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 Researchers in the field of portfolio optimization made efforts to decrease 
uncertainty in future returns. Any disturbance in the parameter values causes the 
solution to be non-optimal or impossible. This study designs a strong fuzzy-
multipurpose model for stock portfolio optimization based on Tehran Stock 
Exchange market data. At the end of the paper, the created model is compared 
with the results of the multi-objective model. The results show that the fuzzy 
multi-objective optimization model has relative stability and model compared to 
the multi-purpose optimization model is strong. 
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1-Introduction  
Choosing the optimal investment portfolio is one of the most important issues in the field of financial issues 

in which an attempt is made to distribute a certain amount of capital among assets in order to achieve a 

specific goal or goals. In the traditional portfolio selection approach, the investor estimated the yield of the 

various securities in order to obtain the highest expected return, and then invested in the securities that had 

the highest expected return. But this view was challenged in 1952 by Markowitz. According to Markowitz, 

in addition to maximizing the return, the investor should be as careful as possible about the safe realization 

of this return. 
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In the financial world, uncertainty is one of the determinants. By ignoring the cause of financial market 

fluctuations, these uncertainties create classical approaches to mathematical modeling challenges. This 

issue is one of the most important problems in modelling and math decision making regarding portfolio 

selection. The main assumption in math programming is as input data is exactly clear and is equal to 

nominal value (Sajadi et al, 2010). The data with uncertainty can be in constraints or objective function.  If 

the input data in constraints have value except their nominal value, the constraint is violated or it is not 

feasible and if the input data of objective function are deviated from their nominal value, the optimization 

is ignored or optimal solution of nominal problem is not justified (shirazi,2021). Therefore, to make the 

model more realistic, it can be assumed that some parameters have fuzzy uncertainty (cognitive 

uncertainty). The approach that has been used in recent years to deal with cognitive uncertainty is solid 

optimization, which deals with optimization in the worst case. A robust approach to solving optimization 

problems has been proposed since early 1791 and has recently been extensively studied and proposed. 

As optimization issue of portfolio consists of values as stock price, profit rate, risk and etc., these values 

are not defined exactly and only can be predicted and these problems can be used in robust optimization 

technique. Various researchers have conducted some studies in this regard. 

Non-robust methods consider certain values for the parameters and achieve optimal solutions. Strong 

methods offer a solution close to the optimal solution and show high costs (low efficiency) but the solution 

is very reliable. By changing the parameters in an interval, the solution values are very reliable. The first 

step for robust modeling was presented by Soyster as linear programming model to produce a solution 

justified for data belonging to ellipsoidal uncertainty sets. The mentioned model presented the solutions as 

conservative against optimization of nominal problem to be sure of robustness. Then, The optimization 

community, on the issue of robustness until the work of Ben-Tal and Nemirovski, Ghaoui and Lebret, 

Ghaoui et al. and Bertsimas, D. & Sim (Bertsimas, D. & Sim, 2004). In robust optimization models like 

Bertsimas, D. & Sim (2004), the middle value of these intervals is called nominal value. In some cases of 

real problem for decision maker, exact determination of interval length in which nominal value volatilizes 

is not easy and determines the interval length is ambiguous. If the decision maker considers the interval 

length as high, conservatism and costs are increased. If the interval is low, decision making risk is increased. 

In addition to the balance between risk and cost (return), the decision maker states the interval length not 

clearly. To solve this problem, an approach is stated in which the decision maker can state the length of 

interval as fuzzy number and balanced risk is required (Aliahmadi et al, 2015).  

 

2- The theoretical review of robust optimization  

Consider the following linear math model: 

(1) 

( )

Max cx

A p x b
 

There are different definitions of strength and required models. One of the important concepts is Constraint 

Robust Solutions and refers to solutions that are justified for all values of unknown parameters. The 

mathematical model for achieving robust constraint solutions is as follows: 
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(2) 

( )

Max cx

A p x b p U  
 

In this model, p is vector of uncertain parameters and U the set of uncertain states. 

