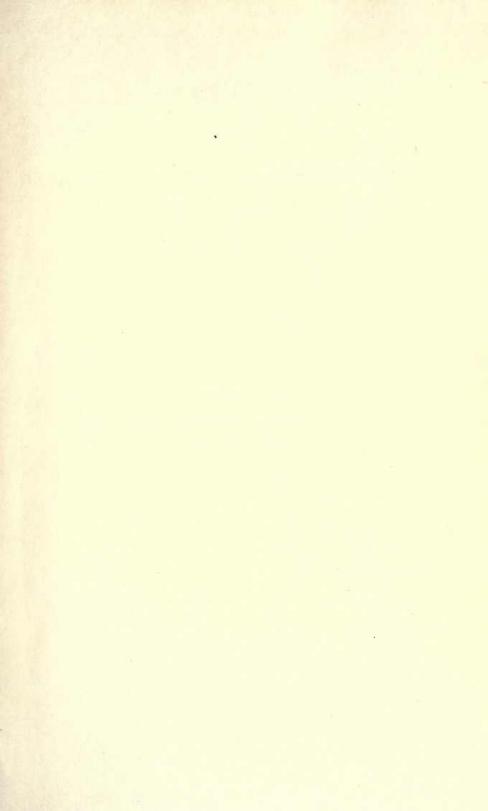

NOTICE: Return or renew all Library Materialsi The Minimum Fee for each Loat Book is \$50.00.


The person charging this material is responsible for its return to the library from which it was withdrawn on or before the **Latest Date** stamped below.

Theft, mutilation, and underlining of books are rassons for disciplinary action and may result in dismissal from the University. To renew call Talephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

DEC 20	2004	
		L161—O-1096

Experimental CORN HYBRIDS 1954 TESTS

By R. W. Jugenheimer

Bulletin 584 · UNIVERSITY OF ILLINOIS AGRICULTURAL EXPERIMENT STATION

Location of regular experimental-hybrid test fields

CONTENTS

	5
MATERIAL TESTED	3
MEASURING PERFORMANCE	6
RESULTS OF THE TESTS	7
NORTHERN ILLINOIS	
Double crosses (Table 2)	
Single and double crosses (Table 3)	13
NORTH-CENTRAL ILLINOIS	
Double crosses (Table 4)	14
Three-way and double crosses (Table 5)	17
CENTRAL ILLINOIS	
Double crosses (Table 6)	18
Single and double crosses (Table 7)	21
Three-way and double crosses (Table 8)	22
Blight-resistant three-way crosses (Table 9)	23
SOUTH-CENTRAL ILLINOIS	
Double crosses (Table 10)	25
Three-way and double crosses (Table 11)	
DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX (Table 12)	29
Acknowledgment is due W. T. Schwenk and Sons, Edwards, for providing land far one of the tests, and to Dr. W. C. Jacob, Professar of Agranomy,	

for valuable computational and statistical assistance.

Page

Publications in the Bulletin series report the results of investigations made or sponsored by the Experiment Station

EXPERIMENTAL CORN HYBRIDS: 1954 TESTS

By R. W. JUCENHEIMER, Professor of Plant Genetics and Corn Research Coordinator

THIS REPORT summarizes the results of tests of experimental corn hybrids conducted in 1954 by this Station. Trials were made at four locations: in DeKalb county in northern Illinois, in Peoria county in north-central Illinois, in Champaign county in central Illinois, and in Fayette county in south-central Illinois. These four locations are representative of the soil, rainfall, and length of growing season in their respective areas.

Hybrids were compared for yield, maturity, resistance to lodging, and other agronomic characters. Only hybrids of similar maturity were tested on the same field. A familiar hybrid whose maturity was considered the standard for the group is named in each table heading.

Since most of the hybrids whose performance is recorded here are not yet in commercial use, the information about them is of most value to producers of hybrid seed. The 1954 performance of hybrids available in commercial quantities to farmers is reported in Bulletin 585 of this Station.

MATERIAL TESTED

One hundred forty-seven different double-cross hybrids were grown at the four locations. Most of the Illinois hybrids were developed by the author. The seed was produced by controlled hand-pollination.

Two sets of single crosses and four sets of three-way crosses differing in maturity were tested in 1954. One set of single crosses (Table 3) and all sets of three-way crosses (Tables 5, 8, 9, and 11) are a part of the "uniform" tests conducted cooperatively by corn-belt states, including Illinois, and the U. S. Department of Agriculture. Seed of the unreleased inbred lines involved in these crosses was contributed by the state or by the federal corn breeder who developed them. Single crosses whose performance is reported in Table 7 were developed by the Illinois Station and tested only in Illinois.

The following individuals are responsible at the present time for collecting seed of inbred lines, making the crosses, and distributing crossed seed of the entries in the uniform tests: E. C. Rossman (Michigan), N. P. Neal (Wisconsin), and G. H. Stringfield (Ohio) — Table 3; J. H. Lonnquist (Nebraska), R. W. Jugenheimer (Illinois), and G. F. Sprague (Iowa) — Tables 5 and 8; M. T. Jenkins (U. S. Department of Agriculture), A. M. Brunson (Indiana), and A. J. Ullstrup (Indiana) — Table 9; L. A. Tatum (Kansas), W. R. Findley (U. S. Department of Agriculture), and M. S. Zuber (Missouri) — Table 11.

The University of Illinois does not produce hybrid seed corn in commercial quantities. If a hybrid gives satisfactory performance, the parental lines are released for use by seedsmen. Hybrids that include new inbred lines are produced under the "delayed release" program adopted by most of the states in the corn belt. Multiplication of a new line is handled by the Station, and the production of single crosses in quantity is handled by the Illinois Seed Producers Association, Champaign, Illinois. After a satisfactory probationary period of two to five years, a new line is released to the public.

Table 12 (see pages 29 to 32) lists the double-cross hybrids whose performance is shown in this report and the tables in which each appears. It also contains the pedigrees of the hybrids tested. In the pedigrees, the order of the single crosses and of the lines in the single crosses has no significance; it does not indicate which should be used as seed or pollen parent in the production of a hybrid.

Illinois yellow hybrids are numbered consecutively below 2000 and above 6000. White hybrids are numbered in the 2000 series; these are usually followed by the letter W. Hybrids that have performed well after wide testing in several corn-belt states have been designated AES (Agricultural Experiment Station) hybrids. Hybrids in the 600 series are similar to Illinois 1277 in maturity; those in the 700 series correspond in maturity to Illinois 21; those in the 800 series correspond to U. S. 13; and hybrids in the 900 series to Illinois 448.

The letter A or B following an Illinois hybrid number indi-

cates that the combination of inbred lines making up the hybrid has been rearranged or permuted. For example, if the original pedigree of an Illinois hybrid was (1×2) (3×4) , the letter A following the number means that the hybrid was put together (1×3) (2×4) , the letter B, (1×4) (2×3) . A difference in reciprocals is not recognized in this method. When a short dash (-) followed by a number occurs as part of an Illinois hybrid number, it means that a tested related line has been substituted for one of the inbred lines included in the original hybrid.

Performance of three-way and single-cross hybrids is of interest to corn breeders, producers of hybrid seed corn, and to farmers. Characteristics of single crosses such as yield, standability, seed size, shape, and quality definitely affect the practical production of hybrid seed corn. Some farmers are interested in growing single-cross and three-way-cross hybrids commercially because of their attractive appearance and extreme uniformity. Use of single-cross and three-way-cross data for the prediction of desirable double-cross combinations creates additional interest in the performance of single crosses.

Prediction studies are an extremely valuable part of a research program. Methods are available to predict the performance of the better hybrid combinations without making and testing large numbers of undesirable crosses. For example, 1,225 single crosses and 690,900 double crosses are possible with 50 inbred lines. However, by using single-cross performance data, the corn breeder can predict which of the many possible doublecross combinations are likely to be most desirable. The following six single crosses can be made with four inbred lines: $A \times B$, $A \times C$, $A \times D$, $B \times C$, $B \times D$, and $C \times D$. The average performance of the four non-parental single crosses gives the predicted performance of a specific double-cross hybrid. For instance, the average yields of the four single crosses $A \times C$, $A \times D$, $B \times C$, and $B \times D$ give the predicted yield of double cross $(A \times B)$ $(C \times D)$. The procedure in predicting acre yields of two hybrids is shown on page 78 of Illinois Agricultural Experiment Station Bulletin 543.

Similar predictions can be made for other characteristics. Predicted hybrid combinations, however, should always be thoroughly tested under field conditions before being put into commercial production.

1955]

[January,

Three-way crosses also provide useful predictions of the performance of double-cross hybrids. A large number of inbred lines can be compared, and the method is especially valuable where a desirable seed parent single cross is available for use as a tester. Three-way crosses provide information on specific hybrids and may often eliminate the time and expense required for testing inbred lines in top crosses and single crosses.

The procedure in predicting acre yields and percentage of erect plants from three-way-cross data is shown below. The three-way-cross data are taken from Table 5. One hybrid is much more promising than the other hybrid.

(Oh28xOh43)(B38xWF9)

(Oh28xOh43)(N9206xOh5)

Е	Bushels per e	ercent of erect lants	В	Sushels per acre	Percent of erect plants
$(Oh28 \times Oh43) \times B38$ $(Oh28 \times Oh43) \times WF9$ 2	119 106	93 92 185	$(Oh28 \times Oh43) \times N9206$ $(Oh28 \times Oh43) \times Oh5$ $2 \mid$		58 77 135
Prediction	112.5	92.5	Prediction	97.5	67.5

MEASURING PERFORMANCE

All plots in these tests were planted, thinned, and harvested by hand in well-fertilized fields prepared in the usual way for corn. Individual plots were 2×5 hills in area. Six kernels were planted in hills spaced 40 inches apart. The plots were thinned to four plants per hill at DeKalb, Peoria, and Champaign, and to three per hill at Brownstown.

