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Дана робота зосереджена на пружній і еластичній енергіях мембрани і має ціллю виведення, 
шляхом мінімізації енергетичного функціоналу в поєднанні з визначальними співвідношеннями 
скінченого аналізу, динамічного пружно-пластичного відгуку квадратних мембран на локалізоване 
ударне навантаження, що приводить до великих деформацій. Припускається, що функція вибухового 
навантаження має вигляд мультиплікативного розкладу заданої безперервної кусково-гладкої 
просторової функції та довільної функції часу, яка може приймати різні часові форми. 

Ключові слова: ударне навантаження, квадратна мембрана, метод Рітца-Гальоркіна. 

Ductile isotropic materials are widely used in protective systems against transient pulse pressure loads, 
such as those of localised blasts. This is due to the combined elastic-plastic response which contributes to 
dissipation of total impulse from extensive loading as the energy stored elastically limits deformation while 
the energy expended plastically limits the level of transferred forces in the structure. In the case of thin, 
modern armour graded steel plates, the tailored metallurgy helps the structure store energy within the 
bounds of elastic region, which may be dissipated at a later stage as damping kills it off in subsequent cycles. 
On the other hand, the plastic work is almost entirely converted to heat and dissipates.  

The present work focuses on the elastic and plastic energies in the membrane and aims at deducing, 
from the minimization of Föppl-Von-Kármán (FVK) energy functional combined with enforcing the 
constitutive relations of limit analysis, the dynamic elastic-plastic response of localised blast loaded square 
membranes undergoing large deformations. The presumed blast load function is a multiplicative 
decomposition of a prescribed continuous piecewise smooth spatial function and an arbitrary temporal 
function which may assume various temporal shapes (e.g. rectangular, linear, exponential).  

Considering the elastic response, a single-degree-of-freedom model was developed from the prescribed 
displacement field and associated stress tensor having clamped and simply supported boundary conditions. 
The explicit closed form solutions were sought by using the Ritz-Galerkin’s variational method as well as the 
Poincaré-Lindstedt perturbation method. The theoretical solutions of rigid-perfectly plastic square 
membranes subjected to the same blast scenarios were then discussed. From the combined effects we deduce 
the load displacement curves representing the trajectory of the nonlinear elastic-perfectly plastic structure.  

Key Words: localised blast, square membrane, Ritz-Galerkin method. 

Статтю представив д. ф.-м. н., проф. Жук Я.О. 

1. Introduction
Transient pulse pressure loads, such as those 

from gas or IED (Improvised Explosive Device) 
explosions, generate high velocity impulse ensuing 
the large deformations and potential failure of the 

structural components. The level of damage depends 
on the source of impulse, the stand-off distance, high 
explosive mass geometric configurations.  

Most protective structural systems, such as blast 
walls, shutters, doors, as well as armored vehicles 
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components, are designed in the form of plated 
elements. These elements can be fabricated from 
ductile isotropic materials such as modern armour 
graded steel with high load bearing capacity beyond 
the initial yield point, leading to an elastic-plastic 
response. Such alloys possess high yield strength and 
low ductility, whereby the elastic strain energy 
becomes significant. 

Assuming the load duration is insignificant 
compared to the structural component’s natural 
period of vibration while the component is made of 
strain rate insensitive material and no hardening, the 
visco-elasticity and visco-plasticity phenomena can 
be ignored, the constitutive tensor may be treated as 
that of elastic-perfectly plastic material. The elastic 
analysis provides a useful insight into predicting the 
complex response of quasi-brittle, thin structural 
plated elements, such as glass panes, composites and 
thin armour steel plates. The latter is a suitable 
candidate material for blast protection as it bears 
high elastic energy capacity preceding its small 
plastic deformation [1], [2]. 

The present study deals with applying the well-
established Föppl-Von-Kármán model to address the 
influence of finite displacement, or geometry changes 
in the overall response of the structure, in light of the 
developed membrane resistance in conjunction with the 
bending resistance of the structure. The objective of 
this work is to examine the explicit solutions delinea-
ting geometric and material nonlinearity of ductile, iso-
tropic homogeneous square plates to the transient blast 
pressure with generic spatial function as described in 
Eq.(1). The plates investigated herein are assumed as 
thin, where the terms of transverse shear from the 
Mindlin-Reisner plate theory can be neglected, but as 
the external force maps the material coordinates in 
reference configuration to the deformed state, the res-
ponse of the structure is characterised by the deformed 
configuration, rather than the reference configuration. 
Thus, the influence of finite displacements, or 
geometry changes, due to the presence of membranal 
forces must be retained in the analysis performed. This 
is achieved by implementing the well-known Föppl-
Von-Kármán (FVK) nonlinear theory together with the 
constitutive framework of limit analysis.  