Another common concept in robust optimization literature is Objective Robust Solutions. This concept is 

raised when the objective function consists of uncertain parameters. The robust solutions to objective 

function for all feasible values of uncertain parameters are close to optimal solution. The linear optimization 

problem is considered as follows: 

(3) ( )Max c p x

A x b
 

Here, U is the uncertain set and p uncertain parameters and uncertainty parameters only exist in objective 

function. Objective Robust Solutions is achieved as follows: 

(4) 

 

( ( ) )p UMax Max c p x

Ax b




 

Robustness to objective function is special state of robustness to constraints. In other words by definition 

of a new variable z and by adding constraint ( )c p x t , we reach an equivalent model (1). With this 

approach, robust optimal solution is the robust solution with the best objective function value. 

There are various approaches to solve robust problems. Bertsimas and Sim approach (budget uncertainty) 

maintains the linear model and this method has full control on conservatism degree of each constraint.  

 Let ith constraint of nominal problem (primary) is as aix ≤ bi and Ui is the set of constraint ith uncertainty 

parameters. Based on data uncertainty modelãij ∈ Ui, according to a symmetrical distribution with a mean 

equal to nominal value aij is in interval[aij − âij , aij + âij]. 

It is assumed that in constraint ith, the defined value of Γi  parameter is changed to the nominal value and 

by this assumption against constraint violation ith, control is done certainly. One guaranty is given that even 

if more than Γi parameter is changed compared to nominal value, the solution is justified probably. 

Bertsimas & Sim approach to present robust counterpart of a certain model is called budget uncertainty. It 

is impossible that all uncertain parameters aij are changed compared to nominal value. In the presented 

model, the aim is to be careful against all states in which maximum |Γi| uncertain coefficient is changed 
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and an ait coefficient is changed as (Γi − ⌊Γi⌋)âit and this is done to justify the solution. In other words, it is 

assumed that nature is finite in its own behavior and only a subset of coefficients is changed to worsen the 

objective function. For each i, Γi parameter as not an integer has a value in [0,|Ui|]. Γi   is required to regulate 

the robustness degree of model against its conservatism degree. In this method, if the nature behavior is as 

the mentioned form, then the robust solution is justified as 100%. In addition, if more than Γi parameter is 

changed, then the robust solution is justified probably. One of the advantages of this method is that it is 

generalized easily to discrete space optimization problems.  

The robust counterpart is the following non-linear model: 

(5) 

\{ { }| ,| | , }
ˆ ˆ. . { ( ) }

0

i i
i i i i i i i i Si

i

ij j ij j i i it t i
s t S J S t J

j j S

j j j

i

Max cx

s t a x Max a y a y b i

y x y

l x u

y

  =     

+ +  −     

−  

 



 

 

If Γ i integer is selected, ith constraint is protected as the followings. 

   (6) 
{ | ,| | }

ˆ( , ) max { | |}
i i i i i

i

i i ij j
S S J S

j S

x a x
 =



 =  

The above non-linear model is turned into a linear model with some changes. The robust counterpart as 6-

2 is equal to Bertsimas and Sim approach with linear structure. 

(7) 

. .

ˆ ,

0

0

0 ,

i

ij j i ij i

j j U

i ij ij j i

j j j

j j j

j

i

ij i

Max cx

s t a x z p b i

z p a y i j U

y x y j

l x u j

y j

z i

p i j U



+ +  

+   

−   

  

 

 

  

 

 

By changing Γ i we have flexibility of controlling robustness of model against solution conservatism level. 
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3- Goal programming model for portfolio optimization  

Lee, S., Chesser (1980) introduced goal programming model for portfolio selection. Let J = {1.2. … . n} is 

the set of securities for investment as capital return rate for each of securities j ∈ J is equal to random 

variable Rj with the mean μj = E{Rj} and . j = {1.2. … . n} is invested price in portfolio (decision variables). 

