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Reaction-diffusion-advection equations provide precise interpretations for many important phenomena in complex interactions
between natural and artificial systems.,is paper studies second-order semi-discretizations for the numerical solution of reaction-
diffusion-advection equations modeling quenching types of singularities occurring in numerous applications. Our investigations
particularly focus at cases where nonuniform spatial grids are utilized. Detailed derivations and analysis are accomplished. Easy-
to-use and highly effective second-order schemes are acquired. Computational experiments are presented to illustrate our results
as well as to demonstrate the viability and capability of the new methods for solving singular quenching problems on arbitrary
grid platforms.

1. Introduction

Nonlinear reaction-diffusion-advection equations have been
playing an important role in interactions between natural
and artificial systems. ,e partial differential equations
provide precisely mathematical interpretations for numer-
ous natural phenomena, such as diffusion of heat and en-
ergy, burning or quenching of fuels, energy concentrations,
and transformations in different environments. Nonlinear
partial differential equations also deliver popular compu-
tational tools to cell biology and cancer treatment plans
[1–4].

Consider an m-dimensional heat engine, m≥ 1. Let u be
the temperature distribution inside of its combustion
chamber and u0 be the initial temperature distribution due
to the sparks. Assume that combustion occurs at the unit
temperature. Further, let 0< σ ≤ 1, t> 0, be the reciprocal
chamber size index. ,e use of variable σ reflects the change
of chamber size, which is typical when different chemical

fuels are selected. ,en, an idealized combustion model can
be comprised as a nonlinear reaction-diffusion-advection
initial-boundary value problem:

ut � σ2∇(a∇u) + f(u)X(u), x ∈ D, t> 0, (1)

u(x, t) � 0, x ∈ zD, t> 0, (2)

u(x, �0) � u0(x), x ∈ D∪ zD, (3)

where D ⊂ Rm, zD is its boundary, ∇ is the m-dimensional
gradient vector, the coefficient a � a(x) ∈ C1(D) is positive,
0≤ u0≪ 1, and X(u) is the stochastic indicator for u< 1
[5, 6].

,e nonlinear source function f(u)> 0 is strictly in-
creasing with respect to 0≤ u< 1 and

f(0)> 0,

lim
u⟶1−

f(u) �∞.
(4)
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A typical example of such reaction term is

f(u) �
1

(1 − u)
κ , for 0≤ u< 1, (5)

where κ> 0 is the internal combustion index utilized
[3, 5–7].

,e solution u of (1)–(4) is said to quench if there exists a
finite Tσ such that

sup
0<x<1

ut(x, t)⟶∞, as t⟶ T
−
σ . (6)

Such a value Tσ is called the quenching time which is a
possible combustion-reaction time [7, 8]. It has been shown
that a necessary condition for quenching to occur is

max
0≤x≤1

u(x, t)⟶ 1−
, as t⟶ T

−
σ . (7)

,e study of singular reaction-diffusion-advection
equations of the form (1) and (5) can be traced back to Hale
and Kawarada’s pioneering work [9, 10]. It was observed that
when m � κ � 1 and a ≡ 1, there exists a critical value
σ∗ ≈ 0.65340 such that the solution of (1)–(3) and (5)
quenches if σ < σ∗. Verifications of the existence and
uniqueness to more general quenching models can be found
in numerous recent publications including [1, 5, 9, 11].

To solve the nonlinear differential equation problem
(1)–(3) numerically is an interesting, yet challenging,
multitask since we often do not know if the solution of
(1)–(3) will quench or not until a proper solution pro-
cedure is taking place. In other words, in addition to
approximating the solution u, a numerical method must
be capable of evaluating simultaneously correct critical
value σ∗, quenching time T∗σ , quenching location x∗, and
extremely sensitive and possibly unbounded derivative
function ut [5, 6, 11]. ,is can be difficult since values of
max

x∈Dut remain bounded and well-behaved until time t

reaches a certain neighborhood of T∗, if it exists. Fur-
thermore, we may also observe from properties (6) and (7)
that, while max

x∈Dut grows exponentially, or faster than
exponentially, in the aforementioned neighborhoods, the
solution u itself continuously grows but stays bounded
throughout the computation until a quenching suddenly
erupts [7, 9, 10]. ,ese coexisted and very distinct
characters make it extremely hard to design an effective
scheme.

Due to their extremely important applications in nature
and societies, numerous investigations, in both theory and
computations, have been carried out for nonlinear
quenching problems including (1)–(3) in recent years. Most
of the existing algorithms are constructed either based on the
reduced problems, that is, the stationary problems by re-
moving the variable t, or by using fixed mesh steps (cf.
[4, 7, 8, 12–14] and references therein). In these procedures,
critical values, quenching times, solution u, and the rate-of-
change function ut are often approximated incorrectly.
Computational procedures are less efficient and less reliable,
in particular when multidimensional modeling equations
are considered. Although adaptive strategies have been
particularly in favor due to their great flexibility and

geometric accuracy in capturing quenching singularities
involved, orders of accuracies of the spatial discretization of
existing adaptive methods have been limited to one due to
the unpredictability of the nonuniform grids generated by
adaptations [6, 8, 12].

On the other hand, effective new approaches in high-
order approximations via finite difference, spectral, or finite
element methods, have been introduced for solving other
nonlinear partial differential equations [2, 15, 16]. Investi-
gations have also been extended to fractional order partial
differential equation problems [16, 17]. Since it is the high
dimension that causes a tremendous increase in the com-
putational cost, modern splitting techniques capable of
converting higher dimensional problems into sets of single
dimensional subproblems have reached a new height
[13, 18]. Rigorous numerical analysis has also been given on
split adaptations [18]. ,ese have motivated our study of
highly applicable and effective higher-order finite difference
methods.