The current work is organized in four sections and 
entails a description of the localised blast in section 1, 
followed by the derivation of the governing equations 
of membrane elasticity in section 2. In Section 3, the 
theoretical solutions at two distinct phases of motion 
are investigated, followed by the elastic-plastic 
response of the membrane elements. Finally, the 
concluding remarks are presented in section 4. 

1.1 Localised Pulse Pressure Load  
Consider an initially flat, monolithic, ductile 

isotropic square plate with side length L2 , thickness 
of H  and areal density of H  . The plate is 
secured along its periphery with simply supported 
boundary conditions and subjected to a localised 
pressure load. Such a load may be truncated into a 
single term of multiplicative decomposition of its 
temporal (pulse shape) and spatial (load shape) 
functions [1], [3]–[6], as presented in Eqs. (1)-(2). 
As the load is axisymmetric the domain of study is 
reduced to only one quarter of the plate. 
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Using the Ritz-Galerkin’s method, load functional 

is minimised in Eq.(3). The load is rotationally 
symmetric, thus independent of the polar coordinate  . 
It follows that, with cosrx   and sinry  , the 
functional of Eq.(3) may be furnished into a single 
dimensionless parameter   in Eq.(4), which is 
influenced by the central constant load radius eR  as 
well as the load decay exponent b : 
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It is straightforward to show that the various values 
of   converge to a unique parameter pertinent to the 
case of uniformly distributed load as LRe  , 
independent of the decay type. 

2. Governing Equations 
The FVK Equations describing the fundamental 

description of nonlinear elastic dynamics of the thin 
plate reads[7]: 
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It is assumed that the reference configuration is 
stress free and the material elements and behave 
isotopically relative to the reference configuration. 
The right-hand side of Eq.(6) represents Gaussian 
curvature which is quadratic with respect to the 
transverse displacement field, while the term 

),,( tyx denotes the Airy stress function. This 
function describes the membrane action induced by 

large displacements. In Eq.(5)  2
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EHD  is the 

flexural rigidity of the plate, while the biharmonic 
operator 4  and the differential operator  ,w  are 
expressed in Eqs.(7) and (8), respectively. 
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Hence the term ),( ww  from the compatibility 
Eq.(6), is evaluated by replacing   with w in Eq.(9). 
Eqs. (5)-(8) are coupled, highly nonlinear, fourth 
order Partial Differential Equations (PDE) which 
represent geometric nonlinearities of an elastic 
system induced by in-plane displacements and 
membranal forces. 

The approach resorted to herein to solve the 
FVK equations seeks, by utilizing an iterative 
procedure, to reduce the PDE to an Ordinary 
Differential Equations (ODE) using the Poincaré-
Lindstedt (P-L) perturbation technique, combined 
with the RG method. The mathematical procedure 
for such shell elements is outlined as follows: 

1. Assume an ansatz for displacement fields and
the associated stress tensors. 

2. Determine the membranal stress from the
compatibility relation of Eq. (9). 

3. Update the displacement field from Eq.(5).
4. The final form of transverse displacement will

be nonlinear, but in a reduced closed form 
expression. 

The assumed expressions of the displacement 
field and the associated Airy stress functions may be 
expressed as multiplicative decomposition into a 
spatial part as well as that of the temporal part, i.e. 
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which characterises the vibration of a Single Degree 
of Freedom model, i.e., they are associated with the 
first (fundamental) mode of vibration. Accordingly, 

the dimensionless parameters 2
)(

EH
tf

 , and

H
twtw ),0,0()(   have been employed.

The RG variational technique to minimize the 
total elastic energy functional can be sketched in 
Eqs.(11a-b), where the superscript (i) denotes the 
iteration. With this strategy, as discussed earlier, we 
may dynamically update the interrelation between 
the transverse displacement field in Eq. (11a) from 
the state of membranal stress tensors satisfying 
Eq.(11b) , and vice versa. 

