2013) and Visual Studio integrated development environment (IDE). 
 

 Analysis software – Windows process explorer (Microsoft Corporation, 2019). 
 

 Documentation software – Microsoft Office (2019). 
 
 

Summary 

 

The experiments will be performed while also running other developer applications, 

including Visual Studio, Microsoft Outlook, Microsoft Word, Microsoft Excel, Microsoft 

Teams, Chrome Internet Browser.  This will help to determine the feasibility of running 

the reinforcement learning process in real-world situations and provide a better estimate 

of the metrics captured in the experiment results. 
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Chapter 4 – Results 

 

Introduction 

     The experiments previously designed were conducted.  To execute the experiments a 

sophisticated multi-thread, multi-process test-harness application described in the 

implementation section was utilized, Mutation Testing with Parallel Deep Reinforcement 

Learning (MTPDRL)6 is shown in Figure 19.  It was based on the Q-learning research by 

(Mnih, Kavukcuoglu, et al., 2013) and the aforementioned Deep-QLearning6 library that 

implemented reinforcement learning using a single-threaded process. The MTPDRL 

application was built to specify parameters, execute experiments and visualize data.  The 

output data was collected, aggregated and prepared for the following results. 

 

Figure 19. Mutation Testing with Parallel Deep Reinforcement Learning. 
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Experiment 1: Learning Mutation Testing with One Live Mutation 

     The purpose of this experiment is to determine if reinforcement learning can identify 

the optimal mutation operator selection for a program and test suite that has one possible 

live mutation.  The addition mutants possibly generated are shown in Figure 20. 

 

Figure 20. Possible mutants with one live mutant for experiment 1. 

 

The testing indicated the learning algorithm convergence was definitive at 1500 cycles.  

At that point, the machine learning actions shown in Figure 21 were evaluated and the 

1000 combination had the highest occurrence and identified as recommended mutation.  

 

 

Figure 21. ML agent reward, loss and mutation performance for one live mutant.   
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The results indicated that reinforcement learning using agent for mutation operator 

selection was successful, obtaining high reward with low loss, generating and testing 

fewer mutations after training for approximately ~11.5 hours vs. all operators executing 

for ~18 hours as shown in Table 6.  Additional details on the individual agent 

performance from this and all experiments are available within the appendix. 

 

Table 6. Learning Mutation Testing with One Live Mutation. 

 

Experiment 2: Learning Mutation Testing with Multiple Live Mutations 

     The purpose of this experiment is to determine if reinforcement learning can identify 

the optimal mutation operator selection for a program and test suite that has multiple live 

mutations.  The modulo mutants possibly generated are shown in Figure 22.   

 

Figure 22. Possible mutants with two live mutants for experiment 2. 
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An observation was the learning algorithm, including shared agent experience continued 

to converge after attempting various actions with multiple live mutants around 1500 

cycles as shown in Figure 23 and the 0011 combination had the highest action occurrence 

and thus was identified as recommended mutation. 

 

 

Figure 23. ML agent reward, loss and mutation performance for multiple live mutants.   

 

The results indicated that reinforcement learning using an agent for mutation operator 

selection was successful, obtaining high reward with low loss, generating and testing 

fewer mutations after training for approximately ~11 hours as shown in Table 7.  

 

Table 7. Learning Mutation Testing with Multiple Live Mutations. 
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Experiment 3: Learning Mutation Testing with No Live Mutations 

     The purpose of this experiment is to determine if reinforcement learning can identify 

the optimal mutation operator selection for a program and test suite that has no possible 

live mutations.  The subtraction mutants possibly generated are shown in Figure 24. 

 

Figure 24. Possible mutants with no live mutants for experiment 3. 

 

An observation was the learning algorithm, including shared agent experience continued 

to converge with multiple live mutants around 1500 cycles as shown in Figure 25 and the 

0000 combination had the highest occurrence and identified as recommended mutation. 

 

 

Figure 25. ML agent reward, loss and mutation performance for no live mutants.   
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The results indicated that reinforcement learning using an agent for mutation operator 

selection was successful, obtaining high reward with low loss, generating and testing 

significantly fewer mutations after training for approximately ~11.5 hours as shown in 

Table 8. 