Note that problems (1)–(3) can be numerically treated
through proper second-order stable dimensional splitting
[18, 19]. ,e decomposition may effectively reduce the total
number of operations from O(n3m) to O(n3), where m is the
number of dimensions and n is the number of internal mesh
points used [7, 18, 20]. ,us, in this paper, we shall focus on
second-order semi-discretization for a one-dimensional
modeling equation with m � 1 and a ≡ 1. In the circum-
stance, problems (1)–(3) can be simplified to

ut � σ2uxx + f(u)X(u), 0<x< 1, t> 0, (8)

u(0, t) � u(1, t) � 0, t> 0, (9)

u(x, 0) � u0(x), 0≤ x≤ 1. (10)

We consider an arbitrary partition of the spatial domain
[0, 1], that is, grids

Ωn � 0 � x0, x1, x2, . . . , xk−1, xk, xk+1, . . . , xn, xn+1 � 1 ,

(11)

for which 0< hk � xk+1 − xk≪ 1, k � 0, 1, . . . , n. Denote
Hn � h1, h2, . . . , hn+1 . Apparently, such sets Ωn, Hn are
t-dependent when they are used for solving (8)–(10).
However, due to the feature of semi-discretization, we prefer
dropping time location indicators for the simplicity of
notations. We further assume that in general
hk+1 ≠ hk, k � 0, 1, . . . , n. At any spatial location xk, we adopt
usual notations ϕ(xk, t) � ϕk(t) or ϕ(xk, t) � ϕk without
confusion.

2. Semi-Discretization Approximations

At the time level t> 0, we set

h
(k)

� max hk−3, hk−2, hk−1, hk, hk+1, hk+2 , (12)

for any available index k. Without loss of generality, we drop
the superindex for simplicity. We have expansions of the
spatial derivatives
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uk
″ � bk,−1uk−1 + bk,0uk + bk,1uk+1 + bk,2uk+2 + bk,3uk+3 + O h

2
 , (13)

uk
″ � ak,−2uk−2 + ak,−1uk−1 + ak,0uk + ak,1uk+1 + ak,2uk+2 + O h

2
 , (14)

uk
″ � ck,−3uk−3 + ck,−2uk−2 + ck,−1uk−1 + ck,0uk + ck,1uk+1 + O h

2
 . (15)

Strategy 1. From the above, we must have

u1″ � b1,−1u0 + b1,0u1 + b1,1u2 + b1,2u3 + b1,3u4 + O h
2

 ,

uk
″ � ak,−2uk−2 + ak,−1uk−1 + ak,0uk + ak,1uk+1 + ak,2uk+2 + O h

2
 , k � 2, . . . , n − 1,

un
″ � cn,−3un−3 + cn,−2un−2 + cn,−1un−1 + cn,0un + cn,1un+1 + O h

2
 .

(16)

Note that u0 � un+1 � 0 due to the homogeneous con-
dition (9). Substituting the above into (8)–(10), we acquire
that

ut � σ2Au + b + O h
2

 ,

u(0) � u0,
(17)

where

A �

b1,0 b1,1 b1,2 b1,3

a2,−1 a2,0 a2,1 a2,2

a3,−2 a3,−1 a3,0 a3,1 a3,2

a4,−2 a4,−1 a4,0 a4,1 a4,2

⋱ ⋱ ⋱ ⋱ ⋱

an−2,−2 an−2,−1 an−2,0 an−2,1 an−2,2

an−1,−2 an−1,−1 an−1,0 an−1,1

cn,−3 cn,−2 cn,−1 cn,0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n
,

u �

u1

u2

u3

⋮

⋮

un

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn
,

b �

f u1( X u1( 

f u2( X u2( 

f u3( X u3( 

⋮

⋮

f un( X un( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn
.

(18)

,e band matrix A is large in size since n is usually large.
But it is relatively sparse and can be handled conveniently by
many existing software packages such as “sparse”

subroutines in MATLAB. Dropping the truncation error
term in (19), we obtain a second-order semi-discretization
scheme for solving (8)–(10):

Discrete Dynamics in Nature and Society 3



ut � σ2Au + b, (19)

u(0) � u0. (20)

,erefore, the solution of (8)–(10) can be readily ap-
proximated numerically through the solution of the non-
linear system of ordinary differential equations (19) and (20).

Strategy 2. ,e coefficient matrix A in (19) can be extremely
stiff particularly due to the use of one-sided finite difference
formulas (13) and (15). To avoid using the formulas, we may
assume first that, in addition to the boundary values

u0 � un+1 � 0, we also have values u−1, un+2 calculated via
some other methods that are at least of second order in
accuracy. In this way, we may only use (14) for our second
derivative approximations. ,e fully centralized formulas
may hopefully ease the stiffness [19]. ,is yields our semi-
discretized new approximation

ut � σ2Bu + c + O h
2

 ,

u(0) � u0,
(21)

where

B �

a1,0 a1,1 a1,2

a2,−1 a2,0 a2,1 a2,2

a3,−2 a3,−1 a3,0 a3,1 a3,2

a4,−2 a4,−1 a4,0 a4,1 a4,2

⋱ ⋱ ⋱ ⋱ ⋱

an−2,−2 an−2,−1 an−2,0 an−2,1 an−2,2

an−1,−2 an−1,−1 an−1,0 an−1,1

an,−2 an,−1 an,0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n
,

u �

u1

u2

u3

⋮

⋮

un

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn
,

c �

f u1( X u1(  − a1,−2u−1

f u2( X u2( 

f u3( X u3( 

⋮

⋮

f un( X un(  − an,2un+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn
.

(22)

Dropping the truncation error term from the differential
system, we obtain another second-order semi-discretization
scheme for solving (8)–(10):

ut � σ2Bu + c, (23)

u(0) � u0. (24)

,erefore, the solution of (8)–(10) can be approxi-
mated numerically through solving the nonlinear system

of ordinary differential equations (23) and (24), given
that values of u−1, un+2 can indeed be calculated
successfully.

3. Parameter Determinations

Now, let us investigate the issue and see if values u−1, un+2
can be computed through some direct expansions. To this
end, we have

4 Discrete Dynamics in Nature and Society



uk+1 � uk + hkuk
′ +

h
2
k

2!
uk
″ +

h
3
k

3!
u‴k +

h
4
k

4!
u

(4)
k +

h
5
k

5!
u

(5)
k +

h
6
k

6!
u

(6)
k + O h

7
k . (25)

We observe readily that

u−1 � u0 − h−1u0′ +
h
2
−1
2!

u0″ −
h
3
−1
3!

u‴0 +
h
4
−1
4!

u
(4)
0 −

h
5
−1
5!

u
(5)
0 +

h
6
−1
6!

u
(6)
0 + O h

7
−1 ,

un+2 � un+1 + hn+1un+1′ +
h
2
n+1
2!

un+1″ +
h
3
n+1
3!

u‴n+1 +
h
4
n+1
4!

u
(4)
n+1 +

h
5
n+1
5!

u
(5)
n+1 +

h
6
n+1
6!

u
(6)
n+1 + O h

7
n+1 .