3. Dynamic Response
3.1 First Phase of Motion (Forced Vibration) 

Substituting Eqs.(9) and (10) in Eqs. (11, a-b) 
and performing the integrations reduces the FVK 
Partial Differential Equation to an ODE in the form 
of (12) 
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The coefficient of the nonlinear term )1()( iiw  , 
may be visualized as the equivalent membrane 
stiffness of the plate; for a multiple degree of 
freedom system, this nonlinear term accounts for the 
mode coupling of the structure. The vibration 
frequency 2

e  gives the ratio of the bending stiffness 
to the equivalent mass of the structure expressed as: 
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The solution to the first iteration )1(w is derived 
by linearizing the form of the ODE in Eq.(12), i.e. 
eliminating the Airy Stress function terms )1( i . 
The general solution to the plate motion must satisfy 
the initial kinematic conditions 0)0()0(  ww  , 
and can be sketched as: 
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where the amplitude of vibration is 
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While the expression of the transverse displacement 
in further iterations may be derived by substituting 
Eq. (15) in Eq. (13) and then in Eq. (11a), 
heuristically, with the nonlinear terms present in 
Eq.(12), the explicit solution entails the presence of 
secular terms (in the form of tt sin ) which brings 
about a non-harmonic response with unbounded 
growth of transient displacements. The solution can 
be made harmonic by employing the Poincaré-
Lindstedt perturbation method to eliminate, once and 
for all, the dependence of the displacement field on 
such terms. To this end, the frequency response is 
normalised as   2 Oie  , where  is 
referred to as the pseudo vibration hereinafter at the 
phase (i)th of motion. Accordingly, the displacement 
field is expressed as a truncated series of its iterative 
terms given by:   
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To derive the ODE expression for the second term, 
we shall hence forth ignore the terms of higher order as 

12   . Hence, substituting Eq. (17) and (18) in Eq. 
(12) together with the use of Eq. (15) yields 
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      Sequentially, the ODE of Eq.(19) is re-evaluated 
and solved to determine, unequivocally by imposing 
the initial boundary conditions, the plate maximum 
transverse displacement as  
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where the integration constants are  
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While the expression of pseudo vibration term to 

eliminate the secular term is given as 
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which recasts Eq.(20) into Eq. (23). The dependence 
of this parameter on the plate slenderness ratio and load 
parameters is illustrated in Fig 1.  

 
Fig. 1- Variations of the pseudo vibration with central 

uniform load radius (with 150  mb  ) 
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3.2 Second Phase of Motion (Free Vibration) 
The loading is complete at time dtt  ; however, 

the system retains its motion due to the initial inertia 
effects and the energy stored in it. It follows that the 
associated response of the plate is governed by a free 
vibration following the forced vibration of the 
previous phase. Subsequently, at the time point of 
completion of loading, the kinematic continuity 
applies to ensure there is no displacement or velocity 
jumps throughout the motion.  

The analysis in this phase is carried out in the 
same spirit as the previous phase of motion- with the 
solution of linear and nonlinear parts of the displace-
ment field determined on 0)1(  (or 00  ), and 
on )2( respectively. Provided that the nonlinear terms 
are disregarded, the first iteration of ODE is expressed, 
using the kinematic continuity of displacement and 
velocity fields of each mode at dtt  , as: 
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The plate reaches its peak transient deformations 
when the velocity vanishes, i.e. 0)(  iw , occurring at 
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where k  is an integer. A plot of the maximum 
transient deformation against various load 
magnitudes is illustrated in Fig. 2.  
 

 
Fig. 2- Variations of the peak transient Mid-

point deflection with load magnitude 
 

In the same spirit, Eq. (24) was employed to 
evaluate the solutions of the ODE (19) as: 
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In expression (26) the condition to make the 

response harmonic is imposed by, using algebraic 
manipulations, deriving the solution of the parameter 

2 , as expressed in Eq. (27), to eliminate the secular 
term. It turns out that the pseudo vibration in this 
phase is pulse dependent, while a surface plot of its 
variation with the load parameters is drawn in Fig 3. 
The integration constants were attained by imposing 
the kinematic continuity, given in Eqs. (28 a-b). 
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Fig. 3 Variations of the pseudo vibration 2  with 

central uniform load radius (with 150  mb ) 
 
3.3 Elastic-Plastic response of the plates 

As an extensive transient load is imparted on the 
structure, the plastic hinges may form in local 
boundary elements and/or the central zones while the 
remaining of the plate would behave elastically. The 
regions where plastic flow occurs may appear 
intermittently. It turns out that finding the plastic 
deformation can be difficult as they are inter-spread 
with elastic deformations. In the past, however, the 
actual response of the structure has been simplified 
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into a three stage of elastic-plastic response: the first 
stage presumed as wholly elastic, which terminates 
when the yield criterion is invoked, followed by a 
rigid, perfectly plastic stage. Finally, the motion is 
concluded with a residual elastic vibration, 
corresponding to a ‘latent’ elastic strain energy of the 
rigid-plastic stage [8]–[11]. The three-stage analysis 
may be idealised, preferably, into a primarily 
dominating rigid-plastic form solution with infinite 
elastic stiffness, together with the ‘latent’ elastic 
deformations by permitting the flexural rigidity to 
revert to its actual value from infinity. The actual 
deformations would be summation of the rigid-
plastic part as well as the elastic deformations. 