 

Table 8. Learning Mutation Testing with No Live Mutations. 

 

Experiment 4: Comparing Mutation Testing Approaches with Two Cores 

     The purpose of this experiment is to evaluate the impact of parallel deep 

reinforcement learning selection of mutation operators vs. selection of all or random 

operators using agents as multiple threads on the mutation testing and operating system 

performance.  The addition mutants possibly generated are shown in Figure 26. 

 

Figure 26. Possible mutants with two live mutants for experiment 4. 
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The results indicated that the machine learning mutation operator selection process was 

able to outperform both the traditional approach of selecting all operators, as well as 

random selection as shown in Table 9. 

 

Table 9. Comparing Mutation Testing Approaches with Two Cores. 

 

An observation was that the reinforcement learning selection was able to generate the 

highest live to total mutant ratio, which resulted in a significant reduction in the mutation 

testing elapsed time.  The driver thread (MutantTesterDRL.exe) maintained references to 

agent thread instances (MutantTesting.exe) but even while also running other developer 

applications, had ~40% of CPU capacity still available as shown in Figure 27, which 

indicates that the ‘live’ mutation testing process can execute background while 

developers are coding and performing other tasks.  This experiment provided guidance 

for development of the Visual Studio extension for mutation testing operator selection.   

  

Figure 27. Multiple threads with shared memory and two CPU cores.  
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Experiment 5: Comparing Mutation Testing Approaches with Four Cores 

     The purpose of this experiment is to evaluate the impact of parallel deep 

reinforcement learning selection of mutation operators vs. selection of all or random 

operators using agents as multiple threads on the mutation testing and operating system 

performance.  The modulo mutants possibly generated are shown in Figure 28. 

 

Figure 28. Possible mutants with two live mutants for experiment 5. 

 

The results in Table 10 indicated that the machine learning mutation operator selection 

process was able to outperform both the traditional approach of selecting all operators, as 

well as random selection based on the live to total mutant ratio. 

 

Table 10. Comparing Mutation Testing Approaches with Four Cores. 

 

An observation depicted in Figure 29, was that the driver thread completed mutation 

testing in a shorter elapsed time using 4 CPU cores and had ~70% of CPU capacity 
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available for other tasks.  This indicates that additional agent threads might be utilized to 

perform reinforcement learning against more complicated programs. 

  

Figure 29. Comparing Mutation Testing Approaches with Four Cores. 

 

Summary 

     In summary, all required data was synthesized and the experiments were completed.  

The results have provided valuable insight towards this dissertation and future research. 
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Chapter 5 - Conclusion 

In conclusion, research regarding mutation testing, mutation selection and 

machine learning has been conducted but much of it separately and not considering a 

practical application by software developers using an Integrated Development 

Environment.  Less is available that combines mutation testing, mutation operator 

selection and reinforcement learning using parallel processing in the Visual Studio IDE 

for C# development.  This dissertation contributes valuable insight and functionality in 

that area.  The results of the experiments demonstrated that the usage of reinforcement 

learning for mutation operator selection was both effective and practical.  

One key contribution from this research was the development of the 

reinforcement algorithm to identify mutation operator combinations that result in live 

mutations.  This included a criterion to reset the shared experience and restart learning 

such that the process was able to avoid local minima and always converge on a mutation 

operator combination recommendation.  The policy was consistently successful in 

minimizing mutation score, with increasing reward and decreasing loss.   

With experiments 1 – 3, it was found that the reinforcement learning algorithm 

was able to identify the correct mutation operator selections for various programs and test 

suite scenarios, without regard to the number of live mutations. This did not represent 

every mutation scenario possible with complex programs but does provide evidence for 

the scenarios evaluated that reinforcement learning was effective by identifying the 

proper mutation operator combination to detect live mutations and generated 50 – 100% 

fewer mutations as compared to using all mutation operators. 
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With experiments 4 and 5, it was determined that by using parallel processing and 

multiple cores the reinforcement learning process for mutation operator selection was 

practical.  The number of tests (2*1500*5 = 15k) was increased to substantiate the initial 

experiments results.  Additionally, by increasing the number of cores from 2 to 4, there 

was ~75% more CPU available for other processes to be performed.  This combined with 

tuning the number of concurrent agent threads learning and sharing experience allows for 

a more complex, realistic codebase to be evaluated for mutation operator selection. 

