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Validation of a Single Channel EEG for the Athlete: A Machine Learning Protocol Validation of a Single Channel EEG for the Athlete: A Machine Learning Protocol 
to Accurately Detect Sleep Stages to Accurately Detect Sleep Stages 

Abstract Abstract 
There is a large and growing movement towards the use of wearable technologies for sleep assessment. 
This trend is largely due to the desire for comfortable, burden free, and inexpensive technology. In 
tandem, given the competitive nature of professional athletes enduring high training load, sleep is often 
jeopardized which can result in adverse outcomes. Wearable devices hold the promise of increasing the 
ease of monitoring sleep in athletes which can inform health and recovery status, as well as aid 
performance optimization. However, wearable devices typically lack sufficient validity to assess sleep – 
and especially sleep stages. To address this concern, the present study aimed to validate an algorithm to 
detect wakefulness, light sleep, deep sleep, and REM sleep against the gold standard polysomnography 
(PSG), using a wearable single channel electroencephalogram (EEG). Through the single channel EEG, 
machine learning models were built to infer sleep staging. The model was created from training and 
validating EEG output and labels assigned from the PSG software. Additionally, to determine the accuracy 
of agreement between the devices both Random Forest and a deep learning Convolutional Neural network 
model were implemented. The sleep staging output was consistent with our sleep staging algorithm for 
the single channel EEG and more notably, the sleep versus wake agreement was strong- above 80%. Our 
findings show that machine learning algorithms can be used with wearable devices to accurately detect, 
not only the sleep versus wake cycles, but the 4 sleep stages as well. Accordingly, this technology can be 
applied in an athlete population for accurate assessment of full sleep architecture. 
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Introduction 

Given the competitive nature of professional sports, it is well understood that athletes are 

continuously in need of innovative technologies and modalities to gain an edge to optimize their 

performance and health (Casey et al., 2012; Park et al., 2015; Thompson et al., 2008). There has 

been a large and growing shift in the athletic community towards the use of wearable devices as 

a means to monitor training progress and recovery (Seshadri et al. (2019). This is evidenced by 

an ever-growing sports performance technology market which offers smart watches, bands, gar-

ments, and patches with inbuilt sensors (Peake et al., 2018). Despite this, there is limited peer re-

viewed validation studies for wearables in spite of their increased incorporation in sports as a 

mean of monitoring athletes’ workload (Seshadri et al., 2019). With the advent of miniaturized 

sensors, integrated computing, and artificial intelligence (Peake et al., 2018), it is expected that 

the emerging data-driven health and performance technologies will be of increased relevance in 

the field of sports performance (Perez-Pozuelo et al., 2020). 

Given the well-established link between sleep and athletic performance, as well as sleep 

and traumatic brain injury (TBI), many sports practitioners turn to brain imaging and 

neurophysiological measures in the hopes of improving the recovery capacity and sports 

performance of their athletes  (Jaffee et al., 2015; Knufinke et al., 2018; Murdaugh et al., 2018). 

Under normal physiological conditions, exercise is thought to have a positive impact on sleep 

(Walsh et al., 2021). However, high training load or injury may jeopardize sleep, and 

consequently impair recovery. It has been noted that heavy competition schedules, stress, brain 

injury, commute, academic demands, circadian misalignment, and overtraining have been all 

identified as potential obstacles to obtaining proper sleep (O’Donnell et al., 2018). Furthermore, 
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previous studies have demonstrated that athletes are particularly susceptible to sleep loss around 

competition time, further highlighting the need for a reliable way of monitoring sleep in this 

demographic (O’Donnell et al., 2018; Walsh et al., 2021; Watson, 2017). 

Characterized by habitual short length (<7 hours/night) and poor sleep quality (e.g., 

fragmentation), sleep inadequacies have been shown to negatively affect a number of variables 

that underpin athletic performance, including the rate of perceived exertion, motor skill 

acquisition, injury rate, as well as a range of cognitive skills, such as accuracy, and reaction time 

(O’Donnell et al., 2018; Walsh et al., 2021; Watson, 2017). Moreover, it has been demonstrated 

that athletes show poor self-assessment of their sleep duration, and quality (Watson, 2017) which 

demonstrates a need for an objective measure. In light of this, it has been postulated that athletes 

may require more careful monitoring to identify individuals at risk of developing allostatic 

overload due to insufficient capacity to recover (O’Donnell et al., 2018). Hence, validation of 

sleep monitoring wearables will allow for sleep architecture and characteristics to be adequately 

attained and used to inform recovery and performance metrics. 