(26)

For the simplicity in calculations, we may set
h−1 � h0, hn+1 � hn. ,us,

u−1 � u0 − h0u0′ +
h
2
0
2!

u0″ −
h
3
0
3!

u‴0 +
h
4
0
4!

u
(4)
0 −

h
5
0
5!

u
(5)
0 +

h
6
0
6!

u
(6)
0 + O h

7
0 ,

un+2 � un + hnun
′ +

h
2
n

2!
un
″ +

h
3
n

3!
u‴n +

h
4
n

4!
u

(4)
n +

h
5
n

5!
u

(5)
n +

h
6
n

6!
u

(6)
n + O h

7
n .

(27)

To use the above two formulations for a quadratic order
approximation, we need to balance coefficients related to

u0′, u0″ and un
′, un
″ at internal spatial mesh points. Recall (13)

and (15) and set

u0′ � β1,0u0 + β1,1u1 + β1,2u2 + O h
2

 , (28)

u0″ � β2,0u0 + β2,1u1 + β2,2u2 + β2,3u3 + β2,4u4 + O h
2

 , (29)

un
′ � c1,n−2un−2 + c1,n−1un−1 + c1,nun + O h

2
 , (30)

un
″ � c2,n−4un−4 + c2,n−3un−3 + c2,n−2un−2 + c2,n−1un−1 + c2,nun + O h

2
 . (31)

Recall (25). To find the coefficients β1,0, β1,1, β1,2, we let

u0′ � β1,0u0 + β1,1 u0 + h0u0′ +
h
2
0
2!

u0″ +
h
3
0
3!

u
′′′
0 +

h
4
0
4!

u
(4)
0 +

h
5
0
5!

u
(5)
0 +

h
6
0
6!

u
(6)
0 + · · · 

+ β1,2 u0 + h0 + h1( u0′ +
h0 + h1( 

2

2!
u0″ +

h0 + h1( 
3

3!
u0′ +

h0 + h1( 
4

4!
u

(4)
0 +

h0 + h1( 
5

5!
u

(5)
0 +

h0 + h1( 
6

6!
u

(6)
0 + · · · 

+ O h
2

 .

(32)
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It follows therefore

β1,0 + β1,1 + β1,2 � 0,

β1,1h0 + β1,2 h0 + h1(  � 1,

β1,1h
2
0 + β1,2 h0 + h1( 

2
� 0.

(33)

It turns out that

β1,0 � −β1,1 − β1,2,

1 � β1,1h0 + β1,2 h0 + h1( ,

β1,1 � −
h0 + h1( 

2

h
2
0

β1,2.

(34)

From the last two equations,

−
h0 + h1( 

2

h
2
0

β1,2h0 + β1,2 h0 + h1( 

� h0 + h1 −
h0 + h1( 

2

h0
 β1,2 � 1.

(35)

Hence,

β1,1 �
h0 + h1

h0h1
,

β1,2 � −
h0

h0 + h1( h1
.

(36)

Consequently,

β1,0 � −
h0 + h1

h0h1
+

h0

h0 + h1( h1
�

1
h1

h
2
0 − h0 + h1( 

2

h0 h0 + h1( 
 

� −
2h0 + h1

h0 h0 + h1( 
.

(37)

Similarly, to find coefficients c1,n−2, c1,n−1, c1,n, we
consider

un
′ � c1,n−2 un − hn−2 + hn−1( un

′ +
hn− 2 + hn− 1( 

2

2!
un
″ −

hn− 2 + hn− 1( 
3

3!
u
″′
n +

hn− 2 + hn− 1( 
4

4!
u

(4)
n

−
hn− 2 + hn− 1( 

5

5!
u

(5)
n +

hn− 2 + hn− 1( 
6

6!
u

(6)
n + · · ·

+ c1,n−1 un − hn−1u0′ +
h
2
n−1
2!

un
″ −

h
3
n−1
3!

u
″′
n +

h
4
n−1
4!

u
(4)
n −

h
5
n−1
5!

u
(5)
n +

h
6
n−1
6!

u
(6)
n + · · ·  + c1,nun + O h

2
 .

(38)

Balancing the coefficients, we have

c1,n−2 + c1,n−1 + c1,n � 0,

−c1,n−2 hn−2 + hn−1(  − c1,n−1hn−1 � 1,

c1,n−2 hn− 2 + hn− 1( 
2

+ c1,n−1h
2
n−1 � 0.

(39)

It follows subsequently that

c1,n � −c1,n−2 − c1,n−1,

−1 � c1,n−2 hn−2 + hn−1(  + c1,n−1hn−1,

c1,n−1 � −
hn− 2 + hn− 1( 

2

h
2
n−1

c1,n−2.

(40)

From the last two equations,

c1,n−2 hn−2 + hn−1(  −
hn− 2 + hn− 1( 

2

h
2
n−1

c1,n−2hn−1 � −
hn−2 + hn−1( hn−2

hn−1
c1,n−2 � −1. (41)

Hence,

c1,n−2 �
hn−1

hn−2 + hn−1( hn−2
,

c1,n−1 � −
hn−2 + hn−1

hn−2hn−1
,

(42)

and furthermore,

c1,n � −
hn−1

hn−2 + hn−1( hn−2
+

hn−2 + hn−1

hn−2hn−1

�
hn−2 + 2hn−1

hn−2 + hn−1( hn−1
.