General information including dates of planting and harvesting is given in Table 1. Lattice-square designs were used to ob-

Table 1. — GENERAL INFORMATION: Tests of Illinois Experimental Corn Hybrids, 1954

	Section	Number	Number	Plants	Date	of—
County ^a	of state	of repli- eations	of hills per plot	per hill	Planting	Har- vesting
DeKalb Peoria Champaign Fayette	Northern North-Centra Central South-Central	4	10 10 10 10	$\begin{array}{c} 4\\ 4\\ 4\\ 3\end{array}$	May 13 May 17 May 11 May 18	Oet. 19 Oet. 14 Nov. 4 Nov. 9

^a The fields are located near the following cities and towns: in DeKalb county near DeKalb, in Peoria county near Peoria, in Champaign county near Urbana, and in Fayette county near Brownstown. tain the data reported in Tables 2, 3, 4, 6, 7, and 10. The data in Tables 5, 8, 9, and 11 were obtained in randomized blocks. Four replications were grown of each entry.

RESULTS OF THE TESTS

Data obtained from the tests are summarized in Tables 2 to 11. Long-time averages are more reliable indexes of the performance of hybrids than a single year's result. The parts of the tables summarizing the results of two or more years therefore deserve the most weight when the results are studied.

Hybrids are listed in the tables in the order of their yield. Acre yields are reported as shelled grain containing 15.5 percent moisture, the maximum allowable for No. 2 corn. The crop from one replication of each entry at each location was shelled to determine the shelling percentage and moisture percentage. The percentage of moisture in the shelled grain was obtained with a Steinlite moisture meter. Erect plants at harvest and stand were determined from actual counts on all replications of each test.

Data from all plots are included in the report on yield. The only correction for imperfect stands was the following adjustment for missing hills:

$$\frac{\text{Corrected}}{\text{weight}} = \frac{\text{Field}}{\text{weight}} \times \frac{\binom{\text{Number of hills}}{\text{per plot}} - \binom{0.3 \times \text{Number of missing}}{\text{hills per plot}}}{\binom{\text{Number of hills}}{\text{hills per plot}}}$$

This adjustment adds 0.7 percent of the average hill yield for each missing hill, and assumes that 0.3 percent is made up by the increased yield of surrounding hills.

Relative performance cannot be determined with absolute accuracy by any method of testing. Small differences between entries are seldom of any significance. In fact, small differences are to be expected among plots planted even with the same lot of seed. Variations in growing conditions such as soil fertility are reduced but not completely eliminated by replicating the same entry several times in the same test. Unavoidable variation may be determined by a mathematical procedure known as analysis of variance. From this procedure a figure may be obtained that represents the number of bushels by which two entries must differ in yielding ability before they can be considered

1955]

significantly different. Note, for example, in Table 2E that unless any two entries differ by at least 10 bushels per acre there is no statistical difference between them in yielding ability.

The season was favorable for corn at DeKalb and Peoria. The growing season at Urbana was hot and dry, with resulting low yields. Yields were unusually low at Brownstown because of the extremely hot and dry growing season.

The following double crosses were average or better in yield and standability, and average or earlier in maturity as measured by the percent of moisture in the grain. The hybrids are arranged in order of yield.

Northern Illinois

Five-year average (Table 2A) – Ill. 1289, Ill. 1555A, Ill. 1559B, Ill. 1557, Ill. 1560A.

- Four-year average (Table 2B) Ill. 1289, AES 702, Ill. 1555A, Ill. 1557, Ill. 1558, Ill. 1559B, Ill. 1279.
- Three-year average (Table 2C) Ill. 1277, Ill. 1279, Ill. 1555A.
- Two-year average (Table 2D) Ill. 1289, Ill. 1555A, Ill. 1279.
- 1954 results (Table 2E) Ill. 21, Ill. 1555A, AES 702, Ill. 1289, Ill. 2247W, Ill. 1279, Ill. 101, Ill. 1864, Ill. 1560A.

North–Central Illinois

- Five-year average (Table 4A) Ill. 1555A, Ill. 1560A.
- Four-year average (Table 4B) Ill. 274-1, Ill. 1575, Ill. 1555A.
- Three-year average (Table 4C) Ill. 274-1, Ill. 1575, Ill. 1555A, Ill. 1277.
- Two-year average (Table 4D) Ill. 1332, Ill. 274-1, Ill. 1511, Ill. 1555A, Ill. 1575.
- 1954 results (Table 4E) Ill. 1511, Ill. 1332, Ill. 1919, Ill.
 1617, Ill. 1905, Ill. 274-1, Ill. 1875, Ill. 1914, Ill. 1555A,
 Ill. 1896A.

Central Illinois

Five-year average (Table 6A) — Ill. 1332, Ill. 972A-1.

Four-year average (Table 6B) — Ill. 1511, Ill. 1421, Ill. 1332, Ill. 972A-1, Ill. 1777.

- Three-year average (Table 6C) Ill. 1332, AES 801, Ill. 972A-1, AES 802.
- Two-year average (Table 6D) Ill. 1332, AES 802, AES 801, Ill. 21, Ohio 4808.
- 1954 results (Table 6E) Ill. 1896, Ill. 1913, Ill. 1919, Ill.
 1911, Ill. 1777, Ill. 1332, Ill. 1908, Ill. 1915, Ill. 1909, AES 801, Ill. 21.

South-Central Illinois

- Five-year average (Table 10A) Ill. 1539A, Ill. 1349, Ill. 1332.
- Four-year average (Table 10B) Ill. 1332, Ill. 1656, Ill. 1349, Ill. 1539A.
- Three-year average (Table 10C) Ill. 1656, Ill. 1332, Ill. 1349.
- Two-year average (Table 10D) Ill. 1859, Ill. 2246W, Ill. 1332, Ill. 1656, Ill. 6076, AES 803, Ill. 1349, Ill. 1893.
- 1954 results (Table 10E) Ill. 1656, Ill. 1332, Ill. 1859, Ill.
 1539A, Ill. 1856, Ill. 1852, Ill. 2246W, Ill. 1349, Ill. 1893,
 Mo. 804, Ill. 1771, AES 805, Ill. 1914, Ill. 1896.

[January,

Table 2. — DOUBLE CROSSES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1950-1954

(Entries in **boldface** were average or better in yield and standability and average or earlier in maturity)

A — Five-year averages, 1950-1954

		bu.	perct.	perct.	perct.	perct.	in.
1	Ill. 1289	101	24	78	96	98	36
$\overline{2}$	III. 1277	99	24	78	94	98	39
3	Ill. 1575	99	26	78	97	99	39
4	III. 1555A	98	21	80	96	97	38
$\overline{5}$	III. 1559B.	98	23	78	98	98	33
6	Ill. 1557	98	24	76	98	96	35
ž	Ill. 1560A	97	23	79	100	98	36
8	III. 1279	97	24	78	95	98	39
<u>9</u>	Ill. 1280.	97	24	78	95	97	37
10	Ill. 1290	97	25	78	95	95	39
11	Ill. 1091A	96	26	77	96	98	40
12	Ill. 1558	95	26	76	98	97	34
13	III. 101	94	24	77	97	97	37
14	Ill. 21	94	27	76	94	98	46
15	Ill. 1375	92	23	78	96	98	35
16	Ill. 1595	92	24	77	97	98	41
	Average	96	24	78	96	98	38

B — Four-year averages, 1951-1954

1 2 3	Ill. 1493. Ill. 1289. Ill. 1575.	$ \begin{array}{r} 109 \\ 108 \\ 108 \end{array} $	$\begin{array}{c} 26\\ 24\\ 27\end{array}$	79 78 77	98 96 97	97 97 98	$ 40 \\ 36 \\ 40 $
		107	24	78	95	97	
45	III. 1277	107	24 24	$\frac{78}{75}$	95 96	97	$40 \\ 42$
Э	AES 702	107	24	10	90	99	42
6	Ill. 1555A	106	22	80	96	98	41
7	III. 1280.	106	$\tilde{24}$	78	95	97	38
8	Ill. 1557	106	24	76	98	96	36
9		106	26	76	94	97	48
10	III. 21 III. 1558	105	25	77	98	97	36
10	111, 1556	105	20		90	91	90
11	Ill. 1559B	104	24	78	98	98	35
$\hat{1}\hat{2}$	Ill. 1279	$\hat{1}\tilde{0}\hat{4}$	$\overline{25}$	78	96	98	39
13	III. 1290	104	25	78	94	96	39
14	Ill. 101.	104	26	78	97	98	38
15	Ill. 1560A.	103	24	78	100	98	37
10	III. 1500A	105	24	10	100	30	07
16	Ill. 1091A	103	27	77	95	97	40
17	III. 1281	102	26	78	96	97	36
18	Ill. 1585	101	$\overline{24}$	77	94	94	37
19	Ohio K24	100	$\bar{2}\bar{2}$	80	95	95	37
$\hat{20}$	Ill. 1579.	100	$\tilde{24}$	79	97	98	34
20	***************************************	100	27	.0		00	01
21	111. 1595	99	25	77	97	97	42
$\overline{22}$	Ill. 1375.	98	24	78	96	98	34
		104	25	78	96	97	38
	Average	104	25	18	90	91	33

(Table is continued on next page)

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear heigh
	C — Three-year	avera	ges, 19	52-1954	- Y		
		bu.	perct.	perct.	perct.	perct.	in.
	Ill. 21		22	79	95	97	47
	111. 1575		23	79	99	98	40
	Ill. 1277		21	$\frac{79}{29}$	96	97	39
	AES 702		23 23	77 77	97 98	98 97	$\frac{41}{38}$
6	Ill. 1289	118	25	78	96	97	37
	Ill. 1279		20	79	96	98	38
	111. 1280		21	80	95	95	38
	Ill. 101		22	80	97	99	37
10	I.S.P. 2	117	24	76	99	99	37
1	Ill. 1557	116	23	78	98	96	37
2	Ill. 1559B		22	80	98	98	36
	111. 1558		22	78	98	96	36
	111. 1091A		23	78	95	96	41
5	Ill. 1555A	114	20	81	97	97	41
	Ill. 1290		22	79	95	95	38
	111. 1281		22	78	97	97	37
	Ill. 1560A		21	78	99	97	37
	Ill. 1585.		21 19	78	93 97	94 99	37
0	Ind. 0421	109	19	81	94	99	37
1	Ill. 1579	109	20	79	96	96	34
	Ill. 1595		21	77	98	98	41
	Ohio K24		20	80	97	95	36
4	Ill. 1800.		21	79	97	97	36
5	Ill. 1799	107	19	81	, 98	100	38
	Ill. 1802	107	20	80	98	96	38
	Ill. 1375		20	80	96	97	35
	AES 610		20	80	93	96	31
9	Ohio M15		19	82	91	96	42
	Average	113	21	79	96	97	38
	D — Two-year	averag	ges, 195	3-1954			
1	III. 1902.	132	22	79	92	100	40
	III. 1575	196	22	80	0.0	0.9	10