Polysomnography (PSG) is the gold standard tool for clinical diagnosis of sleep disorders 

and for accurate determination of sleep-wake stages. The parameters for scoring normal adult 

sleep are provided by the American Academy of Sleep Medicine (AASM) Manual for Scoring 

Sleep Stages and Associated Events (Iber et al., 2007). To accurately assess clinical sleep 

disorders, PSG takes advantage of multiple recorded parameters. Electroencephalogram (EEG) 

serves as the main parameter during sleep and is coincided with respiratory function, heart rate, 

and blood pressure. These parameters, while critical for accurate clinical assessment and 

diagnoses, are not necessary for the accurate determination of sleep-wake states and sleep stages 

since EEG is the primary parameter (Vaughn & Giallanza, 2008). EEG measures of sleep and 
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wakefulness reliably show predictable and patterned cycles through sleep stages (Koley & Dey, 

2012). The macrostructure of sleep consists of non-rapid eye movement (NREM) and rapid eye 

movement (REM) sleep. Wakefulness largely consists of beta rhythm, low-voltage fast EEG 

activity. The EEG displays clear patterns of decreased neural activity from the transition from 

wakefulness to NREM sleep. Initially, in stage N1 sleep this activity reflects a decrease in alpha 

activity followed by a transition into stage N2 sleep, which consists of EEG sleep spindles and 

K-complexes. The N2 stage is classified as a period of light sleep (LS), which accounts for 50% 

of an entire night’s sleep. Following N2 sleep, there is an observable increase in EEG amplitude 

and predominance of delta activity in stage N3, which is referred to as a period of deep sleep 

(DS).  Rapid eye movement REM (R), also known as paradoxical sleep, is characterized by a 

loss of muscle tone accompanied by low amplitude fast EEG in the theta range. 

While the PSG provides an accurate and clinically useful measure of sleep, it includes 

multiple factors that limit sleep assessment for research purposes (Perez-Pozuelo et al., 2020). 

For example, the need for a research subject to spend the night in the sleep lab results in an 

unnatural night of sleep. In addition, the cost and manpower needed for a full night PSG study 

limits the number of participants in a study. For this reason, alternative in-home 

polysomnography was developed (Kundel & Shah, 2017). Although cost effective, 

polysomnography for home use has been limited by the difficulty in setting up the device and 

discomfort associated with multiple wires. Consequently, it is common for researchers to utilize 

wearable technology for sleep assessment as an alternative to the PSG. A common alternative 

known for its simplicity is wrist-worn devices which measure multiple bioelectric signals such as 

heart rate, skin conductance, temperature, and movement/activity to provide an assessment of 

sleep behavior (De Zambotti et al., 2019).  Multiple studies have investigated the ability of 
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wearable wrist-worn devices to accurately assess sleep, which approximate self-reported sleep 

time. Furthermore, these devices tend to correlate well with each other on total sleep time 

measures (De Zambotti et al., 2019; Haghayegh et al., 2019; Lee et al., 2019; Meltzer et al., 

2015). Notably, however, is the tendency of wearable technology to overestimate sleep time (De 

Zambotti et al., 2019; Kushida et al., 2001) and sleep efficiency (Bhat et al., 2015; Haghayegh et 

al., 2019) in healthy adults. 