(43)
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Now, recall the expansion (25). To determine coefficients
β2,0, β2,1, β2,2, β2,3, β2,4 in (29), we have

u0″ � β2,0u0 + β2,1 u0 + h0u0′ +
h
2
0
2!

u0″ +
h
3
0
3!

u
″′
0 +

h
4
0
4!

u
(4)
0 +

h
5
0
5!

u
(5)
0 +

h
6
0
6!

u
(6)
0 + · · · 

+ β2,2 u0 + h0 + h1( u0′ +
h0 + h1( 

2

2!
u0″ +

h0 + h1( 
3

3!
u
″′
0 +

h0 + h1( 
4

4!
u

(4)
0

+
h0 + h1( 

5

5!
u

(5)
0 +

h0 + h1( 
6

6!
u

(6)
0 + · · ·

+ β2,3 u0 + h0 + h1 + h2( u0′ +
h0 + h1 + h2( 

2

2!
u0″ +

h0 + h1 + h2( 
3

3!
u
″′
0

+
h0 + h1 + h2( 

4

4!
u

(4)
0 +

h0 + h1 + h2( 
5

5!
u

(5)
0 +

h0 + h1 + h2( 
6

6!
u

(6)
0 + · · ·

+ β2,4 u0 + h0 + h1 + h2 + h3( u0′ +
h0 + h1 + h2 + h3( 

2

2!
u0″ +

h0 + h1 + h2 + h3( 
3

3!
u
″′
0

+
h0 + h1 + h2 + h3( 

4

4!
u

(4)
0 +

h0 + h1 + h2 + h3( 
5

5!
u

(5)
0 +

h0 + h1 + h2 + h3( 
6

6!
u

(6)
0 + · · · + O h

2
 .

(44)

From the above, we obtain the following linear system:

β2,0 + β2,1 + β2,2 + β2,3 + β2,4 � 0,

β2,1h0 + β2,2 h0 + h1(  + β2,3 h0 + h1 + h2(  + β2,4 h0 + h1 + h2 + h3(  � 0,

β2,1h
2
0 + β2,2 h0 + h1( 

2
+ β2,3 h0 + h1 + h2( 

2
+ β2,4 h0 + h1 + h2 + h3( 

2
� 2,

β2,1h
3
0 + β2,2 h0 + h1( 

3
+ β2,3 h0 + h1 + h2( 

3
+ β2,4 h0 + h1 + h2 + h3( 

3
� 0,

β2,1h
4
0 + β2,2 h0 + h1( 

4
+ β2,3 h0 + h1 + h2( 

4
+ β2,4 h0 + h1 + h2 + h3( 

4
� 0.

(45)

,e system can be conveniently solved digitally via any
existing solution package. By the same token, for evaluating
coefficients c2,n−4, c2,n−3, c2,n−2, c2,n−1, c2,n, in (31), we find
that
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un
″ � +c2,n−4 un − hn−4 + hn−3 + hn−2 + hn−1( un

′ +
hn− 4 + hn− 3 + hn− 2 + hn− 1( 

2

2!
un
″

−
hn− 4 + hn− 3 + hn− 2 + hn− 1( 

3

3!
u
′′′

n +
hn− 4 + hn− 3 + hn− 2 + hn− 1( 

4

4!
u

(4)
n

−
hn− 4 + hn− 3 + hn− 2 + hn− 1( 

5

5!
u

(5)
n +

hn− 4 + hn− 3 + hn− 2 + hn− 1( 
6

6!
u

(6)
n + · · ·

+ c2,n−3 un − hn−3 + hn−2 + hn−1( un
′ +

hn− 3 + hn− 2 + hn− 1( 
2

2!
un
″ −

hn− 3 + hn− 2 + hn− 1( 
3

3!
u
″′
n

+
hn− 3 + hn− 2 + hn− 1( 

4

4!
u

(4)
n −

hn− 3 + hn− 2 + hn− 1( 
5

5!
u

(5)
n +

hn− 3 + hn− 2 + hn− 1( 
6

6!
u

(6)
n + · · ·

+ c2,n−2 un − hn−2 + hn−1( un
′ +

hn− 2 + hn− 1( 
2

2!
un
″ −

hn− 2 + hn− 1( 
3

3!
u
′′′

n

+
hn− 2 + hn− 1( 

4

4!
u

(4)
n −

hn− 2 + hn− 1( 
5

5!
u

(5)
n +

hn− 2 + hn− 1( 
6

6!
u

(6)
n + · · ·

+ c2,n−1 un − hn−1u0′ +
h
2
n−1
2!

un
″ −

h
3
n−1
3!

u
″′
n +

h
4
n−1
4!

u
(4)
n −

h
5
n−1
5!

u
(5)
n +

h
6
n−1
6!

u
(6)
n + · · ·  + c2,nun + O h

2
 .

(46)

,e above expansion leads to the following non-ho-
mogeneous linear system:

c2,n−4 + c2,n−3 + c2,n−2 + c2,n−1 + c2,n � 0,

c2,n−4 hn−4 + hn−3 + hn−2 + hn−1(  + c2,n−3 hn−3 + hn−2 + hn−1(  + c2,n−2 hn−2 + hn−1(  + c2,n−1hn−1 � 0,

c2,n−4 hn− 4 + hn− 3 + hn− 2 + hn− 1( 
2

+ c2,n−3 hn− 3 + hn− 2 + hn− 1( 
2

+ c2,n−2 hn− 2 + hn− 1( 
2

+ c2,n−1h
2
n−1 � 2,

c2,n−4 hn− 4 + hn− 3 + hn− 2 + hn− 1( 
3

+ c2,n−3 hn− 3 + hn− 2 + hn− 1( 
3

+ c2,n−2 hn− 2 + hn− 1( 
3

+ c2,n−1h
3
n−1 � 0,

c2,n−4 hn− 4 + hn− 3 + hn− 2 + hn− 1( 
4

+ c2,n−3 hn− 3 + hn− 2 + hn− 1( 
4

+ c2,n−2 hn− 2 + hn− 1( 
4

+ c2,n−1h
4
n−1 � 0.

(47)

Now, recall (14). To determine coefficients
ak−2, ak−1, ak, ak+1, ak+2, we have
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uk
″ � ak−2 + ak−1 + ak + ak+1 + ak+2 uk

+ − hk−2 + hk−1( ak−2 − hk−1ak−1 + hkak+1 + hk + hk+1( ak+2 uk
′

+
hk− 2 + hk− 1( 

2

2!
ak−2 +

h
2
k−1
2!

ak−1 +
h
2
k

2!
ak+1 +

hk + hk+1( 
2

2!
ak+2 uk
″

+ −
hk− 2 + hk− 1( 

3

3!
ak−2 −

h
3
k−1
3!

ak−1 +
h
3
k

3!
ak+1 +

hk + hk+1( 
3

3!
ak+2 u

″′
k

+
hk− 2 + hk− 1( 

4

4!
ak−2 +

h
4
k−1
4!

ak−1 +
h
4
k

4!
ak+1 +

hk + hk+1( 
4

4!
ak+2 u

(4)
k

+ −
hk− 2 + hk− 1( 

5

5!
ak−2 −

h
5
k−1
5!

ak−1 +
h
5
k

5!
ak+1 +

hk + hk+1( 
5

5!
ak+2 u

(5)
k

+
hk− 2 + hk− 1( 

6

6!
ak−2 +

h
6
k−1
6!

ak−1 +
h
6
k

6!
ak+1 +

hk + hk+1( 
6

6!
ak+2 u

(6)
k + O h

7
 .