Finally, the required resources for additional research are currently available and 

growing with the expansion of open-source usage and test-driven development.  As 

shown earlier, there is a need to eliminate software defects from both the software 

reliance and software development cost perspectives.  Given this, the goal of increasing 

test suite effectiveness using mutation testing and reinforcement learning is possible. 

 

Implications 

     The implication from the dissertation experiments is that reinforcement learning can 

be used in the manner required to facilitate mutation operator selection both during 

software development and deployment.  It provides an approach of making mutation 

testing more viable, which is already considered the most accurate and dependable 

approach for assessing test suite effectiveness (Strug & Strug, 2012). 

 

Recommendations 

     Based on experimentation results, the recommendation is to pursue research on 

improving the machine learning hyper-parameters, incorporating additional machine 
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learning features for training against more complicated programs and development 

required to implement this paper’s reinforcement learning approaches for mutation 

operator selection as a Visual Studio extension.  Transitioning from agents navigating a 

simple program environment to a more complex, multi-module codebase.  To further this 

recommendation the following design extends the implementation to integrate 

reinforcement learning within the development and testing environment (IDE). 

 

Figure 30. Mutation Testing with Reinforcement Learning in Visual Studio extension. 

 

MainToolWindow 

     The interface would allow machine learning feedback to developers on mutation 

operator selection based on agent traversal through the codebase.  Forward propagation 

using input based on proximity to the agent’s current code piece CIL instruction location 

to adjacent CIL instructions in the library.  Based on (Microsoft Corporation, 2020), the 

CIL instruction set contains 235 possible instructions, so each could have corresponding 

mutations.  Once encoded, the input values fed through the network determine an action, 

which would correspond to instruction replacements, thus generating a mutant library.  

The mutant software library would be tested, the mutation score calculated and used as a 

reward for mutation operator suggestions against the entire codebase.  
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Appendix A – Detailed Experiment Results 

 

 This appendix provides detailed results of experiments 1 through 5. As previously 

mentioned, each experiment carried out in this study were conducted two developer 

machines.  The first with 2 physical Intel ® Core® CPU @2.50GHz processors (4 logical 

processors), second with 4 logical Intel ® Xeon® CPU @3.00GHz processors (8 logical 

processors), both with 16GB memory (L1 cache:256KB, L2 cache:1MB, L3 cache:8MB) 

and Windows 10 64-bit operating system.  The experiments were performed while also 

running other developer applications, including Visual Studio, Microsoft Outlook, 

Microsoft Word, Microsoft Excel, Microsoft Teams and Chrome Internet Browser.  As 

part of the experiment, the reinforcement learning agent configurations were tested and 

evaluated, using the following metrics: 

1. Loss, 2. Reward, 3. Elapsed time, 4. Mutation score, 5. CPU percentage. 

Below are screenshots with a summary of each experiment’s agent hyperparameters, 

architecture and detailed accuracy results, corresponding to the above evaluation 

method. The code, program usage, agent files and screenshots are also included in the Git 

repo available at https://github.com/mstewart1972/ParallelDeepReinforcementLearning. 
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Experiment 1: Learning Mutation Testing with One Live Mutation 

Machine Learning selection of mutation operators: 
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Selection of all mutation operators: 

 



57 
 

 
 

 

 

  



58 
 

 
 

Experiment 2: Learning Mutation Testing with Multiple Live Mutations 

Machine Learning selection of mutation operators: 
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Selection of all mutation operators: 
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Experiment 3: Learning Mutation Testing with No Live Mutations 

Machine Learning selection of mutation operators: 
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Selection of all mutation operators: 
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Experiment 4: Comparing Mutation Testing Approaches with Two Cores 

Machine Learning selection of mutation operators: 

 

 
  