 

Lee, S., Chesser (1980) model is as follows: 

 

(8)                min W1d1
+ + W2(d2

− + d3
−) + W3 ∑ di

+n+3
i=4 + W4 ∑ di

_2n+3
i=n+4 + W5d2n+4

− 

st 

(9)                                          ∑ xj
n
j=1 + d1

− − d1
+ = BC 

(10)                                       ∑ Rj
n
j=1 xj +  d2

− − d2
+ = DR 

(11)                                ∑ Bj
n
j=1 xj +  d3

− − d3
+ = B(BC) 

(12)                                                      xj +  dj+3
− − dj+3

+ = Vj 

(13)                                          xj +  d2n+2+j
− − d2n+2+j

+ = Dj 

(14)                        BC + ∑ Rj
n
j=1 xj +  d2n+4

− − d2n+4
+ = M 

The term (9) considers the budget constraint. The term (10) focuses on portfolio return rate more than DR 

(Total portfolio income determined based on the view of investor). The term (11) considers portfolio 

systematic risk. If the investor predicts the market is improved in future, he should select his portfolio close 

to the market beta. It is assumed that future condition of market is like this and in the term (11), portfolio 

beta is maximized based on the opinion of investor. The objectives (12), (13) consider investment constraint 

in each of securities (the max and min investment) and finally the term (14) focuses on maximization of 

sum of budget and portfolio return. 

 

W1 to W5 show the priorities to objectives (constraints) as determined according to the investor. 

 

xj j: Decision variable indicating the invested money in jth stock. 

BC: The allocated budget for investment  

Rj : The expected return based on Rj =
Pt+1−Pt + Dt

Pt
    

Pt: Price at t th period 

Dt : Dividend 

DR : Total expected income of investment  
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Bj : The expected beta per share of portfolio  

B  : The expected systematic risk 

Vj: The maximum expected investment of investor in jth stock 

Dj : The expected value of investment at ith stock based on beta of stock jth 

M: A big value 

4-The robust goal programming model for portfolio optimization  

In goal programming model of Lee , S. , Chesser(1980), Rj  and Bj have uncertainty. Thus, Ghahtarani, A., 

Najafi (2013) developed the above model and turned it into a multi-objective robust model: 

(15)           min W1d1
+ + W2(d2

+ + d3
+) + W3 ∑ di

+n+3
i=4 + W4 ∑ di

_2n+3
i=n+4 + W5d2n+4

+ 

st 

(16)              ∑ xj
n
j=1 + d1

− − d1
+ = BC 

(17)           − ∑ Rj
n
j=1 xj +  d2

− − d2
+ + max

{s1 ∪ {t1}|s1 ⊆ J1, |s1| = Γ1 , t1 ∈ J1, s1}
× {∑ R̂jyj +j∈S1

(Γ1 −

⌊Γ1⌋)R̂t1
yt} = −DR 

(18)         − ∑ Bj
n
j=1 xj + d3

− − d3
+ + max

{s2 ∪ {t2}|s2 ⊆ J2, |s2| = Γ2 , t2 ∈ J2, s2}
{∑ R̂jyj +j∈S2

(Γ2 −

⌊Γ2⌋)B̂t2
yt} = −B(BC) 

(19)                                                   xj + dj+3
− − dj+3

+ = Vj 

(13)                                                  xj + d2n+2+j
− − d2n+2+j

+ = Dj 

(20)        −BC − ∑ Rj
n
j=1 xj +  d6

− − d6
+ + max

{s1 ∪ {t1}|s1 ⊆ J1, |s1| = Γ1 , t1 ∈ J1, s1}
{∑ R̂jyj +j∈S1

(Γ1 −

⌊Γ1⌋)R̂t1
yt} = −M 

(21)             −yj ≤ xj ≤ yj 

(22)         yj ≥ 0 

5-Fuzzy robust multi-objective programming model  

Ghahtarani, A., Najafi (2013) were not informed of the form of distribution of uncertain parameters and 