(48)

,erefore, to guarantee overall second-order approxi-
mations of the required function values for k � 1, 2, . . . , n,
we must ask that

ak−2 + ak−1 + ak + ak+1 + ak+2 � 0,

− hk−2 + hk−1( ak−2 − hk−1ak−1 + hkak+1 + hk + hk+1( ak+2 � 0,

hk− 2 + hk− 1( 
2

2!
ak−2 +

h
2
k−1
2!

ak−1 +
h
2
k

2!
ak+1 +

hk + hk+1( 
2

2!
ak+2 � 1,

−
hk− 2 + hk− 1( 

3

3!
ak−2 −

h
3
k−1
3!

ak−1 +
h
3
k

3!
ak+1 +

hk + hk+1( 
3

3!
ak+2 � 0,

hk− 2 + hk− 1( 
4

4!
ak−2 +

h
4
k−1
4!

ak−1 +
h
4
k

4!
ak+1 +

hk + hk+1( 
4

4!
ak+2 � 0,

(49)

which can be compressed into a matrix form

Mka � f, (50)
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where

Mk �

1 1 1 1 1

−hk−2 − hk−1 −hk−1 0 hk hk + hk+1

hk− 2 + hk− 1( 
2

h
2
k−1 0 h

2
k hk + hk+1( 

2

− hk− 2 + hk− 1( 
3

−h
3
k−1 0 h

3
k hk + hk+1( 

3

hk− 2 + hk− 1( 
4

h
4
k−1 0 h

4
k hk + hk+1( 

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

a �

ak−2

ak−1

ak

ak+1

ak+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f �

0

0

2

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k � 1, 2, . . . , n.

(51)

Furthermore, for (13), we observe that

uk
″ � bk−1 uk − hk−1uk

′ +
h
2
k−1
2!

uk
″ −

h
3
k−1
3!

u
′′′

k +
h
4
k−1
4!

u
(4)
k −

h
5
k−1
5!

u
(5)
k +

h
6
k−1
6!

u
(6)
k  + bkuk

+ bk+1 uk + hkuk
′ +

h
2
k

2!
uk
″ +

h
3
k

3!
u
′′′

k +
h
4
k

4!
u

(4)
k +

h
5
k

5!
u

(5)
k +

h
6
k

6!
u

(6)
k 

+ bk+2

uk + hk + hk+1( uk
′ +

hk + hk+1( 
2

2!
uk
″ +

hk + hk+1( 
3

3!
u
′′′

k

+
hk + hk+1( 

4

4!
u

(4)
k +

hk + hk+1( 
5

5!
u

(5)
k +

hk + hk+1( 
6

6!
u

(6)
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ bk+3

uk + hk + hk+1 + hk+2( uk
′ +

hk + hk+1 + hk+2( 
2

2!
uk
″ +

hk + hk+1 + hk+2( 
3

3!
u
′′′

k

+
hk + hk+1 + hk+2( 

4

4!
u

(4)
k +

hk + hk+1 + hk+2( 
5

5!
u

(5)
k +

hk + hk+1 + hk+2( 
6

6!
u

(6)
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ O h
7

 

� bk−1 + bk + bk+1 + bk+2 + bk+3 uk

+ −hk−1bk−1 + hkbk+1 + hk + hk+1( bk+2 + hk + hk+1 + hk+2( bk+3 uk
′

+
h
2
k−1
2!

bk−1 +
h
2
k

2!
bk+1 +

hk + hk+1( 
2

2!
bk+2 +

hk + hk+1 + hk+2( 
2

2!
bk+3 uk
″

+ −
h
3
k−1
3!

bk−1 +
h
3
k

3!
bk+1 +

hk + hk+1( 
3

3!
bk+2 +

hk + hk+1 + hk+2( 
3

3!
bk+3 u

″′
k

+
h
4
k−1
4!

bk−1 +
h
4
k

4!
bk+1 +

hk + hk+1( 
4

4!
bk+2 +

hk + hk+1 + hk+2( 
4

4!
bk+3 u

(4)
k

+ −
h
5
k−1
5!

bk−1 +
h
5
k

5!
bk+1 +

hk + hk+1( 
5

5!
bk+2 +

hk + hk+1 + hk+2( 
5

5!
bk+3 u

(5)
k

+
h
6
k−1
6!

bk−1 +
h
6
k

6!
bk+1 +

hk + hk+1( 
6

6!
bk+2 +

hk + hk+1 + hk+2( 
6

6!
bk+3 u

(6)
k + O h

7
 .

(52)
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,erefore, the result is as follows:

bk−1 + bk + bk+1 + bk+2 + bk+3 � 0,

−hk−1bk−1 + hkbk+1 + hk + hk+1( bk+2 + hk + hk+1 + hk+2( bk+3 � 0,

h
2
k−1bk−1 + h

2
kbk+1 + hk + hk+1( 

2
bk+2 + hk + hk+1 + hk+2( 

2
bk+3 � 2,

−h
3
k−1bk−1 + h

3
kbk+1 + hk + hk+1( 

3
bk+2 + hk + hk+1 + hk+2( 

3
bk+3 � 0,

h
4
k−1bk−1 + h

4
kbk+1 + hk + hk+1( 

4
bk+2 + hk + hk+1 + hk+2( 

4
bk+3 � 0.