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 13:52:11 13:25:17 16:41:21 13:37:52 12:27:27 13:08:59
maximum action 1100 1000 1110 1100 0000 1000
average mutation score 0.21
average mutant total 1.400000000000000 1.50 2.50 1.00 1.00 1.00
average killed count 0.300000000000000 0.50 1.00 0.00 0.00 0.00
average live count 1.100000000000000 1.00 1.50 1.00 1.00 1.00
average Q-learn loss 0.152961443509268 0.14190886 0.23263098 0.16998208 0.18783096 0.03245434
smooth-ish reward 0.798272916666644 0.73109833 0.68447875 0.82420500 0.82368542 0.92789708

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 1100 1000 1110 1100 0100 1000
average Q-learn loss 0.129909970188984 0.02063952 0.23266643 0.02208906 0.33723121 0.03692364
smooth-ish reward 0.877912166666663 0.93731750 0.68755750 0.92718417 0.91432917 0.92317250

test runs - instance1 1 2 3 4 5
maximum action 1100 1010 1110 1100 1000 1100
average Q-learn loss 0.176076553121387 0.26340732 0.23251918 0.31798466 0.03871289 0.02775872
smooth-ish reward 0.759268833333329 0.52539917 0.68189000 0.72255917 0.93304167 0.93345417

Test Summary 1 2 3 4 5
maximum action 1100
average Q-learn loss 0.152993261655185 0.14202342 0.2325928 0.17003686 0.18797205 0.03234118
smooth-ish reward 0.818590499999996 0.73135833 0.68472375 0.82487167 0.92368542 0.92831333
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Random selection of mutation operators: 

 

  

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 16:25:42 14:04:03 17:18:30 15:43:58 16:37:36 18:24:25
maximum action n/a
average mutation score 0.68
average mutant total 2.500000000000000 3.00 1.50 3.00 2.00 3.00
average killed count 1.700000000000000 2.00 1.00 2.00 1.50 2.00
average live count 0.800000000000000 1.00 0.50 1.00 0.50 1.00
average Q-learn loss 0.126778508637186 0.14235967 0.18430662 0.08087368 0.07788896 0.14846361
smooth-ish reward 0.504345666666664 0.51459125 0.49512833 0.50377042 0.50956583 0.49867250

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.128149205757168 0.08421698 0.1836353 0.07598023 0.07868408 0.21822945
smooth-ish reward 0.496130999999998 0.49842083 0.49088250 0.49715583 0.50225583 0.49194000

test runs - instance1 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.125384138198002 0.20050770 0.18492067 0.08572057 0.07710995 0.07866180
smooth-ish reward 0.513328999999998 0.53178167 0.49937417 0.51188500 0.51739583 0.50620833

Test Summary 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.126766671977585 0.14236234 0.18427798 0.0808504 0.07789702 0.14844562
smooth-ish reward 0.504729999999998 0.51510125 0.49512833 0.50452042 0.50982583 0.49907417
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Selection of all mutation operators: 

 

  

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 33:53:02 27:54:42 31:34:26 29:23:43 47:28:55 33:03:23
maximum action 1111 1111 1111 1111 1111 1111
average mutation score 0.50
average mutant total 4.000000000000000 4.00 4.00 4.00 4.00 4.00
average killed count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average live count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average Q-learn loss 0.130015461338638 0.19346480 0.15993372 0.02538319 0.16592559 0.10536999
smooth-ish reward 0.549300000000006 0.55600000 0.54450000 0.55900000 0.54075000 0.54625000

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.147755993065651 0.19429196 0.16163483 0.03144009 0.16463137 0.18678172
smooth-ish reward 0.549200000000006 0.556 0.54350000 0.56000000 0.54050000 0.54600000

test runs - instance1 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.112318751023727 0.19269247 0.15820126 0.01933407 0.16728760 0.02407835
smooth-ish reward 0.549400000000006 0.55600000 0.54550000 0.55800000 0.54100000 0.54650000

Test Summary 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.130037372044689 0.19349222 0.15991805 0.02538708 0.16595948 0.10543004
smooth-ish reward 0.549300000000006 0.556 0.5445 0.559 0.54075 0.54625
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Experiment 5: Comparing Mutation Testing Approaches with Four Cores 

Machine Learning selection of mutation operators: 

 

  