considered these parameters as stochastic value fluctuating in a symmetric interval. In their model, the 

middle value of interval is called as nominal value. In real problems for decision maker, exact determination 

of interval in which nominal value is fluctuating is not easy and the determination of interval length is not 
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clear. If the decision maker considers the interval length high, conservatism level is increased and high cost 

is imposed. If the interval length is low, decision making risk taking is increased. In addition to balance 

between risk taking and cost, in some cases, the decision maker states the interval length not clearly. To 

eliminate this problem, an approach is presented in which the decision maker can state the interval length 

as fuzzy numerical and have balanced risk taking.  

In linear programing, if the right side coefficients are fuzzy, the model is as follows: 

 

23 max ∑ CjxJ
n
j=1  

 s.t. 

24 ∑ aijxj ≤ b̃i      i = 1, … , mn
j=1  

25 xj ≥ 0  

Generally, fuzzy linear programming problem should be turned into certain equivalent problems and be 

solved by common methods and the results of these equivalent certain problems are achieved by considering 

fuzzy conditions in turning fuzzy problems to crisp in crisp model. Let the right side fuzzy values are as 

follows: 

26 Μb̃i
= {

1                                           1 ≤ bi
bi+pi+y

pi
               bi ≤ y ≤ bi + pi

0                                     y ≥ bi + pi

  

For each solution as a vector X = (x1, x2, … , xn), at first membership degree Di(x) denoting the 

membership degree of constraint ith by X vector is defined as follows: 

27 Di(x) = μb̃i
(∑ aijxj

n
j=1 )  

EachDi(x) of a set makes a fuzzy set and their commonality (⋂ Di
n
i=1 ) makes the justified region. As the 

solution space is fuzzy, the objective function is also fuzzy.  Thus, fuzzy objective function should be 

computed. The upper and lower limit of objective function, ZL , ZU are computed as follows: 

28 max ZL = CX  

 s.t. 

29 ∑ aijxj ≤ bi      i = 1, … , mn
j=1  

30 xj ≥ 0  

, 

31 max Zu = CX  
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 s.t. 

32 ∑ aijxj ≤ bi + Pi      i = 1, … , mn
j=1  

33 xj ≥ 0  

Membership function of objective function is defined as follows: 

34 G(x) = {

0                                           Cx ≤ ZL
Cx−ZL

ZU−ZL
                       ZL ≤ Cx ≤ ZU

1                                      Cx ≥ ZU

  

The solution of maximum commonality of objective function and region is justified as achieved: 

35 max min[⋂ Di(x), G(x)x
i=1 ]  

The variable is changed as: 

36 max min[⋂ Di(x), G(x)m
i=1 ]  

Thus: 

37 maxλ  

38 s. t.  

39 λ ≤ G(x)  

40 λ ≤ Di(x)       ∀i  

41 λ , x ≥ 0  

Instead of G(x), we can use 
Cx−ZL

ZU−ZL
 and instead of Di(x), we use 

bi+pi−∑ aijxj

pi
. Thus, we have: 

42 maxλ  

43 s. t.  

44 λ ≤
Cx−ZL

ZU−ZL
  

45 λ ≤  
bi+pi−∑ aijxj

pi
       ∀i  

46 λ, xj ≥ 0           ∀j  

In the above model, rewriting is as follows (Lai , K. K. & Wang, 2006). 
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47 maxλ  

 s. t.  