(53)

It can be rewritten as

Mlb � g, (54)

where

Ml �

1 1 1 1 1

−hk−1 0 hk hk + hk+1 hk + hk+1 + hk+2

h
2
k−1 0 h

2
k hk + hk+1( 

2
hk + hk+1 + hk+2( 

2

−h
3
k−1 0 h

3
k hk + hk+1( 

3
hk + hk+1 + hk+2( 

3

h
4
k−1 0 h

4
k hk + hk+1( 

4
hk + hk+1 + hk+2( 

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b �

bk−1

bk

bk+1

bk+2

bk+3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g �

0

0

2

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(55)
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Now, for (15), we have

uk
′ � ck−3 + ck−2 + ck−1 + ck + ck+1 uk +

− hk−3 + hk−2 + hk−1( ck−3

− hk−2 + hk−1( ck−2 − hk−1ck−1 + hkck+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦uk
′

+
hk− 3 + hk− 2 + hk− 1( 

2

2!
ck−3 +

hk− 2 + hk− 1( 
2

2!
ck−2 +

h
2
k−1
2!

ck−1 +
h
2
k

2!
ck+1 uk
″

+ −
hk− 3 + hk− 2 + hk− 1( 

3

3!
ck−3 −

hk− 2 + hk− 1( 
3

3!
ck−2 −

h
3
k−1
3!

ck−1 +
h
3
k

3!
ck+1 u

‴
k

+
hk− 3 + hk− 2 + hk− 1( 

4

4!
ck−3 +

hk− 2 + hk− 1( 
4

4!
ck−2 +

h
4
k−1
4!

ck−1 +
h
4
k

4!
ck+1 u

(4)
k

+
hk− 3 + hk− 2 + hk− 1( 

5

5!
ck−3 −

hk− 2 + hk− 1( 
5

5!
ck−2 −

h
5
k−1
5!

ck−1 +
h
5
k

5!
ck+1 u

(5)
k

+
hk− 3 + hk− 2 + hk− 1( 

6

6!
ck−3 +

hk− 2 + hk− 1( 
6

6!
ck−2 +

h
6
k−1
6!

ck−1 +
h
6
k

6!
ck+1 u

(6)
k + O h

7
 .

(56)

,is gives us the linear system

Mrc � r, (57)

where

Mr �

1 1 1 1 1

−hk−3 − hk−2 − hk−1 −hk−2 − hk−1 −hk−1 0 hk

hk− 3 + hk− 2 + hk− 1( 
2

hk− 2 + hk− 1( 
2

h
2
k−1 0 h

2
k

− hk− 3 + hk− 2 + hk− 1( 
3

− hk− 2 + hk− 1( 
3

−h
3
k−1 0 h

3
k

hk− 3 + hk− 2 + hk− 1( 
4

hk− 2 + hk− 1( 
4

h
4
k−1 0 h

4
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c �

ck−3

ck−2

ck−1

ck

ck+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

r �

0

0

2

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(58)

Based on the above investigations, we acquire the fol-
lowing result.
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Theorem 1. If matrices Mk, Ml, and Mr are nonsingular
based on the selection of Hn, then the coefficient B in (23) is
uniquely determined.

We note that properties, such as the spectrums, of
matrices Mk, Ml, Mr and A, B still remain to be studied
based on arbitrary sets of Hn at each temporal level of t. Bear
in mind that nonuniform mesh steps in Hn are determined
through particular adaptive procedure employed, such as
the arc-length monitoring functions investigated in
[7, 13, 17, 19].

4. Simulation Experiments

Let m � 2 and κ � 1. We consider two typical two-dimen-
sional reaction-diffusion-advection modeling problems of
(1)–(3) associated with (5).

Example 1. We are interested in natural quenching situa-
tions [21] with σ �

�
5

√
and

a(x, y) � exp −10 x −
1
2

 
2

+ y −
1
2

 
2

  , 0≤x, y≤ 1,

u0(x, y) �
1
40

[(1 − cos(2πx))(1 − cos(4πy))], 0≤x, y≤ 1.

(59)

We further set X(u) ≡ 1 for the simplicity in illustra-
tions. ,is problem can be viewed as a simplification of the
internal combustion when dual ignition sparks are utilized
[2, 3]. ,e partial differential equation problem is first split
to one-dimensional subproblems via exponential splitting
and then Strategies 1 and 2 are applied, respectively
[8, 14, 18].

,e semi-discretization mesh density controller is
chosen to be n � 200, while the temporal discretization
parameter τ � λh is fixed, where λ � (1/10)> 0 is the
Courant-Friedrichs-Lewy constant, and h � maxkhk is taken
in an appropriate temporal level, since temporal adaptations
are not a goal of the current study. Standard exponentially
evolving grid adaption is adopted [6, 12]. Cubic splines are
used for passing data on each temporal level since spatial
grids are moved. To see more clearly solution profiles,
surface plots are only shown on internal mesh points
without the fixed homogeneous boundary data (2).

It is observed that, due to the strong smoothness effect of
the diffusion operator, the initial temperature distribution u0
due to the dual ignition quickly converges to a smooth
surface as time increases. ,e surface further forms a
symmetric distribution with respect to the center of the
spatial domain. Effects of the two sparks become hardly
noticeable. ,e phenomenon is demonstrated in Figure 1 at
the second, 10,000th, 20,000th, and 30,000th temporal levels,
respectively. It has also been found that the numerical so-
lution is monotonically increasing pointwise as t increases.

Another extremely interesting physical function to
monitor in quenching-combustion situations is the temporal
derivative, or rate of change function, ut [7, 21]. ,e evo-
lution of ut accelerates rapidly as time t is approaching the

quenching time T∗, which is approximately
69727τ ≈ 0.47624479. To see more details, we show the rate
of change function ut in four temporal levels:
T � 69600τ, 69700τ, 69720τ, and 69726τ under the same
scale in Figure 2. A rapid increase of the peak values can be
observed. ,ese consistently match the latest observations
reported in [7, 21].

To see more precisely profiles of u and ut, we plot
evolutional trajectories of the maximal values and mean
values of them for T ∈ (0, T∗) in Figure 3. It can be seen that
themaximum of the temperature field derivative ut increases
exponentially as t⟶ T∗, while the solution quenches
peacefully. ,e rapid increase of averaging temperature in
the combustion chamber is particularly important to en-
gineering applications, since it indicates the success of the
quick release of the chemical energy from fuel [3]. A y-semi-
logarithmic scale is used to show greater details of the
phenomenon, especially for the derivative function
max0≤x,y≤1 ut(x, y, T).