Table 2. — Continued

$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	III. 1902. III. 1575. III. 21. III. 1277. III. 1493.	132 126 124 124 124 124	22 23 21 22 23	79 80 79 80 79	92 98 94 95 98	$ \begin{array}{r} 100 \\ 98 \\ 96 \\ 96 \\ 96 \\ 96 \end{array} $	40 40 46 39 38
6 7 8 9 10	lll. 1861 lll. 1559B. lll. 1289. lll. 101. lll. 101. lll. 1863	123 123 122 122 122	20 22 21 22 23	82 81 79 81 80	94 97 96 96 96	98 99 97 98 98	$37 \\ 36 \\ 36 \\ 36 \\ 34 $
11 12 13 14 15	III. 1557 III. 1555A. III. 1279. III. 1281. III. 1091A.	$122 \\ 120 $	23 20 20 22 22 22	79 82 80 80 78	96 96 95 96 93	96 96 98 96 96	36 40 37 36 40
16 17 18 19 20	AES 702. Ill. 1865. Ill. 1866. Ill. 1280. Ill. 1280. Ill. 1585.	120 118 118 118 118 117	22 22 22 22 22 21	77 80 80 80 80	96 96 94 93 90	98 96 97 96 97	40 34 36 37 36
21 22 23 24 25 26 27 28 29 30	I.S.P. 2. Ind. 0421. Ill. 1560A. Ill. 1290. Ill. 1558. Ill. 1864. Ill. 1875. Ill. 1895. Ill. 1895. Ill. 6074. Ill. 1862.	$117 \\ 116 \\ 116 \\ 116 \\ 116 \\ 115 \\ 114 \\ 114 \\ 114 \\ 114 \\ 113$	24 20 22 22 20 20 20 20 22 24 21	77 82 79 80 78 82 81 79 80 80	98 96 99 94 97 96 95 97 90 96	99 98 96 96 98 98 98 96 96 96 94	36 37 38 38 34 32 35 40 42 31

(Table is concluded on next page)

	-	able	. ot	menuace	*					
Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears		
	D — Two-year averages, 1953-1954 (concluded)									
$31 \\ 32 \\ 33 \\ 34 \\ 35$	Ill. 1579. Ill. 1799. Ohio K24. Ill. 1802. Ill. 1800.	<i>bu.</i> 111 110 110 110 108	<i>perct.</i> 21 19 20 20 21	<i>perct.</i> 80 82 82 80 80 80	<i>perct.</i> 94 96 96 98 95	<i>perct.</i> 96 99 94 98 97	in. 34 38 36 36 34	perct.		
36 37	AES 610 Ohio M15 Average	106 104 117	20 20 21	82 82 80	90 88 95	95 96 97	32 41 37	•••		
	E — 19	954 re	sults (4	replica	tions)					
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	Ill. 1902. M14×WF9. Ill. 1861. Ill. 1281. Ill. 1559B.	149 140 140 139 138	27 25 23 27 27	78 78 80 79 77	90 90 89 95 96	100 98 99 99 99	$ \begin{array}{r} 41 \\ 36 \\ 36 \\ 41 \\ 39 \end{array} $	$0 \\ 0 \\ 3.2 \\ 1.2 \\ .7$		
6 7 8 9 10	Ill. 1575 Ill. 21 Ill. 1555A Ill. 1493 AES 702	137 137 137 137 137 136	28 25 26 28 26	77 77 79 78 77	96 93 96 97 95	97 96 94 92 99	$43 \\ 46 \\ 40 \\ 41 \\ 39$	2.0 3.4 3.3 0 3.8		
$11 \\ 12 \\ 13 \\ 14 \\ 15$	lil. 1557. Iil. 1289. Iil. 2247W. Iil. 2279. Iowa 4630.	136 135 134 133 133	$28 \\ 26 \\ 25 \\ 25 \\ 24$	77 77 78 78 78 79	94 92 93 92 88	98 98 94 97 96	38 39 42 38 36	.6 4.9 3.1 3.3 2.6		
$16 \\ 17 \\ 18 \\ 19 \\ 20$	III. 1277. III. 101. III. 1866. III. 1864. III. 1091A.	$133 \\ 131 \\ 129 \\ 128 \\ 128 \\ 128 \\$	26 26 27 24 27	79 79 78 78 78 77	91 95 90 95 90	94 97 94 96 97	42 39 38 32 42	$5.3 \\ 4.2 \\ .7 \\ 5.8 \\ 2.9$		
21 22 23 24 25	I.S.P. 2. III. 1560 A III. 1290. III. 1595. III. 1903.	127 127 127 127 127 126	28 24 27 28 24	76 77 78 79 77	97 98 88 95 97	100 96 94 97 96	$35 \\ 38 \\ 39 \\ 43 \\ 40$	$1.4 \\ 1.2 \\ 2.8 \\ .7 \\ 2.7$		
26 27 28 29 30	III. 1585 III. 1375. Ind. 0421. III. 1280. III. 1863	$126 \\ 126 \\ 126 \\ 125 \\ 125 \\ 125$	26 25 25 26 28	78 79 80 79 79	88 91 93 87 94	95 96 98 94 97	38 38 38 37 33	$3.8 \\ 2.6 \\ 3.5 \\ 3.3 \\ 1.5$		
31 32 33 34 35	AES 510 Ill. 6015. Ill. 1865. Ill. 1579. Ill. 6074.	124 123 122 122 121	23 32 27 25 29	80 75 78 78 78	93 83 93 90 88	93 95 98 96 94	$39 \\ 62 \\ 34 \\ 35 \\ 42$	$2.1 \\ .6 \\ 3.1 \\ 1.9 \\ 2.0$		
36 37 38 39 40	III. 1799. III. 6052. III. 1558. III. 1802. III. 1862.	$121 \\ 120 \\ 120 \\ 120 \\ 119$	$22 \\ 32 \\ 26 \\ 24 \\ 25$	79 76 76 78 79	93 87 95 97 92	99 94 93 96 88	39 51 36 38 30	3.1 .6 2.2 2.6 1.9		
41 42 43 44 45	Ohio K24 Minn. 40 Iowa 4558 Minn. 4. Ill. 1800	119 119 117 117 117	23 23 22 23 26	80 78 80 80 78	94 92 89 92 90	93 94 92 92 96	37 38 35 40 35	$3.9 \\ 0 \\ 4.3 \\ 3.3 \\ 2.6$		
46 47 48 49	AES 610. Ohio M15. Ill. 6062. Ohio 5305. Average. Significant difference.	116 112 103 97 127 10	23 24 33 22 26	80 82 75 78 78	84 86 96 92 7	95 95 96 91 96 8	$34 \\ 43 \\ 55 \\ 38 \\ 39 \\ 4$	$1.4 \\ 3.9 \\ 1.7 \\ .8 \\ 2.4 \\ \cdots$		

Table 2. — Concluded

Table 3.— SINGLE AND DOUBLE CROSSES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1954

(Entries in **boldface** were average or better in yield and standability and average or earlier in maturity)