The determination of sleep from wakefulness and accurate sleep staging are measures 

from electrophysiological signals from the scalp. Previous reports have shown that a single 

channel “wearable” EEG headband can also accurately detect wake and sleep stages compared to 

PSG and actigraphy (Kosmadopoulos et al., 2014; Shambroom et al., 2012). This creates a desire 

to expand on existing technologies using brain-based recording to accurately classify sleep time 

as well as EEG measures of sleep stages. The present study builds on this previous finding by 

showing that a machine learning algorithm can accurately provide sleep staging analyses, despite 

not having multiple electrode sites in the recording. We show that a wireless device can automate 

sleep staging in real-time using 30 second epochs with a single channel fabric headband. To 

overcome in-home difficulty, the device uses Bluetooth and features a user-friendly mobile in-

app software using a smartphone. Previous studies have attempted other physiological measures 

to predict sleep stages, such as pulse, blood oxygen and motion sensors (Zhang et al., 2012); 

however, they were unable to detect a differentiation between N1 and N2. A main issue 

addressed in this paper, is the lack of validation for alternative sleep staging devices resulting in 

them being pulled off the athlete-consumer and medical market (Behar et al., 2013; De Zambotti 

et al., 2019).  Lack of reliability and validity testing has been identified as a threat to the use of 

data-driven applications in sleep medicine and research (Perez-Pozuelo et al., 2020). 
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Accordingly, the overall goal of the current study was to investigate whether the output from the 

single channel EEG device is sufficient for accurate sleep stage inferences, using the proposed 

machine learning algorithm. Notably, the algorithm was validated through inferences of 

wakefulness, light sleep (LS), deep sleep (DS) and REM sleep against the gold standard 

polysomnography (PSG).  

Methods and Materials 

Subjects 

Fifteen subjects were recruited from Nova Southeastern University (n = 15; 5 females, 10 

males, mean age=25.2, SD =9.13), of which 8 completed an overnight sleep study and 7 

completed a napping study. This study was carried out according to a protocol approved by the 

Nova Southeastern University Institutional Review Board. (IRB NSU-2018-646). All 

participants received a verbal explanation of the study procedures and signed an NSU IRB-

approved written Informed Consent Form. Exclusionary criteria included a prior history of drug 

or alcohol abuse, neurological, psychiatric or sleep disorders. PSQI scores (M=5.73, SD= 1.94) 

were obtained from all subjects. 

Procedure 

Participants were tested in the NSU sleep laboratory, (Fort Lauderdale, FL) on one 

occasion. Testing arrival time was 12-5 p.m. for the daytime nap or between 10-11:30 p.m., for 

the overnight sleep study, according to their typical bed times. Nap participants were provided a 

4-hour sleep opportunity in an individual room, while those engaging in overnight sleep were 

provided 9 hours of time in bed. The sleep lab was equipped with automated blackout shades 
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which were closed when the researcher left the room and all lighting in the room was turned off. 

Participants were also asked to turn off all electronic devices they had with them. Participants 

were connected to the polysomnography with electrodes attached to the face and scalp, along 

with a wireless ambulatory sleep-monitoring device on the forehead which connected behind the 

mastoid bone, for concurrent monitoring. Participants remained under continuous EEG 

monitoring by a researcher that was stationed in the monitoring room next door. To obtain 

corresponding epochs, both sleep monitoring devices, the PSG and wireless device, were 

programmed to store data in 30-s epochs. In addition, clock times were aligned by concurrent 

recording start times, along with synchronizing the time to the same computer clock prior to each 

recording. Agreement between the PSG and wireless device were then evaluated. 

Materials 

Pittsburgh Sleep Quality Index 

The Pittsburgh Sleep Quality Index (PSQI) is a reliable self-report measure used to assess 

sleep quality and patterns in adults. The index consists of 19 items indicative of 7 component 

scores which convey sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep 

disturbances, the use of sleep medications, and daytime dysfunction. Each component is self-

rated by the participant. These components yield a score ranging from 0 to 21, in which a score 

above five distinguishes between those with poor sleep versus those with good sleep (Buysse et 

al., 1989). 

Polysomnography 
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The PSG was conducted using the Alice 5 and G3 Sleepware (Respironics, Murraysville, 

PA) and Grass gold-cup electrode leads (Astro-Med, Inc., West Warwick, RI). Four channels of 

electroencephalography were used to measure brain activity at the central (C3-A2, C4-A1) and 

frontal (F3-A2, F4-A1) lobes; eye movements were monitored with right and left electro-oculo-

grams, and two channels of submental electromyography placed bi-lateral to measure muscle 

tone. In addition, reference electrodes were placed on each earlobe. Prior to recording, a routine 

calibration and impedance check below 5 K Ω were performed to confirm the signal. 