However, this simplification remains valid provi-
ded the material obeys the Hook’s law (linear elastic 
response) during the elastic vibrations, which may not 
be pertinent to the case of extensive blast loads induc-
ing geometric nonlinearities in the plate. Furthermore, 
most materials exhibit such nonlinearities in the elastic 
state with some/little plasticity. Thus, it is pragmatic to 
investigate the elastic-plastic response of the plated ele-
ments where the influence of the membrane forces plays 
a significant role throughout the structural response.  

The foregoing analysis assumed the material 
performance is wholly elastic. Indeed, the material 
points through plate section strain plastically when 
the trajectory of the stress state reaches the yield 
curve of the associated constitutive yield criterion. 
Since large nonlinear deformations are of concern, it 
may be presumed that the bending strain energy is 
insignificant to the membrane strain energy. To 
determine the elastic-plastic deformations, it is 
assumed that the response is predominantly governed 
by the membrane forces.  

Evaluating the components of the Cauchy stress 
tensor from the Airy stress function, we have: 

xyxy yx 











2
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where 12 represents the shear stress. In 2-dimensional 
state of stress, the principle stresses represent the 
eigenvalues of the Cauchy stress tensor as  




















 



 2

12

2

22



 xyyx

k  (30) 

with 2,1k  giving the maximum and minima of the 
principle stresses, respectively. Eqs. (29) is utilised, 
together with Eq.(30), to delineate the membrane forces 
in principle directions is evaluated as (34)-(35): 

 dZN k ,               (34a) 
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                (34b) 

From Eq. (34), the membrane plastic collapse 
capacity per unit length of the structure is given as: 

HN 00       (35) 

Equation (35) states a quadratic relationship of the 
transverse displacement field with the membranal 
forces, which attains a peak at each peak of displace-
ment field. When 0NN   the plate yields. Yielding 
occurs almost instantaneously before the plate reaches 
its first peak. The normalised membrane force displace-
ment of armour steel and mild steel are plotted in Fig. 4 
– Fig. 5 on four different square plates, namely, 4mm 
thick Mild steel, 4.61mm AR440T, 3.8mm AR370T 
and 4.16mm AR500T plates, the all having 400mm 
side length dimension. Details of the geometric and 
material properties of the candidates are found in [1]. 
The path of deformation, having reached the critical 
point of yielding, follows the straight line governed by 
Rigid-perfectly plastic theory. The permanent deforma-
tion of the plats may be found from the explicit solutions 
to rigid-perfectly plastic response of the plate in [6]. 

 
4. Concluding remarks 
In this work we develop an analytical model to 

delineate the nonlinear dynamic response of elastic 
thin plated structures subject to transient pressure 
loads, such as localised blasts occurring due to 
proximal charges. The load was assumed to be 
multiplicatively decomposable into a spatial and a 
temporal distribution. Considering this idealization 
and utilising the Ritz-Galerkin’s functional, a single 
dimensionless parameter was obtained which 
characterises various blast loading scenarios by the 
correct choice of its parameters . 

 
Fig. 4- Force vs normalised mid-point displace-
ment of the panels subject to localised blast load 

with parameters MPap 6000  , std 20 , 
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33,0
L
re ; and 150  mb  

Fig. 5-  Force vs normalised mid-point 
displacement of the panels subject to load 
parameters MPap 200  , std 1,0  and 

33,0
L
re ; and 150  mb  

The Ritz-Galerkin method was similarly 
employed, to minimize the nonlinear coupled FVK 
equations considering a kinematically admissible 
displacement field and an associated Airy stress 
function in an iterative procedure. The state variables 
were determined in two distinguished phases of 
motion, the first reflecting the forced vibration while 
the second addressing the free vibration due to initial 
inertia effects and the stored elastic energy of the 
system. The Poincaré-Lindstedt perturbation method 
was employed to avoid the non-convergent explicit 
solution due to the presence of secular terms whilst 
rendering the predicted oscillation harmonic.  

The Elasto-plastic response of the plate was 
discussed by considering the plates as membrane, 
i.e., negligible bending stiffness compared with the
membrane stiffness, with the assumption of perfect 
plasticity, i.e. neglecting the strain rate sensitivity 
and strain hardening phenomena.  
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