Cod	le Entry	Acre yicld	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears			
	A — Single crosses										
1 2 3 4 5	$\begin{array}{c} M14 \times B14 \\ M14 \times B21 \\ M14 \times A223 \\ B14 \times B21 \\ B14 \times A223 \\ B14 \times A223 \\ \end{array}$	<i>bu.</i> 149 131 114 121 138	<i>perct.</i> 25 23 30 22	<i>perct.</i> 81 80 79 79 80	<i>perct.</i> 97 88 85 83 99	<i>pcrct.</i> 94 97 97 97 94	in. 38 37 34 45 36	perct. 0 2.0 1.2 1.3 .7			
6 7 8 9 11	$\begin{array}{c} B21 \times A223 \\ \textbf{A239} \times M14 \\ \textbf{A239} \times B14 \\ A239 \times B21 \\ A295 \times M14 \end{array}$	126 134 129 108 119	$23 \\ 24 \\ 24 \\ 22 \\ 25$	79 81 83 82 77	97 98 100 97 93	90 97 99 89 98	37 39 40 37 36	$\begin{array}{c}1.2\\0\\0\\.8\\.6\end{array}$			
$12 \\ 13 \\ 14 \\ 15 \\ 16$	$\begin{array}{c} \textbf{A295} \times \textbf{B14}. \\ A295 \times \textbf{B21}. \\ A295 \times \textbf{A223}. \\ A295 \times \textbf{A223}. \\ A295 \times \textbf{A239}. \\ A297 \times \textbf{M14}. \end{array}$	142 124 107 124 122	24 23 21 21 22	79 78 77 79 80	97 92 94 88 96	93 86 98 98 97	$42 \\ 40 \\ 38 \\ 41 \\ 40$	$\begin{smallmatrix}&&0\\&.6\\8.1\\&0\\0\end{smallmatrix}$			
17 18 19 20 21	$\begin{array}{c} \textbf{A297} \times \textbf{B14}. \\ A297 \times \textbf{B21}. \\ A297 \times A223. \\ A297 \times A223. \\ A297 \times A239. \\ A297 \times A239. \\ A297 \times A295. \end{array}$	$139\\143\\112\\115\\115$	24 22 22 22 22 22	81 81 81 82 79	100 92 96 98 93	$95 \\ 100 \\ 98 \\ 98 \\ 96$	42 43 38 39 41	$0 \\ 5.1 \\ .6 \\ .7 \\ 3.8$			
$22 \\ 23 \\ 24 \\ 25 \\ 26$	$\begin{array}{c} A545 \times M14 \\ A545 \times B14 \\ A545 \times B21 \\ A545 \times A223 \\ A545 \times A223 \\ A545 \times A223 \\ \end{array}$	$136 \\ 135 \\ 134 \\ 118 \\ 139$	24 27 25 23 24	81 82 82 78 81	95 99 95 94 93	96 96 88 100 96	$38 \\ 45 \\ 40 \\ 35 \\ 42$	0 0 .6 .6			
$27 \\ 28 \\ 29 \\ 30 \\ 31$	A545×A295 A545×A297. Oh26A×M14. Oh26A×B14. Oh26A×B21.	$125 \\ 131 \\ 126 \\ 138 \\ 121$	23 24 24 25 23	74 80 79 78 80	92 96 85 99 96	$99 \\ 100 \\ 96 \\ 95 \\ 86$	40 43 41 42 40	$\begin{smallmatrix} .6\\0\\0\\0\\1.3\end{smallmatrix}$			
$32 \\ 33 \\ 34 \\ 35 \\ 36$	Oh26A × A223 . Oh26A × A239 . Oh26A × A295 . Oh26A × A297 . Oh26A × A545 .	$ \begin{array}{r} 118 \\ 122 \\ 115 \\ 123 \\ 138 \\ 138 \end{array} $	$20 \\ 22 \\ 22 \\ 22 \\ 22 \\ 26$	81 80 75 80 79	99 94 99 96 98	83 87 96 98 99	37 38 39 38 44	$\begin{array}{c}0\\0\\1.9\\2.1\end{array}$			
$37 \\ 38 \\ 39 \\ 40 \\ 41$	$\begin{array}{c} w_{64A} \times M14 \\ w_{64A} \times B14 \\ w_{64A} \times B12 \\ w_{64A} \times A223 \\ w_{64A} \times A239 \\ \end{array}$	$135 \\ 144 \\ 115 \\ 126 \\ 120$	23 26 22 23 22	78 79 78 78 78	96 99 90 98 97	98 97 83 96 98	33 37 35 35 36	$ \begin{array}{r} .6 \\ .7 \\ 1.5 \\ 3.2 \\ .7 \\ .7 \\ $			
42 43 44 45	$\begin{array}{l} W64A \times A295. \\ W64A \times A297. \\ W64A \times A545. \\ W64A \times Oh26A. \\ Average. \\ Significant difference. \\ \end{array}$	123 135 136 110 127 12	$25 \\ 23 \\ 27 \\ 24 \\ 24 \\$	76 78 78 77 79	95 98 97 97 95 6	96 97 93 89 95 12	37 40 37 36 39 3	1.9 1.2 1.3 0 1.0			
		B — 1	Double	crosses							
	Ill. 1863. AES 702. Ill. 1289. Ohio K24. Ill. 1800. Average. Significant difference.	143 139 134 123 118 131 12	27 27 28 24 25 26	79 76 78 80 77 78	96 94 99 93 92 95 6	99 98 98 95 91 96 12	35 44 38 36 37 38 3	2.03.21.33.5.62.1			

Table 4. — DOUBLE CROSSES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1950-1954

(Entries in **boldface** were average or better in yield and standability and average or earlier in maturity)

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	A — Fi	ive-year averag	ges, 195	0-1954			
2 Ill. 156 3 Ill. 129 4 Ill. 127	55 A	90 90 90 90	<i>perct.</i> 17 18 19 20 21	perct. 84 81 82 82 82 80	<i>perct.</i> 94 97 93 93 93 96	<i>perct.</i> 97 98 96 98 98	in. 38 37 39 39 40
	30		19 19	82 82	$\frac{91}{94}$	97 98	37 38
	B — Fc	our-year averag	ges, 195	1-1954			
2 Ill. 972 3 Ill. 161 4 Ill. 133	1. 2A-1. 7. 22. 0		$20 \\ 20 \\ 20 \\ 19 \\ 21$	83 82 79 82 79	92 91 91 91 88	89 95 96 97 99	48 45 44 46 48
7 Ill. 157 8 Ill. 155 9 Ill. 127	–1. 5. .5 A . .7. .05.	99 97 96	19 20 17 20 21	81 80 84 83 78	94 95 93 93 96	97 99 98 97 93	$46 \\ 41 \\ 40 \\ 40 \\ 43$
12 Ill. 128 13 Ill. 129 14 Ill. 156	50 30 00 00A 02		22 18 18 18 20	78 83 82 81 78	94 90 92 96 91	95 97 94 98 97	$44 \\ 38 \\ 39 \\ 38 \\ 42$
	297		$ \begin{array}{c} 19 \\ 20 \end{array} $	82 81	94 93	91 96	$\begin{array}{c} 40\\ 43 \end{array}$
	<mark>C — T</mark> h	ree-year avera	ges, 195	5 2-1 954			
2 AES 8 3 Ill. 151 4 Ill. 972	9 06 1 2A-1 22	105 104 104 104	18 22 19 21 19	81 80 83 81 82	89 89 91 90 90	98 97 86 95 96	$45 \\ 44 \\ 50 \\ 49 \\ 48$
7 Ill. 274 8 Ill. 161 9 Ill. 181	70 1		20 19 19 21 19	79 82 79 81 80	86 93 89 94 94	98 97 92 96 98	50 47 45 40 42
13 Ill. 127 14 Ill. 156	81 5 A		20 16 19 17 20	81 85 83 82 81	94 93 92 96 92	96 97 97 97 98	$\begin{array}{r} 41 \\ 42 \\ 42 \\ 40 \\ 39 \end{array}$
17 Ill. 181 18 Ill. 128 19 AES 8	50. .3		$21 \\ 23 \\ 18 \\ 21 \\ 18$	78 79 82 78 83	92 95 87 95 89	94 94 96 91 94	$44 \\ 45 \\ 39 \\ 44 \\ 41$
22 AES 7 23 Iowa 4	405. 02. 297		19 20 18 19	80 78 82 81	95 89 92 92	92 97 90 95	$38 \\ 43 \\ 41 \\ 43$

(Table is continued on next page)

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	D — '	Two-ye	ar aver	ages, 19	53-1954			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	AES 806. Ill. 1819. Ill. 1570. Ill. 1332. Ill. 1875.	98 95 94	<i>perct.</i> 21 18 19 18 19 18	<i>perct.</i> 80 82 80 83 80	perct. 86 84 81 89 92	<i>perct.</i> 96 96 97 94 92	<i>in.</i> 42 41 46 45 47	perct.
	III. 972A-1. III. 274-1. III. 1511. III. 1617. III. 1831.		20 18 18 18 20	81 82 84 80 82	86 91 89 88 94	92 96 78 96 94	$46 \\ 43 \\ 46 \\ 44 \\ 38$	••••
$ \begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	III. 1896A. III. 1555A. III. 1575. III. 1875. III. 1814. III. 1868.	90 90 90 90 90 90	18 16 18 19 19	80 84 81 82 81	88 90 91 92 94	98 96 98 97 94	$ \begin{array}{r} 40 \\ 40 \\ 39 \\ 38 \\ 40 \end{array} $	
16 17 18 19 20	Ill. 1277 Ill. 2247W Ill. 1560A. Ill. 1813 Ill. 1826	87	18 18 16 22 19	84 81 82 79 82	88 80 94 92 90	96 95 96 96 98	$38 \\ 42 \\ 36 \\ 42 \\ 36 \\ 36$	
21 22 23 24 25	Ill. 1760. Ill. 1280. Ill. 1290. Ind. 1405. Ill. 1864.	$ $	$20 \\ 16 \\ 17 \\ 18 \\ 16$	78 82 82 82 82 82	89 82 88 93 93	$91 \\ 95 \\ 91 \\ 93 \\ 94$	42 35 38 35 36	•••
26 27 28 29 30	Ill. 1863 Ill. 1873. AES 702. AES 805. Iowa 4297. Average.	$ \begin{array}{cccc} $	18 18 18 20 18 18	82 80 80 78 82 81	94 94 86 93 92 89	95 94 96 87 86 94	$36 \\ 36 \\ 40 \\ 42 \\ 38 \\ 40$	
	E —	1954 re	sults (4	replica	tions)			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	AES 806 Ill. 972A-1 Ill. 1912 Ill. 1819 Ill. 1819 Ill. 1511	$ \dots 107 \\ \dots 107 \\ \dots 107 $	23 22 21 22 21 22 21	80 80 81 80 82	88 85 79 79 79 85	100 99 97 99 98	40 46 42 43 47	1.5 3.3 3.6 7.2 15.5
6 7 8 9 10	III. 1332. III. 1570. III. 1919. III. 1917. III. 1905.	$ 105 \\ 104 \\ 104 $	20 22 20 20 21	82 80 80 79 77	86 77 86 84 83	$100 \\ 98 \\ 99 \\ 100 \\ 99$	$43 \\ 45 \\ 44 \\ 43 \\ 46$	$3.9 \\ 1.3 \\ 3.7 \\ .6 \\ 3.8$
$11 \\ 12 \\ 13 \\ 14 \\ 15$	III. 274-1. III. 1918. III. 1875. III. 1876. III. 1906. III. 1913.	103 103 102	20 22 21 21 20	82 81 80 79 83	86 81 92 77 74	99 98 100 100 98	44 44 47 45 44	.7 3.8 9.2 4.4 3.3
16 17 18 19 20	Ill. 1908 Ill. 1915 Ill. 1910 Ill. 1904. Ill. 1914	99 98 98	20 22 20 21 21	82 80 83 79 79	75 85 73 60 85	99 99 99 98 99	$44 \\ 42 \\ 44 \\ 46 \\ 45$	$2.7 \\ 5.6 \\ 2.8 \\ 2.7 \\ 4.0$

Table 4. — Continued

(Table is concluded on next page)