Wireless Sleep Monitoring Device 

The wireless sleep monitoring device used in this study was the Enchanted Wave 

headband (Enchanted Wave, LLC, Miami, FL). The Enchanted Wave EEG device is an 

ambulatory, wireless sleep staging tool that includes a headband containing two dry electrodes 

which record signals from the forehead at the Fp1 region based on the 10-20 system of electrode 

placement. Alongside these sensors are two metallic fabric electrodes by the mastoid bone which 

require skin contact. At the end of each recording, the device’s automated analysis scores these 

signals into sleep and wake stages; to ensure optimal performance of the algorithms analysis, 

consistent signal integrity is to be maintained. Classifications of wake and REM sleep were 

reported according to standard definitions. Time spent in each sleep stage was accounted for, 

along with categorization of light sleep (LS), deep sleep (DS), total sleep time (TST), sleep 

efficiency (SE), spindles, alpha waves, beta waves, theta waves, and delta waves. 

Sleep Staging Algorithm 
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Random Forest (RF) is an ensemble machine learning method (Breiman, 2001). A 

comparison of feature and classifier algorithms for online sleep staging based on a single EEG 

Signal found that the random forest model outperformed the support vector machine ensemble.  

The Random Forest works by modeling decision rules and as such, resembles the AASM 

methodology of sleep staging (Radha et al., 2014). The Random Forest (RF) model learned a set 

of estimators from training data. Each estimator is a decision tree that can make classification 

decisions hierarchically based on selected feature values. Each estimator in a RF model is 

learned from a subset of entire data through random sampling. The inference is determined by 

the average of inference results from all the estimators. The model used the Sci-kit Learn Python 

package (version 0.23.1) to implement the RF method used in this project. Each RF model 

includes 100 estimators. Based on this number, the decision trees are built. Each split decision is 

determined based on a Gini Coefficient with up to 16 selected features (the square root value of 

total features from original data sets).  

The deep neural network approach utilized network architecture inspired by LeNet-5 

(LeCun et al., 2015). The implementation uses Tensorflow Version 1.10.0 and Keras 2.2.4. The 

training process was limited to 100 epochs. Additionally, the batch size was set at 32, and the 

learning rate was 0.005. The implementation uses the Adam algorithm, which is a stochastic 

gradient descent method based on adaptive estimation of first-order and second-order moments 

(Kingma et al., 2014). In both cases of the RF and deep neural network approach, the training set 

was a random sampling from the original data sets, while the remaining dataset was used for 

accuracy testing and validation. 

Results  

8

NeuroSports, Vol. 1, Iss. 1 [2020], Art. 11

https://nsuworks.nova.edu/neurosports/vol1/iss1/11



 

A total of 15 subjects (10 males, 5 females; M=25.2, SD=9.13) were included in the 

present analysis to evaluate the accuracy of the single channel EEG recording in comparison to 

the standard PSG consensus. For further descriptive statistics on sleep of the participants, refer to 

Table 1. Data were excluded based on incomplete PSG or EEG data, due to technical problems 

or technician/subject error. A Random Forest model was implemented for analysis using 100 

estimators. The goal of the present analysis was to classify performance with all outputs from the 

EEG device of sleep architecture. Given the slight variability in PSG models classification of 

sleep architecture, the present study validated the single channel device output against 2 PSG 

software outputs (i.e. Alice 5 and G3) for generalizability. One subgroup (labeled Group A, 

n=10) was classified as those who had undergone the Alice 5 software for the PSG, while the 

other subgroup (labeled Group B, n=5) had undergone the G3 software. Group A included those 

who participated in the napping and overnight studies (Alice 5 software), whereas Group B only 

included overnight participants (G3 software). Both group A and B data sets were time-

synchronized, and data was analyzed using 30-sec epochs where average values were used as 

feature vectors. Each night of complete data was normalized using a min-max scaler. 