48 λ(ZU − ZL) −  Cx ≤ −ZL  

49 λpi + ∑ aijxj ≤ bi + pi       ∀i  

50 λ, xj ≥ 0      ,     ∀j  

5-1 Fuzzy-robust model of portfolio by goal programming 

In the problem space of this model, risk parameters and return are not reliable from the view of decision 

maker. As the exact distribution of these data is not defined, the data fluctuation is considered in the form 

of a symmetrical interval. The important point regarding intervals is determining the length of interval as 

the decision maker is unsure of their exact value. In this thesis, this issue is occurred for the length of risk 

parameters and return on asset. If we denote the interval length of these parameters with R̂j, B̂j and based 

on the previous explanations,  this term is consider as triangular fuzzy value and is denoted by R̂j
̆  , B̂j

̆ . Thus, 

fuzzy-robust counterpart is written as follows: 

51 min W1d1
+ + W2(d2

+ + d3
+) + W3 ∑ di

+n+3
i=4 + W4 ∑ di

_2n+3
i=n+4 + W5d2n+4

+  

 s. t  

52 ∑ xj
n
j=1 +  d1

− − d1
+ = BC  

53 − ∑ Rj
n
j=1 xj +  d2

− − d2
+ + Z1Γ1 + ∑ P1j

n
j=1 = −DR  

54 − ∑ Bj
n
j=1 xj +  d3

− − d3
++Z2Γ2 + ∑ P2j

n
j=1 = −B(BC)  

55 xj +  d4
− − d4

+ = Vj  

56 xj +  d5
− − d5

+ = Dj  

57 −BC − ∑ Rj
n
j=1 xj +  d6

− − d6
+ + Z1Γ1 + ∑ P1j

n
j=1 = −M  

58 Z1 + P1j ≥ R̂j
̆ yj  

59 Z2 + P2j ≥ B̂j
̆  yj  

60 −yj ≤ xj ≤ yj  

61 0 ≤ Pj ,    0 ≤ yi,     0 ≤ Z1 ,    0 ≤ Z2  

The mentioned model is a linear programing model with fuzzy sources (asymmetrical model) and can be 

turned into symmetrical model. Thus, deterministic fuzzy-robust counterpart model is as follows: 
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62 Max Z = λ  

 s. t  

63 W1d1
+ + W2(d2

+ + d3
+) + W3 ∑ di

+N+4
i=4 + W4 ∑ di

_2n+5
i=n+5 + W5d46

+ + λZL ≤ ZU  

64 ∑ xj
n
j=1 +  d1

− − d1
+ = BC  

65 − ∑ Rj
n
j=1 xj +  d2

− − d2
+ + Z1Γ1 + ∑ P1j

n
j=1 = −DR  

66 − ∑ Bj
n
j=1 xj +  d3

− − d3
++Z2Γ2 + ∑ P2j

n
j=1 = −B(BC)  

67 xj +  d4
− − d4

+ = Vj  

68 xj +  d5
− − d5

+ = Dj  

69 −BC − ∑ Rj
n
j=1 xj +  d6

− − d6
+ + Z1Γ1 + ∑ P1j

n
j=1 = −M  

70 Z1 + P1j + λ(R̅(max i) − R̅(min i))yj ≥ R̅(mini)yj  

71 Z2 + P2j + λ(B̅(max i) − B̅(min i))yj ≥ B̅(mini)yj  

72 −yj ≤ xj ≤ yj  

73 0 ≤ Pj ,    0 ≤ yi,     0 ≤ Z1 ,    0 ≤ Z2  ,   0 ≤ λ ≤ 1  

 In this model, λ is the satisfaction degree of constraints. 

6-The results of solution of goal programing robust model  

In this section the results of robust multi-objective model (Ghahtarani, A., Najafi, 2013) and proposed 

model. These models are investigated based on data of 20 stocks of TSE. 

In this model, based on the opinion of investor, the weights of goals and other variables are determined as 

follows: 

Budget value (BC) in the problem is equal to 1 currency, expected income of investment (DR) as 0.25 

currency and Beta risk (B) is 0.9 and high limit of investment in each share is 0.2 currency and lower limit 

in each share based on its systematic risk is zero. 
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Table 1-The outputs of multi-objective robust model of portfolio selection and portfolio return against robustness cost  