Table 4. — Concluded

in yiele	k Entry d	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears
	E —	1954 re	sults (4	replica	tions)			
		bu.	perct.	perct.	perct.	perct.	in.	perct.
21	Ill. 6021		23	78	63	100	51	5.0
22 23	Ill. 1916 Ill. 1555A		$\frac{20}{19}$	82 82	68 89	99 98	46 42	$3.9 \\ 3.8$
24	Ill. 1917.		19	82	77	96	43	.7
$\overline{25}$	III. 1896A		20	80	84	97	39	4.6
26	Ill. 1814		22	80	85	100	39	3.2
27	Ill. 1575		22	79	92	99	42	3.8
28 29	Ill. 1277. Ill. 2247W.	94 93	20 20	83 80	85 77	97 99	41 42	$.7 \\ 3.4$
30	Ill. 1868		20	80	93	99	42	4.7
31	Ill. 1911	93	20	80	80	98	46	7.1
32	Ohio 3247	92	20	83	79	100	35	3.8
33	Ill. 1290	92	20	81	79	98	40	1.9
$\frac{34}{35}$	Ill. 1831 Ind. 1405		$\frac{24}{20}$	81 81	91 88	99 97	38 37	$\frac{4.3}{4.6}$
36	Ill. 1760	. 91	23	77	87	99	41	5.1
37	Ill. 1560A	89	19	79	91	100	39	1.2
38	Ill. 1909	88	20	80	76	95	43	5.2
39 40	Ill. 1280.		$ \frac{19}{21} $	80 80	78 89	99 99	$\frac{34}{36}$	$\frac{6.0}{2.0}$
	Ill. 1826				09	99	30	2.0
41	Ill. 1813		24	77	90	99	42	2.0
42 43	Ind. 2401		$\frac{21}{20}$	80 80	89 91	99	37	4.2
43 44	Ill. 1903 Ill. 1864		20 19	80 81	91 88	97 100	39 35	$2.7 \\ 2.6$
45	AES 702		21	79	88	98	40	2.0
46	Ill. 1863	81	22	80	91	99	37	3.8
47	AES 805	79	22	75	92	96	41	3.6
48	Ill. 1873	. 77	22	77	93	100	36	4.9
49	Iowa 4297		21	80	86	97	38	7.1
	Average Significant difference		21	80	83 12	99 3	42 4	3.9

Table 5. - THREE-WAY AND DOUBLE CROSSES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Code	e Entry	Acre yield	Mois- ture in grain	Shellin	g Erect plants	Stand	Ear height	Dropped ears
	A — Inbred	lines	crossed	with	(B14 $ imes$	WF9)		
		bu.	perct.	perct.	perct.	perct.	in.	perct.
1	B38	. 96	19	76	98	97	41	3.5
2	C103	. 76	22	73	97	99	42	$9.3 \\ 2.8$
3	Oh26A	. 78	19	81	97	98	39	2.8
4	M14		21	81	92	94	37	3.4
5	Oh422	. 97	21	77	96	92	40	4.6

6 7 8 9 10	Oh28 Nebr. 9206 Oh5 W70 Oh43	$106 \\ 102 \\ 82 \\ 86 \\ 113$	19 19 19 19 20	79 82 75 82 82	96 80 97 97 93	99 99 100 99 99	38 40 40 41 38	$ \begin{array}{r} .7 \\ 4.5 \\ 6.2 \\ 3.8 \\ 2.4 \\ \end{array} $
11 12 13 14 15	Nebr. 4535. K1603. A73. B37. N18. Average.	118 110 73 102 100 96	20 18 18 19 20 20	83 81 82 78 81 80	94 90 97 97 82 94	99 96 99 99 97 98	39 41 35 41 38 39	3.9 1.2 0 3.2 3.2 3.5

B — Inbred lines crossed with (Oh28 \times Oh43)

B38	119	19	79	93	92	42	2.6
C103	72	23	71	95	99	39	2.1
Oh26A	95	19	82	91	98	39	2.7
WFO							1.2
M14							.6
	00	10	01	00	00	01	.0
Nebr 9206	99	20	83	58	96	38	1.4
							4.7
W70							1.3
N /0							
							3.4
K1603	109	18	83	75	99	39	2.9
A73	80	19	80	91	99	36	4.6
B37	129	23	82	98	100	39	.6
N18							2.6
Nob- 4056							.7
Neor. 4030	97						
Average	101	20	81	84	98	38	2.2
	B38 C103 Oh26A WF9 M14 Nebr. 9206 Oh5 W70 Nebr. 4535 K1603 A73 B37 N18 Nebr. 4056 Average	$\begin{array}{ccccccc} C103 & & & 72 \\ Oh26A & & 95 \\ WF9 & & 106 \\ M14 & & 98 \\ \\ Nebr. 9206 & & 99 \\ Oh5 & & 96 \\ W70 & & 108 \\ Nebr. 4535 & & 112 \\ K1603 & & & 109 \\ A73 & & 80 \\ B37 & & & 129 \\ N18 & & & 91 \\ Nebr. 4056 & & & 97 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C — Double crosses

(Oh28×Oh43)(B14×WF9)	108	21	80	94	99	39	$3.8 \\ 5.9 \\ 1.9$
AES 702.	90	20	77	96	98	40	
Iowa 4297.	87	21	80	92	98	40	
Average	$\begin{array}{c} 95\\11\end{array}$	21 	79 • •	94 9	98 4	$\frac{40}{3}$	3.9

[January,

Table 6. — DOUBLE CROSSES OF U. S. 13 MATURITY Tested in Central Illinois, 1950-1954

(Entries in **boldface** were average or better in yield and standability and average or earlier in maturity)

Ran in yiel		Entry		Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
			A — Five-year	averag	ges, 195	0-1954			
				bu.	perct.	perct.	perct.	perct.	in.
1					18	82	86	96	48
2 3					17 17	81 80	89 83	$98 \\ 97$	$\frac{46}{47}$
4 5	U.S. 13	3		. 93	18 18	80 80	78 78	98 97	$\frac{52}{47}$
6					17	82	83	97	47
7	Ill. 274	-1			16	82	87	98	45
	Aver	age		. 93	17	81	83	97	47
			B — Four-year	averag	ges, 195	1-1954			
1	Ill. 151	1		. 95	17	82	85	99	47
2	Ill. 142	1		. 94	17	82	85	99	44
3 4					$\frac{16}{16}$	82 80	88 82	98 99	$\begin{array}{c} 46 \\ 47 \end{array}$
$\hat{5}$			•••••••••••••••••••••••••••••••••••••••		$\hat{17}$	80	83	98	46
6					17	80	77	98	51
7	Ill. 175	9	· · · · · · · · · · · · · · · · · · ·	. 90	18	80	81	98	46
8 9	III. 176	14	· · · · · · · · · · · · · · · · · · ·	. 90 . 88	18 17	79 79	80 82	$ 100 \\ 99 $	47 47
10	Ill. 157	0	•••••••••••••••••••••••••••••••••••••••	. 88	18	80	77	99	47
11	Ill. 274	-1		. 86	16	82	84	100	45
$\frac{12}{13}$	Ill. 176	57	• • • • • • • • • • • • • • • • • • • •	.86 .84	$17 \\ 18$	80 81	90 77	$\begin{array}{c} 97 \\ 100 \end{array}$	$\frac{43}{45}$
					17	80	82	99	46
			C — Three-year	avera	ges, 195	2-1954			
1	Ill, 151	1		. 94	17	83	87	99	47
$^{2}_{3}$	Ill. 142	21		. 94	17	82	85	99	43
3 4	III. 133	7		. 91 . 91	$\frac{15}{17}$	82 80	91 89	98 99	$\frac{45}{45}$
$\hat{5}$	AES 8	01		. 90	16	79	94	96	39
6	Ill. 157	0		. 90	17	80	84	99	47
$\frac{7}{8}$	111. 972	A-1		. 89	16	79	83	98	47
9	Ill. 178				16 17	$\frac{81}{78}$	83 80	98 99	$\frac{50}{48}$
10			•••••••••••••••••••••••••••••••••••••••	. 88	18	77	80	99	49
11	AES 8	02		. 87	16	80	90	88	43
$\frac{12}{13}$	III. 175 III. 274	9		. 87 . 86	17 15	78 82	83 90	98 99	45 44
14	Ill. 21			. 86	16	82 82	90 89	99	44
15	Ohio 4	808		. 86	17	80	92	98	40
16	III. 176				16	79	87	98	46
17	III. 176	7	· · · · · · · · · · · · · · · · · · ·	. 82	17	80	86	99	45
18 19	AES 8	05		.81 .79	$ 16 \\ 17 $	$\frac{79}{80}$	90 92	97 95	40 42
10					16	80	32 87	98	45
			(Table is conti						

(Table is continued on next page)

Ranl in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height				
	D — Two-year averages, 1953-1954										
		bu.	perct.	perct.	perct.	perct.	in.				
1	Ill. 1896	92	16	82	82	98	42				
$\hat{2}$	Ill. 1511	90	îř	83	84	98	$4\tilde{7}$				
3	Ill. 1421	88	17	82	$7\hat{8}$	98	42				
4	Ill. 1332.	87	15	82	88	98	46				
5	111. 1777	87	17	81	85	100	$\tilde{45}$				
6	Ill. 1570	86	17	81	77	98	47				
7	U.S. 13	83	16	82	80	98	48				
8	Ill. 972A-1	82	16	79	76	98	46				
9	Mo. 4041W	82	17	79	76	98	48				
10	AES 802	80	16	80	88	88	42				
11	AES 801	80	16	78	91	95	39				
12	Ill. 1788.	80	17	80	72	98	46				
13	Ill. 21	78	16	82	86	98	46				
14	Ohio 4808	78	16	80	89	98	38				
15	Ill. 1813	78	17	81	90	96	40				
16	Ill. 1890	76	16	79	90	100	42				
17	Ill. 1759	76	16	78	76	98	44				
18	Ill. 274-1	75	16	82	85	100	44				
19	Ill. 1767	75	16	82	80	99	45				
20	Ill. 1764	72	16	78	84	97	46				
21	AES 803	71	16	80	88	96	38				
22	Ill. 1880	70	15	82	85	95	42				
23	Ill. 6075	68	16	82	67	96	39				
24	AES 805	68	17	80	90	94	40				
25	Ill. 1884	67	16	76	90	96	43				
26	Ill. 1877	66	16	78	96	98	38				
27	Ill. 1876	63	16	77	88	96	44				
28	Ill. 1889	62	18	76	96	98	44				
	Average	77	16	80	84	97	43				

Table 6. — Continued

(Table is concluded on next page)