Given the large variance among number of measurements for various sleep staging, a 

balanced data set was created for each group through subsampling, to ensure scope in the 

validation process. In the balanced dataset, there are the same number of measurements for each 

sleep staging. On the other hand, full data sets included all data in the group. Analyses for all 

groups were then conducted using five runs of five-fold cross validation with both the balanced 

and full data sets. A summary, reporting accuracy of the Single channel EEG is provided in 

Table 2-3 and Figures 1-2. The average cross validation for Group A’s four class analysis, 

yielded a high average of 0.71 for the balanced test. The balanced data set offered a small range 
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of variability and higher scores. The two-class analysis of sleep versus wakefulness agreement 

with the PSG for Group A resulted in an average accuracy of 0.82. In agreement with the 

findings yielded in Group A, the balanced data set in Group B’s four class analysis, yielded 

robust results with an average of 0.68. In the two-class analysis of sleep versus wakefulness for 

Group B, the accuracy had an average 0.80. A follow up test was conducted using a curated 

dataset that was randomly sampled and manually scored for sleep classification by an expert 

against the algorithms performance. The group was labeled Group C. Following the trend of the 

previous results in group A and B, the balanced datasets in Group C yielded robust results, 

however notably, they were better results with less variation at an average of 0.75. Here, the best 

model performance from the balanced data set was 0.77. At the classification of only two 

classes: wakefulness vs sleep, the accuracy is remarkably increased, yielding results of 0.91.  

For further validation and scope of the analysis, a deep learning convolutional neural 

network (CNN) model was implemented, whereby the full data of the current epoch and the 

calculated features of several previous epochs were used and assembled as a two-dimensional 

vector then used as input. This allows the convolutional layers to create a network that learns 

relevant features and/or local patterns. Unlike random forest, the neural networks consist of the 

data not only over a 30 second window but as well the history, as it can learn without any a priori 

feature selection. Accordingly, Group C could not be manually classified for the CNN model. 

Four convolution layers were used for the network and five runs were conducted across full data 

sets with groups A and B only. At convergence, the average validation accuracy yielded was 

0.74 for Group A and 0.69 for Group B. In reference to the two classes, Group A yielded higher 

accuracy of 0.88, while Group B was 0.86.  

Discussion 
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The performance of sleep staging was evaluated in a single channel EEG recording. Light 

Sleep, Deep Sleep, REM Sleep and Wakefulness were defined using a 30 second epoch compari-

son against the automated PSG sleep staging software (Alice 5 and G3 software). In both PSG 

software programs, the sleep staging output was consistent with our sleep staging algorithm for 

the single channel EEG. Random forest analyses resulted in complete stage agreement of 0.71 in 

group A (Alice 5 software) and 0.68 in group B (G3 software) balanced datasets. Notably, for the 

wake vs. sleep staging, there was strong agreement with the PSG- above 80%. The deep learning 

analyses were consistently higher than the random forest analyses, most likely due to their nature 

of, not only considering the current moment, but also the priori moment in tandem. Accordingly, 

the deep learning model had increased agreement for the complete staging with 0.74 in Group A 

and 0.69 in Group B. Similarly, the two-class staging agreement was higher than the 4-stage 

analysis, at 88% and 86% respectively. Critically, our results are within range of those previ-

ously reported in studies using actigraphy and similar single channel EEG with sleep staging al-

gorithms (Shambroom et al., 2012; Viera & Garrett, 2005; Wang et al., 2015). Accepted ranges 

are reported at 0.63 and above 80% suggests strong agreement (Mikkelsen & De Vos, 2018).  

Of note, we found that there was a discrepancy between the agreement of the two PSG 

software algorithms. Our results were more closely aligned with the Alice5 software relative to 

the G3 software, despite G3 being the more updated software package. Upon review of the data, 

more staging errors were found in G3 than in Alice5, which may relate to the discrepancy. To 

further investigate this possibility, we manually scored a curated data set using human experts, 

labelled Group C, where the agreement evaluation showed superior results compared to the PSG 

automated output. We speculate that the improved results might relate to the fact that manually 

scored sleep staging is less error prone than automated scoring by the PSG, which is especially 
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applied in cases of sleep disturbances or disorders (Aşık et al., 2014). Hence it is recommended, 

that combining automated and manual scoring offers good diagnostic agreement (BaHammam et 

al., 2011). Indeed, the common practice observed in sleep medicine is to have multiple PSG 

technologists verify the results and manually score them for inter-rater reliability. This suggests a 

human’s judgement is still considered the “gold standard”, while the PSG provides an expedited 

assembly of the sleep scoring process.  