Γi(Γ1, Γ2) (0,0) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10) (15,15) (20,20) 

x1 0.091037 0 0.065924 0.065924 0 0 0 0 0 0 0 0 0 

x2 0 0 0 0 0.111791 0.1117911 0 0 0 0.0897043 0.0897043 0 0 

x3 0 0 0 0 0.0798300 0.0798300 0 0 0 0.0640579 0.0640579 0 0.06979567 

x4 0 0 0 0 0.1279122 0.1279122 0 0 0 0.1026403 0.1026403 0 0.04829599 

x5 0.161068 0.1938868 0.116636 0.116636 0 0 0 0 0 0 0 0 0 

x6 0 0 0 0 0 0 0 0 0 0 0 0 0 

x7 0 0 0 0 0.1430154 0.1430154 0 0 0 0.1147595 0 0.06069747 0 

x8 0 0 0 0 0 0 0.1510569 0 0 0.0925185 0.0925185 0 0 

x9 0 0 0 0 0.0493656 0.0493656 0.0493656 0.0493656 0.0493656 0.0396123 0.0396123 0.0493656 0 

x10 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1604856 0.1604856 0.2 0.2 

x11 0 0 0 0 0 0 0.0932885 0.2 0.2 0 0 0.0932885 0.2 

x12 0 0 0 0 0 0 0 0 0 0 0 0 0 

x13 0 0 0 0 0 0 0 0.1438294 0.1438294 0 0 0.2 0.100082 

x14 0 0 0 0 0.0628439 0.0628439 0.0962151 0.0962151 0.0962151 0.0772057 0.0772057 0.0962151 0.08412118 

x15 0 0 0.104341 0.104341 0 0 0.1032754 0.1032754 0.1032574 0 0 0 0.0902941 

x16 0 0 0 0 0.0916843 0 0.0916843 0.0916843 0.0091683 0.07357 0.07357 0.0916842 0.0801599 

x17 0 0 0 0 0.0819464 0.0819464 0.0819464 0.0819464 0.0819464 0.065756 0.065756 0.0819464 0.0716460 
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x18 0.2 0.2 0.2 0.2 0 0 0 0 0 0 0 0 0.00901 

x19 0.1297113 0.1378822 0.1506988 0.1506988 0.0516113 0.051612 0.079874 0.033684 0.033684 0.119690 0.119690 0.0735086 0 

x20 0 0.049265 0 0 0 0 0.0532942 0 0 0 0 0.0532942 0.0465953 

Budget (Million Rial) 0.7818163 0.781034 0.8376 0.8376 1.0000001 0.9083166 1.0000004 1.0000002 0.9174662 1.0000001 0.8852406 1.0000001 1.0000001 

Absolute value of 

budget deviation 

0.2181837 0.218966 0.1624 0.1624 0.0000001 0.0916834 0.0000004 0.0000002 0.025338 .00000001 0.1147594 .00000001 0.0000001 

Real return -0.028526 -0.033615 -0.018355 -0.018355 1.1755345 1.1773699 -0.032233 -0.041444 -0.039793 0.9433888 -0.035038 0.45802371 -0.0522391 

 

 

Table 2- The output of multi-objective fuzzy-robust optimization model of portfolio and portfolio return against robustness costs 

(20,20) (15,15) (10,10) (9,9) (8,8) (7,7) (6,6) (5,5) (4,4) (3,3) (2,2) (1,1) (0,0) Γi(Γ1, Γ2) 

0.0040633 0 0.0005892 0.000656 0.000731 .00084859 .000995 0.0012016 0 0 0 0 0.0402248 X1 

0.064296 0 0 0 0 0 0 0 0 0 0 0 0 X2 

0.0459141 0.052007 0.0464026 0.0463987 0.0463938 0.0463875 0.046379 0.0463670 0.0462087 0.0522102 0.0522102 0.0522102 0.0492123 X3 

0.0735677 0.0833304 0.0743503 0.0743441 0.0743363 0.0743262 0.0743126 0.0742934 0.0740397 0.0836559 0.0836559 0.0836559 0.0788524 X4 