Table 6. — Concluded

Ranl in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smutted plants
		<mark>Е</mark> —	1954 re	sults (4	replic	cations))	_	
$ \frac{1}{2} \frac{3}{4} 5 $	Ill. 1511. Tenn. 3473 Ill. 1896 Ill. 1913. Ill. 1919.	97 96	<i>perct.</i> 18 21 17 18 16	perct. 84 83 83 84 83	perct. 86 79 90 93 90	<i>perct.</i> 98 97 95 97	in. 42 40 38 38 38	<i>perct.</i> 5.4 0 11.8 4.0 1.3	<i>perct.</i> 9.4 7.0 3.8 4.0 7.7
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array} $	III. 1911 III. 1777 U.S. 13 AES 806 III. 1570	92 91 91	17 18 16 19 19	82 81 82 83 81	89 91 86 86 85	99 100 97 99 99	40 40 42 35 40	6.9 3.8 5.3 7.6 10.5	$2.5 \\ 5.7 \\ 5.2 \\ 6.3 \\ 9.4$
$11 \\ 12 \\ 13 \\ 14 \\ 15$	Ill. 1332 Ill. 1918 Mo. 4041W Ind. 2609 Ill. 1908	88 87 87	17 17 19 16 17	83 79 80 81 84	90 87 92 83 96	97 100 100 99 93	40 39 40 37 39	$1.9 \\ 4.7 \\ 5.6 \\ 4.3 \\ 3.7$	$5.8 \\ 2.5 \\ 5.7 \\ 6.3 \\ .7$
16 17 18 19 20	Ill. 1915. Ill. 1906. Ill. 1914. Ill. 1421. Ind. 9502.	85 85 85	17 17 18 18 19	79 80 80 81 80	89 78 88 87 96	97 96 99 99 99	39 37 40 38 34	$2.1 \\ 8.8 \\ 2.6 \\ 2.0 \\ .7$	$0 \\ 5.8 \\ 2.5 \\ 7.6 \\ 3.8$
21 22 23 24 25	Ill. 1909. Ill. 972A-1 Ill. 1788. Ill. 1916. AES 801.	84 83	17 17 18 17 17	82 76 79 82 76	90 80 87 88 94	97 98 98 96 97	41 40 38 39 34	$3.3 \\ 0 \\ 4.2 \\ 3.5 \\ 1.9$	$7.1 \\ 1.3 \\ 5.1 \\ 13.1 \\ 4.5$
26 27 28 29 30	Ill. 6021 Ill. 21 Ill. 1904 Ill. 1917 Ill. 1917	82 81 79 79 79 77	18 18 16 17 17	80 82 78 81 84	75 96 88 76 90	94 99 94 97 99	45 41 39 37 37	$\begin{array}{r} 4.4 \\ 9.9 \\ 4.2 \\ 2.6 \\ 4.7 \end{array}$	$4.0 \\ 13.3 \\ 8.7 \\ 7.0 \\ 13.3$
31 32 33 34 35	Ill. 1912. AES 802. Ill. 274-1. Ill. 1905. Ill. 1759.	75	17 17 17 17 18	80 77 81 76 78	94 97 95 91 83	97 80 100 99 97	37 38 37 38 38	$3.6 \\ 5.3 \\ .7 \\ 3.7 \\ 2.9$	$9.6 \\ 16.4 \\ 5.0 \\ 6.3 \\ 3.8$
36 37 38 39 40	Ill. 1813. Ill. 1890. Ill. 1767. Ill. 6075. Ohio 4808	73 71 71 71 69	18 18 18 18 18	80 78 81 82 79	91 94 87 70 91	$100 \\ 100 \\ 99 \\ 100 \\ 98$	36 38 40 35 35	4.2 4.5 7.4 0	$10.6 \\ 21.7 \\ 18.9 \\ 5.7 \\ 10.1$
$41 \\ 42 \\ 43 \\ 44 \\ 45$	Iowa 4615 AES 803. Ill. 1764. Ill. 1880. AES 805		$17 \\ 17 \\ 16 \\ 16 \\ 18$	79 78 76 81 79	96 93 90 86 97	97 99 95 98 90	40 36 40 37 35	.7 5.0 1.5 5.1 .6	$10.8 \\ 20.8 \\ 14.4 \\ 5.7 \\ 17.7$
46 47 48 49	Ill. 1884 Ill. 1876 Ill. 1877. Ill. 1889. Average. Significant difference	54 51 50 46 79 16	18 19 19 20 18	71 73 74 73 80	93 92 99 99 89 89	97 94 98 97 97 6	38 37 35 36 38 3	7.4 4.8 9.7 2.7 4.1	$ 19.2 \\ 28.9 \\ 25.3 \\ 24.0 \\ 9.3 \\ \dots $

Table 7. — SINGLE AND DOUBLE CROSSES OF U. S. 13 MATURITY Tested in Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Cod	le Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smutted plants
			A —	Single	crosse	s			
1 2 3 4 5	R71×R98. R71×R105. R71×R113. R98×R105. R98×R105.	98	<i>perct.</i> 18 21 17 19 17	<i>perct.</i> 84 80 78 81 81	<i>perct.</i> 97 97 97 97 95	<i>perct.</i> 100 100 100 100 94	in. 38 37 34 44 41	perct. 1.4 0 0 0 0	$\begin{array}{c} perct. \\ 0 \\ 0 \\ 0 \\ 10.0 \\ 6.2 \end{array}$
$ \begin{array}{c} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array} $	$\begin{array}{c} R105 \times R113 \\ R71 \times R130 \\ R98 \times R130 \\ R105 \times R130 \\ R113 \times R130 \\ \end{array}$	95 111 $ 83 $	18 16 17 21 16	77 84 83 79 79	96 91 83 90 81	88 100 99 97 100	40 45 50 46 44	$\begin{array}{c} 0\\4.7\\0\\1.8\\2.6\end{array}$	$0 \\ 1.7 \\ 4.2 \\ .8 \\ 0$
$11 \\ 12 \\ 13 \\ 14 \\ 15$	$\begin{array}{c} R71 \times R151 \\ R98 \times R151 \\ R105 \times R151 \\ R113 \times R151 \\ R130 \times R151 \\ R130 \times R151 \\ \end{array}$		18 17 22 16 17	82 84 80 82 85	94 92 94 92 86	100 98 100 99 99	39 43 43 43 46	$1.8 \\ 0 \\ 5.6 \\ 5.0 \\ 0$	$0\\11.9\\2.5\\0\\.8$
16 17 18 19 20	$\begin{array}{c} R71 \times R153. \\ R98 \times R153. \\ R105 \times R153. \\ R113 \times R153. \\ R130 \times R153. \\ \end{array}$	94 99 81	17 20 20 17 18	83 82 80 80 82	99 90 100 96 80	100 99 99 100 100	37 43 39 37 45	$.5 \\ 0 \\ .8 \\ 0 \\ .8$	$\begin{smallmatrix}&&0\\2.5\\&&0\\0\\1.7\end{smallmatrix}$
21 22 23 24 25	$\begin{array}{c} R151 \times R153 \\ R71 \times R154 \\ R98 \times R154 \\ R105 \times R154 \\ R113 \times R154 \end{array}$	81 95 101	18 17 16 18 15	81 84 86 85 84	79 94 72 93 76	99 100 96 99 98	43 37 46 42 38	$\begin{array}{c}1.5\\1.6\\0\\.9\\0\end{array}$.8 0 1.7 0 0
26 27 28 29 30	$\begin{array}{c} R130 \times R154, \dots, \\ R151 \times R154, \dots, \\ R153 \times R154, \dots, \\ R71 \times R155, \dots, \\ R98 \times R155, \dots, \end{array}$		15 16 17 17 16	86 87 88 83 83	77 91 78 95 73	100 99 98 100 100	$49 \\ 43 \\ 42 \\ 40 \\ 45$	$\begin{smallmatrix}1.7\\2.8\\0\\0\\0\end{smallmatrix}$	$ \begin{array}{c} 0 \\ 1.7 \\ .8 \\ 0 \\ .8 \\ .8 \\ \end{array} $
31 32 33 34 35	$\begin{array}{c} R105 \times R155, \\ R113 \times R155, \\ R130 \times R155, \\ R151 \times R155, \\ R151 \times R155, \\ R153 \times R155, \\ \end{array}$		20 16 16 18 19	82 81 84 83 81	93 97 88 91 79	99 98 100 100 100	$42 \\ 40 \\ 46 \\ 45 \\ 44$	$\begin{smallmatrix}&0\\0\\2.5\\2.5\\0\end{smallmatrix}$	0 .8 0 0 0
36 37 38 39 40	$\begin{array}{c} R154 \times R155. \\ R71 \times R156. \\ R98 \times R156. \\ R105 \times R156. \\ R113 \times R156. \\ \end{array}$	90 81 75	16 19 17 22 17	85 85 78 78 77	75 98 90 100 93	99 99 100 100 97	43 37 43 38 35	.9 .8 0 0	$0\\.8\\14.2\\3.3\\5.1$
41 42 43 44 45	$\begin{array}{c} R130 \times R156 . \\ R151 \times R156 . \\ R153 \times R156 . \\ R154 \times R156 . \\ R154 \times R156 . \\ R155 \times R156 . \\ Average . \end{array}$		18 18 20 17 17 18	81 85 79 83 84 82	98 89 97 83 76 89	99 100 99 100 100 99	45 39 36 42 40 42	$1.0 \\ 0 \\ .8 \\ 1.7 \\ 1.7 \\ 1.0$	
			B — 1	Double	crosse	s			
	Ill. 6021 U.S. 13 Ill. 6016 AES 805. Average. Significant differen	87 84 74 84	16 17 16 16 16	81 82 84 77 81	87 91 74 94 86 10	99 99 99 100 99 2	48 42 44 38 43 3	$8.9 \\ 4.0 \\ 3.6 \\ 5.6 \\ 5.5 \\ \cdots$	8.4 12.6 17.6 20.0 14.6

[January,

Table 8. - THREE-WAY AND DOUBLE CROSSES OF U.S. 13 MATURITY Tested in Central Illinois, 1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