Although the results of the present study clearly demonstrate the ability of the machine 

learning algorithm to robustly classify sleep-wake stages, a larger sample size would be benefi-

cial to further define and describe the algorithm. Furthermore, the study aimed to identify a 

broad range of sleep types to account for variation in sleep patterns for a reliable conclusion, 

thus, participants were not screened for sleep disorders. Future research should aim to replicate 

these findings with healthy participants, screened for sleep disorders. In addition, the population 

should extend to older adults to gather a more diverse training set and understand the limitations 

and strengths of the algorithm. This may allow for enhanced performance, given that larger and 

more diverse training sets increase the performance of classifiers (Mikkelsen & De Vos, 2018). 

Likewise, our comparison study was conducted on a single night, and therefore were unable to 

assess test-retest reliability.  Despite these limitations, the findings suggest that the sleep staging 

algorithm is robust in distinguishing sleep stages with a single channel EEG. This holds the 

promise for sleep monitoring to be less obtrusive and more comfortable in data acquisition, with 

the future possibility of implementing less-intrusive and well validated monitoring in clinical and 

research settings. Furthermore, this study lends credibility to the use of a wearable single channel 

EEG device for further use amongst athletes as a valid alternative to PSG. Such validation pro-
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motes the investigation of relationships which are suggested to be of primary relevance in ath-

letes such as sleep and brain injury or recovery, as well as sleep and performance.  In a similar 

vein, the ability to obtain PSG-concordant consecutive nights of data with a single channel EEG 

headband in one's home environment and on the field could open numerous possibilities for re-

search designs that have not previously been possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Conflict of Interest Statement. Dr. Jaime Tartar serves as a scientific advisor for Enchanted Wave, LLC. To date she 

has not received any payment or resources in this role.  

13

Thompson et al.: Validation of a Single Channel EEG for the Athlete

Published by NSUWorks, 2020



 

Tables 

 

Table 1 

Descriptive Statistics for Variables of Interest 

 

 

 

 

 

 

 

 

 

1 The Pittsburgh Sleep Quality Index score (PSQI) and age is reported for all participants. The total number of 
participants (n) and average (M) duration for total sleep time (TST), Non-rapid eye movement sleep (NREM), 
and rapid eye movement sleep (REM) for those in the napping and overnight sleep study are indicated. 

 

 

Table 2 

Complete Sleep Four-Staging 

 

Accuracy 

Algorithm 

Group A 

 

Alice5 

Group B 

 

G3 

Group C 

 

Curated 

Random Forest (bal.) 0.71 0.68 0.75 

Convolutional  

Networks 
0.74 0.69 N/A 

 

2 Cross validation for the four-class analysis using both the balanced (bal.) and unbalanced (unbal.) dataset us-
ing Random Forest (RF). Additionally, the accuracy using the deep learning Convolutional Network (CNN) 
was provided. 

 

 

Variable M SD n 

    

Age 

PSQI 

25.2 9.13 15 

5.73 1.94 15 

  
Overnight 

Sleep 
 

TST 

NREM 

REM 

349 39 8 

275 61 8 

72 58 8 
  Napping  

TST 

NREM 

REM 

63 26 7 

62 26 7 

2 2 7 

14

NeuroSports, Vol. 1, Iss. 1 [2020], Art. 11

https://nsuworks.nova.edu/neurosports/vol1/iss1/11



 

 

Table 3 

Wake versus Sleep 

 
 

 

 

 

3 Cross validation for the two-class analysis using the balanced dataset for Random Forest (RF). Additionally, 
accuracy using the deep learning Convolutional Network (CNN) was provided. 

 

 

Accuracy 

Algorithm 

Group A 

 

Alice5 

Group B 

 

G3 

Group C 

 

Curated 

Random Forest 0.82 0.80 0.91 

Convolutional Net-

works 
0.88 0.86 N/A 
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Figures 

Figure 1. 

 

 

 

 

Figure 2. 
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