In Figure 4, three-dimensional surfaces of u and ut,
together with their x-(u/ut) plane projections, immediately
before the quench are given. It can be seen that while the
peak temperature, which is at the center of the combustion
chamber, gradually approaches the fuel ignition, distribution
of u tends to occupy the entire space of the chamber.
Original influence of the dual sparks disappears. On the
other hand, however, rates of the temperature change, ut,
increase exponentially to the infinity at the center. ,e semi-
discretized scheme is highly stable and captures the phe-
nomenon satisfactorily in about seventy thousand time
steps.

Example 2. As a highly realistic extension, we consider
another favorable natural quenching case with σ �

�
5

√
and a

much simplified four ignition spark initial condition [2, 3]:

u0(x, y) �
1
40

[(1 − cos(4πx))(1 − cos(4πy))], 0≤x, y≤ 1.

(60)

We continue setting X(u) ≡ 1. Again, we consider
corresponding one-dimensional subproblems via expo-
nential splitting and then adopting Strategies 1 and 2, re-
spectively. ,e same spatial mesh density controller and
Courant-Friedrichs-Lewy constant are used for most of the
computations until t is extremely close to the quenching
time. Standard exponentially evolving grid adaption is
adopted in the final stages of solution calculations [12].
Cubic splines are again used for passing data on each
temporal level since spatial grids are moved. We only plot
solutions on internal mesh points without showing the
homogeneous boundary data (2).

Figure 5 is devoted to four key moments of the solution
procedures. Distributions of the temperature u and its
temporal derivative ut inside the rectangular combustion
chamber are simulated. ,e evidence of initial multiple
sparks is obvious at T ≈ 0.00683013. However, the influence
apparently becomes fuzzy at T ≈ 0.01366026 and fuzzier at
T ≈ 0.48121712, while the maximal temperature,
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Figure 2: Continued.
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Figure 1: Numerical solution u(x, y, T) at T � 2τ ≈ 1.36602691 × 10− 5 (a); T � 10, 000τ ≈ 0.06830134 (b); T � 20, 000τ ≈ 0.13660269 (c);
and T � 30, 000τ ≈ 0.20490403 (d). ,e corresponding maximal values are 0.09996733, 0.13774652, 0.20421692, and 0.28487089,
respectively.
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max0≤x,y≤1 u(x, y, T), increases monotonically from
0.13965273 to 0.20441452 and then 0.97828162. We also
notice that the maximal value locations move from the initial
four sparks to the central of the spatial domain. ,e phe-
nomenon can be seen more clearly in the last figure of u, for
which T ≈ 0.48142203. ,is is further supported by the
corresponding set of ut surfaces in Figure 5. ,e facts in-
dicate a unique quenching/blow-up position in the com-
bustion chamber which is physically correct [4, 5, 11].

In the final phase at T ≈ 0.48142203, values of u ≈ 1,
which is the singular point of the source function f(u), in
almost the entire combustion domain. On the other hand,
we also observe that, while the distribution profile of ut is
similar to that of u, the amplitude of rate function ut jumps

to approximately 1.5 × 105. ,is is an indication that, during
the final ignition, the fuel combustion speed must be tre-
mendously high, while the dimensionless temperature stays
under the unity.

We show both the maximal and mean values of the
numerical solution u and its temporal derivative
ut, (x, y) ∈ D, in Figure 6. It is interesting that, while both
mean values increase monotonically, the maximal derivative
function decreases slightly in the beginning but quickly picks
up the momentum and increases rapidly and becomes
unbounded as t⟶ T∗. However, both maximal values
remain positive throughout computations. ,e simulation
features well agree with the monotone solution property
predicted in the theory of thermal combustion [2, 3].
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Figure 2: Temporal derivative function, or rate of temperature change, ut(x, y, T) prior to quenching at T � 69, 600τ ≈ 0.47537736 (a);
T � 69, 700τ ≈ 0.47606037 (b); T � 69, 720τ ≈ 0.47619698 (c); and T � 69, 726τ ≈ 0.47623796 (d). ,e corresponding maximal values are
22.39748639, 43.58288207, 65.42874536, and 82.82435985, respectively.
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Figure 3: Trajectories of the maximal (blue curves), mean values (red dotted curves) of u(x, y, T), 0≤x, y≤ 1, (a); and the maximal (blue
curves), mean values (red dotted curves) of ut(x, y, T), 0≤x, y≤ 1, (b) for T ∈ (0, 69725τ]. Explosive increments of the maximal derivative
function values as t approaches the quenching time 68725τ ≈ 0.47623113<T∗ ≈ 69727τ ≈ 0.47624479 are again visible. ,is is consistent
with quenching criteria (6) and (7).
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Figure 4: Numerical solution u(x, y, T) (a, b) and its temporal rate of change function ut(x, t) (c, d), together with their respective x − u/ut

plane projections, are given at the reference T ≈ 69727τ ≈ 0.47624479 immediately before quenching. We have
max0≤x,y≤1 u(x, y, T) ≈ 98952207, max0≤x,y≤1 ut(x, y, T) ≈ 87.32452308. Again, plots are over internal mesh points without showing the
boundary data (2).
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Figure 5: Continued.
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Finally, in Figure 7, profiles of the solution u and its
temporal derivative ut are given at y � 0.5, T �

70483τ ≈ 0.48140837 immediately before quenching. It can
be seen that while the temperature inside the chamber

increases uniformly towards the unity, the rate-of-change
function ut, in other words, the velocity of the temperature
field evolution, grows rapidly to the infinite at the quenching
location (x∗, y∗) � (0.5, 0.5) ∈ D.
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Figure 5: Numerical solution u(x, y, T) (a, c, e, g) and its temporal rate of change function ut(x, t) (b, d, f, h) at references
T � 1000τ ≈ 0.00683013, 2000τ ≈ 0.01366026, 70455τ ≈ 0.48121712, and 70485τ ≈ 0.48142203, respectively. For the last pair of figures, we
have max0≤x,y≤1 u(x, y, T) ≈ 0.99014166, max0≤x,y≤1 ut(x, y, T) ≈ 1.44966641 × 105. Again, boundary data are omitted for better clarity.
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5. Conclusions and Future Endeavours

In this article, we have built and investigated two inter-
connected second-order finite difference schemes for the
numerical solution of the stochastic quenching-combustion
partial differential equation (1) equipped with Dirichlet
boundary conditions and initial condition (2) and (3).,is is
for the first time, to the authors’ best knowledge, to use a
second-order finite difference scheme for effective approx-
imations of quenching solutions on arbitrary spatial meshes.
Numerical results obtained are not only consistent with
existing results, but also offering more structure related
details. Parameter determination procedures are discussed
and analyzed.