	In	bred	lines cro	ossed v	vith (V	VF9 $ imes$ I	Hy)		
$1 \\ 2 \\ 3 \\ 4 \\ 5$	R95 R96 R98. R101. N5	bu. 108 99 77 82 85	<i>perct.</i> 17 15 17 17 18	<i>perct.</i> 82 80 82 80 77	<i>perct.</i> 71 84 82 99 76	<i>perct.</i> 96 98 98 99 99	in. 40 43 39 39 40	<i>perct.</i> 2.0 9.5 2.1 2.0 3.5	<i>perct.</i> 2.6 8.9 24.8 5.1 7.0
6 7 8 9 10	N12. N13. K1605. B36. Oh451.	$76 \\ 99 \\ 89 \\ 74 \\ 110$	18 18 18 18 19	80 83 79 76 82	95 89 80 92 83	94 99 98 99 99	38 41 38 41 41	$ \begin{array}{r} .7 \\ 4.5 \\ 0 \\ 16.9 \\ 2.6 \\ \end{array} $	12.0 19.6 17.2 27.0 5.7
$\frac{11}{12}$	38-11 L317 Average	98 98 91	18 18 18	82 82 80	90 76 85	97 99 98	41 45 40	$\begin{array}{c} 11.5\\ 5.5\\ 5.1\end{array}$	$14.2 \\ 2.5 \\ 12.2$
	Inb	red li	ines cro	s <mark>se</mark> d w	ith (W	m F9 imes38	8-11)		
$ \begin{array}{c} 13 \\ 14 \\ 15 \end{array} $	R95 . R96. R98.	96 92 79	17 17 18	82 82 81	91 86 92	94 95 94	40 41 41	$\begin{array}{c} 6.4 \\ 9.9 \\ 2.6 \end{array}$	$10.7 \\ 11.8 \\ 39.3$
16 17 18 19 20	R101 N5 N12 N13 K1605	77 88 78 73 91	17 18 17 18 18	82 78 81 80 82	$98 \\ 76 \\ 95 \\ 94 \\ 88$	96 98 98 98 98	$36 \\ 39 \\ 40 \\ 40 \\ 38$	$1.3 \\ .7 \\ .7 \\ 4.9 \\ .7 \\ .7$	$12.4 \\ 9.0 \\ 28.2 \\ 49.7 \\ 29.4$
$\frac{21}{22}$	L317 Hy Average	101 79 85	17 18 18	82 83 81	89 87 90	94 79 94	46 40 40	10.9 7.9 4.6	$\begin{array}{c}15.2\\10.2\\21.6\end{array}$
			Do	uble cr	osses				
	AES 805 U.S. 13	98 60	17 18	81 76	90 95	98 97	46 38	7.0 3.7	$4.5 \\ 31.6 \\ 10.0 $

18

78

 $\frac{92}{10}$

 $98 \\ 6$

42 4

5.4

18.0

Table 9. — UNIFORM TEST OF BLIGHT-RESISTANT THREE-WAY CROSSES AND STANDARDS OF U. S. 13 MATURITY

Tested in Central Illinois, 1954

(Entries in **boldface** were average or better in yield and standability and average or earlier in maturity)

Code	e Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants		Ear height	Dropped ears	Smutted plants
	A —	Inbred	lines	crossed	on (WF9 $ imes$	38-11)		
		bu.	perct.	perct.	perct.	pcrct.	in.	perct.	perct.
1	Ну	87	16	83	92	95	42	11.7	13.0
$\frac{2}{3}$	CI.42A CI.42B		$\frac{17}{16}$	85 85	$\frac{88}{71}$	96 90	45 47	$9.8 \\ 8.6$	$7.3 \\ 4.3$
4	CI.42C.		16	82	83	94	42	5.8	22.5
5	Hy(Mo.21A)B× 1-S6 AJU 13700	102	17	84	98	96	45	7.5	4.1
6	Hy(Mo.21A)B×								
-	2-S4 AJU 13706	111	16	84	87	97	46	6.7	5.6
7	Hy(Mo.21A)B× 2-S4 AJU 13711	. 97	17	85	91	86	44	6.9	10.0
8	L317	103	16	83	83	96	48	15.7	8.1
9	CI.317A		$\frac{18}{18}$	$\frac{78}{80}$	$\frac{90}{94}$	88 98	49 50	7.3	$14.3 \\ 12.6$
10	CI.317B	110	10						
11	(L317×L97)-B-#3-S4	96	18	82	92	92	48	3.6	6.7
$\frac{12}{13}$	(L317×L97)-B-#3-S6 (L317×L97)-B-#3-S9	$\frac{98}{101}$	$\frac{19}{18}$	80 80	96 82	96 97	$\frac{47}{49}$	$6.4 \\ 5.5$	$\frac{6.4}{11.9}$
14	$(L317 \times L97)$ -B-#3-S10		18	80	89	94	47	10.5	5.0
15	L317(Mo.21A)B× 1-S6 AJU 13676	. 98	17	82	84	92	48	5.0	6.8
16	L317(Mo.21A)B×								
	1-S6 AJU 13683	. 103	17	81	86	99	45	15.8	8.6
17 18	L317(Mo.21A)B× 2-S4 AJU 13688-8. L317(Mo.21A)B×	96	17	82	76	93	45	7.5	1.7
	2-S4 AJU 13688-13	94	18	82	89	87	45	9.5	4.5
$\frac{19}{20}$	Os 420 (Os420×NC34)-B-	. 80	16	81	88	95	35	8.0	12.2
20	#4-S2-1	. 88	16	82	92	100	46	10.8	36.2
21	$(Os420 \times NC34)$ -B-	07	1.77	00	0.4	00	10	00.0	11.0
22	#4-S9-(x) (Os420×NC34)-B-	. 97	17	82	94	98	43	22.3	11.8
	#4-S12-(x)	. 82	17	83	98	96	39	17.9	12.8
	Average	. 98	17	82	88	94	45	9.3	10.3
	В-	- Inbred	lline	s crosse	d on	(Hy \times	L317)		
23	WF9	110	17	85	84	99	46	8.3	4.6
24	CI.29A	. 103	17	84	71	97	45	8.9	7.9
25	CI.29B	. 113	16	82	84	100	50	5.8	0
26 27	CI.29C	. 109	16	82	86	98	49	14.2	3.1
	#3-S8-3-1	. 101	18	80	75	99	46	3.0	3.1
28	(WF9×NC34)-B- #3-S10-1-1	105	18	81	79	92	48	1.7	0
29	38-11	. 97	17	82	88	98	48	9.5	9.4
30	CI.38A	. 103	18	82	83	99	49	21.0	8.5
31 32	CI.38B. (38-11×NC34)-B-	. 111	18	81	87	99	53	11.7	9.4
	#3-S2-1-2-(x)	. 99	19	79	78	97	52	8.3	14.4

(Table is concluded on next page)

Tab	le 9	(Conc	lud	led
-----	------	---	------	-----	-----

Cod	e	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smutted plants
		B — Inbre	d lines	cross	ed on ((Hy ×	L317)	(conclu	ided)	
33 34	#3	1×NC34)-B- -S4-2-1	102	18	83	83	98	50	6.7	3.1
34 35	#3-	.1×NC34)-B- -S7-1-1 l(Mo.21A)B×	101	18	79	75	99	50	10.8	4.6
	1-8	Số AJU 13734	103	17	83	89	99	48	8.3	10.1
36	1-5	l(Mo.21A)B× S2-#3-S1 AJU 755	118	17	84	91	96	49	7.0	3.2
	Av	erage	105	17	82	82	98	49	8.9	5.8
				С-	— Stand	lards				
	WF9	(L317. ×38-11 13	119 99 90	18 17 17	83 84 82	72 97 92	94 98 95	$51 \\ 38 \\ 44$	$3.3 \\ 25.0 \\ 10.0$.8 43.8 10.6
	AES Av	805 erage nificant difference	79 97	17 17	81 82	$99 \\ 90 \\ 11$	· 99 96 9	38 43 4	4.3	24.0 19.8

Table 10. — DOUBLE CROSSES OF ILLINOIS 448 MATURITY Tested in South-Central Illinois, 1950-1954

(Entries in boldface were average or better in yield and standability and average or earlier in maturity)

Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height
	A — Five-year a	verag	es, 1950)-19 <mark>54</mark>			
1 2 3 4 5	Ill. 1657. Ill. 1539A U.S. 13. Ill. 1349. Ill. 1332.	bu. 80 77 76 76 75	<i>perct.</i> 21 19 17 18 17	perct. 80 79 81 81 82	perct. 74 85 73 83 83 85	<i>perct.</i> 99 99 99 98 98	in. 46 45 44 46 40
6 7 8 9 10	Ill. 2214W. Ill. 2235W Ill. 1570 Ill. 200 Mo. 804. Average.	75 75 74 71 70 75	20 21 17 18 19 19	79 79 80 80 77 80	78 89 80 73 78 80	98 99 99 99 93 98	45 45 39 45 49 44
	B — Four-year a	verag	es, 195	1-1954			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	Ill. 1657. Mo. 862. Ill. 1332. Ill. 1570. U.S. 13.	72 72 70 70 69	20 22 16 16 16	80 76 83 80 82	74 80 86 80 75	99 100 99 100 99	$45 \\ 45 \\ 38 \\ 38 \\ 41$
6 7 8 9 10	III. 1656. III. 1349. III. 1539A. III. 1771. III. 2235W.	69 69 69 68 68	17 18 18 19 21	82 81 79 78 78	83 88 85 91 88	99 99 100 98 99	38 44 44 44 44
$ \begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \end{array} $	Ill. 1788 Ill. 2214W. Ill. 200 Mo. 804. Average.	67 67 63 62 68	16 18 18 18 18	79 78 79 76 79	78 79 73 79 81	99 99 99 98 98	40 43 42 48 42
	C — Three-year	avera	ges, 195	2-1954			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	U.S. 13. Ill. 1570. Ill. 1656. Ill. 1859. Ill. 1851.	62 62 62 62 62 62	14 15 16 16 17	82 80 82 80 79	77 78 83 79 80	99 100 100 100 100	42 38 39 42 45
6 7 8 9 10	Ill. 1857. Ill. 1511. Ill. 1 332 . Ill. 1856. Mo. 862.	61 60 60 60 59	19 14 16 19 20	77 83 82 79 75	84 74 82 77 79	99 98 99 100 99	44 40 39 42 45
$11 \\ 12 \\ 13 \\ 14 \\ 15$	IU. 1788. III. 1349. AES 805. III. 1657. III. 1852.	58 58 57 57 56	16 17 16 20 17	78 81 80 79 75	75 88 88 69 80	99 99 99 98 100	41 45 38 43 43
16 17 18 19 20	III. 1539A. III. 1849. III. 1771. III. 2235W. III. 200.	56 55 55 55 54	18 19 19 21 16	78 75 76 77 77	86 90 89 88 71	100 99 97 99 99	43 41 42 44 44
21 22 23	Ill. 1850. Mo. 804. Ill. 2214W. Average.	54 50 48 58	19 17 17 17	75 75 76 78	87 79 75 81	99 99 99	42 48 41 42