0.1206325 0.0752088 0.0671039 0.0670983 0.0670912 0.0670821 0.0670698 0.0670525 0.06682351 0.1371748 0.1371748 0.1371748 0.1292982 X5 

0.040938 0.0463705 0.0413735 0.0413701 0.0413657 0.041361 0.0413525 0.0413418 0.0412006 0.0465517 0.0465517 0.0465517 0.0438787 X6 

0 0.09317 0.0831291 0.0831221 0.0831134 0.0831021 0.083087 0.0830654 0.0827817 0 0 0 0 X7 

0 0 0 0 0 0 0 0 0 0 0 0 0 X8 

0 0 0.0286951 0.0286927 0.0286897 0.0286858 0.0286805 0.0286731 0.0285752 0 0 0 0 X9 
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0.115028 0.1302924 0.1162514 0.1162417 0.11623 0.1162137 0.1161925 0.1161624 0.1157656 0.1308013 0.1308013 0.1308013 0.1232908 X10 

0.0536545 0.6077465 0.0542253 0.0542208 0.0542151 0.0542077 0.0541978 0.0541838 0.0539988 0.061012 0.061012 0.061012 0.0575088 X11 

0.0061008 0 0 0 0 0 0 0 0 0 0 0 0 X12 

0 0.0745738 0.0665374 0.0665318 0.0665249 0.0665158 0.0665036 0.0664864 0.0662594 0 0 0 0 X13 

0 0 0.0559264 0.0559217 0.0559159 0.0559082 0.0558980 0.0558835 0.0556927 0 0 0 0 X14 

0.0593983 0 0 0 0 0 0 0 0 0 0 0 0 X15 

0.0527319 0 0 0 0 0 0 0 0 0 0 0 0 X16 

0.0471313 0 0.0476327 0.0476287 0.0476237 0.0476172 0.0476085 0.0475962 0.0474337 0 0 0 0 X17 

0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 0.2001039 X18 

0.0857879 0.0971724 0.0867006 0.080067 0.0866842 0.0866724 0.0866566 0.0866342 0.0863383 0.0975519 0.0975519 0.0975519 0.0919505 X19 

0.0306525 0.0347201 0.0309786 0.030976 0.0309728 0.0309686 0.0309629 0.0309549 0.0308492 0.0348558 0.0348557 0.0348557 0.0328544 X20 

1.0000007 1.4946958 1 0.9933736 0.9999916 1.0000008 1.0000002 1.0000001 0.996071 0.8439176 0.8439174 0.8439174 0.8471748 Budget  

0.0000007 0.4946958 0 0.0066264 0.0000084 0.0000008 0.0000002 0.0000001 0.003929 0.1560824 0.1560826 0.1560826 0.1528252 Budget 

deviation 

-.03364277 0.7547609 0.6762799 0.6760547 0.6761412 0.6760399 0.6759057 0.6757137 0.6735647 -.0326325 -0.032633 -0.032633 -0.033806 Return  
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As shown in Figures 1 2, by increasing conservatism, portfolio return is reduced. As some different 

objectives are satisfied simultaneously, in some levels of conservatism, there are some distributions. Fuzzy-

robust multi-objective programming model compared to multi-objective robust model has stable condition 

in terms of deviation from objective and disturbance in reduction of return and this is one of the advantages 

of the mentioned model.  

 

Figure 1- The relationship between deviation from budget in robust multi-objective models and 

robust-fuzzy against return to robustness value 

 

Figure 2- The relationship between return in robust multi-objective models and fuzzy-robust 

compared to robust value 
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7- Conclusion  

This paper is used to optimize portfolio and explains Lee, S., Chesser model and then to consider uncertainty 

of data of return and risk, multi-objective robust model of Ghahtarani, A., Najafi is defined. Then, to remove 

the problems in Ghahtarani, A., Najafi model, their model is developed as fuzzy robust and the results are 

compared after implementation in TSE. The results showed high stability of fuzzy robust model in various 

levels of conservatism compared to robust model. 
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