Computer simulation experiments are focused on two
examples with solid combustion-reaction backgrounds

[1, 5]. Evenly distributed multiple sparks are deployed in
combustion chambers. It is found that both the temperature
and its temporal derivative distributions increase mono-
tonically inside the chamber once the ignition starts. ,e
evolution of the temperature field remains smooth and
bounded during computations. However, on the other hand,
the derivative distribution in the chamber increases rapidly
and becomes unbounded as t reaches the neighborhood of
the quenching time T∗. ,is is an indication of a physical
combustion reaction of the fuel utilized.

,e new second-order methods developed on arbitrary
spatial grids are extremely straightforward and easy to use in
programming implementations. ,ey capture successfully
the unique quenching location of the solution of (1)–(3).,e
numerical results acquired correctly reflect the fact that the
final quenching-combustion location is unique and in the
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Figure 6: Trajectories of the maximal (blue curves), mean values (red dotted curves) of u(x, y, T), 0≤x, y≤ 1, (a); and the maximal (blue
curves), mean values (red dotted curves) of ut(x, y, T), 0≤ x, y≤ 1, (b) for T ∈ (0, 0.48140837]. ,ey are similar to those in Figure 3.
Explosive increments of the derivative function values as t approaches the quenching time 70483τ ≈ 0.48140837<T∗

≈ 70485τ ≈ 0.48142203 are again visible. ,e phenomena agree with (6) and (7) satisfactorily.
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Figure 7: Profiles of the numerical solution u(x, y, T) (a) and ut(x, y, T) (b), at y � 0.5, T � 0.48141520 before quenching. ,e profiles are
highly symmetric with peaks at the center of the scaled dimensionless combustion domain. Boundary values are not included.
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center of the camber domain, rather than the multiple initial
ignition spark positions suggested by initial functions.

Future endeavors in this direction involve continuing
numerical analysis and the implementation of numerical
algorithms for more rigorous stochastic structure coalitions
and conditions. ,e authors will also pay special attention to
the degeneracies, since these are indications of engine metal
fatigue [12, 14]. ,ey are extremely important in applica-
tions. Higher-order continuous and discontinuous Galerkin
methods [15, 16] may also be explored for solving singular
quenching problems including (1)–(3). It is also the authors’
intention to inspire more collaborations in this very
meaningful and promising territory of advanced theory and
numerical methods for the natural world.

Data Availability

,e data are available from the corresponding author upon
any reasonable request.

Conflicts of Interest

,e authors declare no conflicts of interest.

Acknowledgments

,e first, second, and last authors acknowledge the constant
support from Baylor University during the realization of this
work. ,e third author acknowledges the financial support
from the National Council for Science and Technology of
Mexico (CONACYT) through grant A1-S-45928.

References

[1] M. C. Branch, M. E. Beckstead, T. A. Litzinger et al., “Non-
steady combustion mechanisms of advanced solid propel-
lants,” Annual Technical Report, 94-05, Center for
Combustion and Environmental Research, University of
Colorado, Boulder, CO, USA, 1994.

[2] V. I. Naoumov, “Part II: mathematical modeling of selected
typical modes of combustion,” Chemical Kinetics in Com-
bustion and Reactive Flows, Cambridge University Press,
London, UK, 2019.

[3] T. Poinsot and D. Veynante, Beoretical and Numerical
Combustion, Edwards Publisher, Philadelphia, PA, USA,
2005.

[4] X. Wang, K. Tsuchiya, S. Fujita, S. Muto, and Y. Iijima,
“Experiment and numerical simulation on quench charac-
teristics of ReBCO-impregnated coil,” IEEE Transactions on
Applied Superconductivity, vol. 27, pp. 4–4700105, 2017.

[5] H. A. Levine, “Quenching, nonquenching, and beyond
quenching for solution of some parabolic equations,” Annali
di Matematica Pura ed Applicata, vol. 155, no. 1, pp. 243–260,
1989.

[6] Q. Sheng and A.Q.M. Khaliq, Linearly Implicit Adaptive
Schemes for Singular Reaction-Diffusion Equations, Chapter 9,
Adaptive Method of Lines, Capman &Hall/CRC, London, UK,
2001.

[7] Q. Sheng, “Adaptive decomposition finite difference methods
for solving singular problems-a review,” Frontiers of Math-
ematics in China, vol. 4, no. 4, pp. 599–626, 2009.

[8] J. L. Padgett and Q. Sheng, “Convergence of an operator
splitting scheme for abstract stochastic evolution equations,”
Advances in Mechanics andMathematics, vol. 18, pp. 163–179,
2019.

[9] J. K. Hale, Asymptotic Behavior of Dissipative Systems,
American Math Society, Philadelphia, PA, USA, 1988.

[10] H. Kawarada, “On solutions of initial-boundary value
problems for,” Publications of the Research Institute for
Mathematical Sciences, vol. 10, pp. 729–736, 1975.

[11] H. A. Levine and J. T. Montgomery, “,e quenching of so-
lutions of some nonlinear parabolic equations,” SIAM Journal
on Mathematical Analysis, vol. 11, no. 5, pp. 842–847, 1980.

[12] M. A. Beauregard and Q. Sheng, “Solving degenerate
quenching-combustion equations by an adaptive splitting
method on evolving grids,” Computers & Structures, vol. 122,
pp. 33–43, 2013.

[13] M. A. Beauregard and Q. Sheng, “A fully adaptive approxi-
mation for quenching-type reaction-diffusion equations over
circular domains,” Numerical Methods for Partial Differential
Equations, vol. 30, no. 2, pp. 472–489, 2014.

[14] J. L. Padgett and Q. Sheng, “Numerical solution of degenerate
stochastic Kawarada equations via a semi-discretized ap-
proach,” Applied Mathematics and Computation, vol. 325,
pp. 210–226, 2018.

[15] R. M. Hafez and M. A. Zaky, “High-order continuous
Galerkin methods for multi-dimensional advection-reaction-
diffusion problems,” Engineering with Computers, vol. 36,
no. 4, pp. 1813–1829, 2020.

[16] M. A. Zaky, A. S. Hendy, and J. E. Maćıas-Dı́az, “Semi-implicit
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