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 10:13:36 10:22:46 9:11:04 11:15:18 9:57:36 10:21:16
maximum action 0011 0011 0011 0011 0011 1010
average mutation score 0.19
average mutant total 1.600000000000000 2.00 1.00 2.00 1.00 2.00
average killed count 0.300000000000000 0.50 0.00 0.00 0.00 1.00
average live count 1.300000000000000 1.50 1.00 2.00 1.00 1.00
average Q-learn loss 0.143239068857956 0.15217368 0.17610090 0.16763546 0.18783096 0.03245434
smooth-ish reward 0.863680539999990 0.72000687 0.92092667 0.92588667 0.82368542 0.92789708

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 0011 1010 0001 0011 0010 1010
average Q-learn loss 0.199138194214970 0.26993381 0.33307358 0.01852873 0.33723121 0.03692364
smooth-ish reward 0.839621833333324 0.51259083 0.92681750 0.92119917 0.91432917 0.92317250

test runs - instance1 1 2 3 4 5
maximum action 0011 0011 0011 0011 0001 1010
average Q-learn loss 0.087410055368777 0.03445029 0.01929006 0.31683832 0.03871289 0.02775872
smooth-ish reward 0.928332833333323 0.92774583 0.91552583 0.93189667 0.93304167 0.93345417

Test Summary 1 2 3 4 5
maximum action 0011
average Q-learn loss 0.143274124791873 0.15219205 0.17618182 0.16768352 0.18797205 0.03234118
smooth-ish reward 0.883977333333324 0.72016833 0.92117167 0.92654792 0.92368542 0.92831333
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Random selection of mutation operators: 

 

  

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 10:15:41 10:25:46 10:24:11 9:55:55 10:22:26 10:10:06
maximum action n/a
average mutation score 0.76
average mutant total 1.700000000000000 1.50 2.00 1.00 2.50 1.50
average killed count 1.300000000000000 1.00 1.50 1.00 1.50 1.50
average live count 0.400000000000000 0.50 0.50 0.00 1.00 0.00
average Q-learn loss 0.126778508637186 0.14235967 0.18430662 0.08087368 0.07788896 0.14846361
smooth-ish reward 0.504345666666664 0.51459125 0.49512833 0.50377042 0.50956583 0.49867250

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.128149205757168 0.08421698 0.1836353 0.07598023 0.07868408 0.21822945
smooth-ish reward 0.496130999999998 0.49842083 0.49088250 0.49715583 0.50225583 0.49194000

test runs - instance1 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.125384138198002 0.20050770 0.18492067 0.08572057 0.07710995 0.07866180
smooth-ish reward 0.513328999999998 0.53178167 0.49937417 0.51188500 0.51739583 0.50620833

Test Summary 1 2 3 4 5
maximum action n/a
average Q-learn loss 0.126766671977585 0.14236234 0.18427798 0.0808504 0.07789702 0.14844562
smooth-ish reward 0.504729999999998 0.51510125 0.49512833 0.50452042 0.50982583 0.49907417
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Selection of all mutation operators: 

 

  

Results
Test Metrics Test Average Test Results
test runs 1 2 3 4 5
avg elapsed time (hh:mm:ss) 12:47:25 13:29:11 12:27:50 12:38:47 12:48:19 12:32:59
maximum action 1111 1111 1111 1111 1111 1111
average mutation score 0.50
average mutant total 4.000000000000000 4.00 4.00 4.00 4.00 4.00
average killed count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average live count 2.000000000000000 2.00 2.00 2.00 2.00 2.00
average Q-learn loss 0.069422834806760 0.10274348 0.02194500 0.09959513 0.02372138 0.09910919
smooth-ish reward 0.540125000000007 0.54025000 0.54000000 0.54012500 0.54000000 0.54025000

Test Metrics Test Average Test Results
test runs - instance0 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.087709932997378 0.02751675 0.02694109 0.18117582 0.02543883 0.17747719
smooth-ish reward 0.540150000000007 0.54050000 0.54000000 0.53975000 0.54000000 0.54050000

test runs - instance1 1 2 3 4 5
maximum action 1111 1111 1111 1111 1111 1111
average Q-learn loss 0.051118165259630 0.17796982 0.01689678 0.01800141 0.02198234 0.02074047
smooth-ish reward 0.540100000000007 0.54000000 0.54000000 0.54050000 0.54000000 0.54000000
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