(Table is continued on next page)

[January,

Table 10. - Continued

Ran in yield	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Leaf firing*	Dropped ears
		D — '	Гwo-ye	ar aver	ages,	1953-195	54		
1	Ill. 1897	bu. 52	perct. 14	perct. 80	perct. 74	<i>perct.</i> 100	in. 38	grade	perct.
2	Ill. 1570	. 52	14	79	71	100	38		
$\frac{1}{3}$	Ill. 1859	. 51 . 50	14 14	80 84	$\frac{76}{75}$	$\frac{100}{98}$	$\frac{41}{37}$		· · ·
$\frac{1}{5}$	Ill. 1896 Ill. 2246W	50	14	80	82	100	38		
6	Ill. 1332	. 50	16	82	80	99	37		
$\frac{6}{7}$	U.S. 13	. 49	14	81	70	100	41		
8	Ill. 1656	. 49	16	80	79	100	39		
9 10	Ill. 1511. Ill. 6076	. 48 . 48	14 14	83 82	73 60	97 99	38 38		• • •
$\frac{11}{12}$	Ill. 1851 Ill. 1788	. 48	16 16	80 78	75 72	100 98	$\frac{43}{40}$		• • •
12	Ill. 1857.		18	78	80	98	$\frac{40}{42}$		
14	AES 805	. 46	14	80	86	99	36		
15	Ill. 1349	. 44	16	78	86	100	43		
16	Ill. 1893	. 44	16	76	86	. 98	40		
17	Ill. 1856	. 44	18	79	76	99	40		
$\frac{18}{19}$	Mo. 862	44	$\frac{18}{14}$	$\frac{74}{80}$	$\begin{array}{c} 76 \\ 62 \end{array}$	$\begin{array}{c} 100 \\ 100 \end{array}$	$\frac{42}{36}$	• • •	
20	Ill. 6075 Ill. 200	42	16	76	70	99	42		
				-	-		40		
$\frac{21}{22}$	Ill. 1852 Ill. 1539A	. 42 . 41	$17 \\ 16$	$\frac{74}{78}$	78 80	$100 \\ 100$	42 40		
23	Ill. 1657	41	19	78	64	98	4 1		
24	111. 6102	. 40	16	73	60	100	38		
25	Ill. 1849	. 40	18	74	90	98	40		
26	Ill. 1771. Ill. 2235W	. 40	18	74	87	96	40		
$\frac{27}{28}$	III. 2235W	. 38 . 36	20 18	$\frac{76}{74}$	88 86	99 98	$\frac{41}{40}$		
$\frac{28}{29}$	Ill. 1850 Mo. 804	. 30	17	74	76	98 98	40 46	• • •	
30	Ill. 6079	. 34	16	78	58	98	38		
31	Ill. 2214W	. 31	16	74	67	100	39		
01	Average		16	78	76	99	40		
			10	10			10		
		Е —	1954 re	esults (4 repli	cations)		
1	Ill. 1851	. 53	15	80	52	100	32	1.5	0
2	Ill. 1857	. 51	17	80	69	99	32	$1.2 \\ 2.2$	4.2
3	111. 1788	. 49	15	79	54	100	29	2.2	$\frac{.8}{1.7}$
$\frac{4}{5}$	Ill. 1656 Ill. 1332	. 49 . 49	$16 \\ 15$	80 82	60 63	$100 \\ 100$	$\frac{28}{28}$	$1.0 \\ 1.5$	1.7
$\frac{6}{7}$	Ill. 1859	. 49 . 49	$\frac{15}{14}$	79 79	$\frac{56}{46}$	100	$\frac{31}{27}$	$2.2 \\ 1.5$	0
8	Ill. 1570 Ill. 1657	. 49	18	82	36	$100 \\ 99$	32	$1.5 \\ 1.2$	$1.8 \\ 0$
9	Mo. 862	. 48	17	76	63	100	34	1.0	0
10	Ill. 1539A	. 47	16	79	67	100	29	1.5	.9
11	Ill. 1856	. 47	16	82	59	98	31	1.8	2.5
12	Ill. 1856 Mo. 8010W	. 47	18	$\frac{77}{77}$	54	100	32	1.0	.7
13 14	Ill. 1852 Ill. 1909	. 47	16 15	77 81	$\frac{61}{50}$	$100 \\ 100$	32 29	$1.8 \\ 2.0$	$^{0}_{2,6}$
15	Ill. 1909. Ill. 2246W	47	15	79	65	99	29	3.0	4.2
16	Ill. 1349		16	78	81	99	34	1.0	1.0
17	Ill. 1893	. 47	15	75	72	100	31	1.5	.9
18	Mo. 804	. 46	16	77	58	100	35	1.0	1.7
$\frac{19}{20}$	Ill. 1771 AES 805	. 46 . 46	16 15	80 79	$\frac{76}{73}$	92 98	$\frac{30}{27}$	$1.5 \\ 2.0$	0
		. 10	10		10	00	40	2.0	0

^a Grade 1 is most resistant; grade 4 is most susceptible to high temperature. (Table is concluded on next page)

Ran in yiel	Entry	Acre yield	Mois- ture in grain	Shelling	Erect plants	Stand	Ear height	Leaf firing ^a	Dropped ears
		E -	— 1954	results	(concl	uded)			
21 22 23 24 25	Ill. 1918. Ill. 1914. U.S. 13. Tenn. 3744. Ill. 1896.	bu. 46 46 46 45 45	<i>perct.</i> 15 16 15 16 16	<i>perct.</i> 80 80 79 74 81	<i>perct.</i> 52 66 47 28 59	<i>perct.</i> 100 100 100 100 98	in. 29 28 30 26 27	grade. 2.8 2.8 2.0 1.5 3.2	$\begin{array}{c} perct. \\ 1.6 \\ .8 \\ 1.6 \\ 2.5 \\ 1.9 \end{array}$
26 27 28 29 30	Ill. 1904 Ill. 1897 Ill. 2235W Ill. 200 Ill. 1919	$45 \\ 45 \\ 45 \\ 45 \\ 44$	15 15 19 16 14	77 77 76 78 77	$47 \\ 50 \\ 75 \\ 44 \\ 63$	$100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$	27 27 31 31 27	$2.2 \\ 3.0 \\ 2.5 \\ 2.0 \\ 2.8$	0 .8 3.6 0 .8
$31 \\ 32 \\ 33 \\ 34 \\ 35$	lll. 1849 Ill. 1850 Ill. 6076 Ill. 1916 Ill. 1911	44 44 44 44 44	$17 \\ 16 \\ 14 \\ 14 \\ 17$	80 79 79 80 78	82 74 35 57 57	99 100 98 99 100	$31 \\ 31 \\ 28 \\ 28 \\ 31$	$2.0 \\ 2.0 \\ 2.2 \\ 2.5 \\ 1.8$	5.6 .9 2.5 1.8 0
36 37 38 39 40	Ill. 1912. Ill. 1511. Ill. 1910. Ill. 1905. Ill. 1906.	43 43 43 43 42	$14 \\ 14 \\ 16 \\ 14 \\ 15$	80 81 83 76 78	$58 \\ 51 \\ 50 \\ 54 \\ 44$	99 100 99 100 100	25 29 26 28 26	$3.8 \\ 2.2 \\ 4.0 \\ 2.5 \\ 2.2$	$2.6 \\ 0 \\ 1.6 \\ 3.2$
41 42 43 44 45	AES 903W. III. 1913. III. 1908. III. 1917. III. 1915.	42 42 40 39 39	$16 \\ 14 \\ 15 \\ 16 \\ 15 \\ 15$	74 81 79 78 78	$ \begin{array}{r} 66 \\ 42 \\ 53 \\ 50 \\ 56 \end{array} $	100 100 100 99 100	27 25 27 28 27	$2.2 \\ 4.0 \\ 4.0 \\ 4.0 \\ 3.8$	$2.5 \\ 2.5 \\ 1.7 \\ 4.0 \\ .8$
46 47 48 49	Ill. 6102 Ill. 6075. Ill. 6079. Ill. 2214W. Average. Significant difference	$39 \\ 39 \\ 33 \\ 30 \\ 45 \\ 6$	15 15 16 14 16	75 78 78 73 79	29 29 38 36 55 18	$100 \\ 100 \\ 99 \\ 100 \\ 99 \\ 2$	29 26 27 28 29 3	$2.5 \\ 3.5 \\ 2.0 \\ 3.0 \\ 2.3 \\ 1.1$	$\begin{array}{c} 4.5 \\ 1.7 \\ .8 \\ 1.7 \\ 1.6 \\ \cdots \end{array}$

Table 10. - Concluded

* Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

Table 11. — THREE-WAY AND DOUBLE CROSSES OF ILLINOIS 448 MATURITY Tested in South-Central Illinois, 1954

(Entries in **boldface** were average or better in yield and standability and average or earlier in maturity)

Code	e Entry		Ac yie		Shell- ing	Erect plants	Stand	Ear height	Leaf firing ^a	Dropped ears
		ŀ	A — 7	Chree-wa	y cro	sses				
			bi	. perct.	perct.	perct.	perct.	in.	grade	perct.
1	(K201×38-11)×B1A		3	8 18	81	57	100	32	2.0	1.7
10	(K201×38-11)×B18		4	3 17	82	65	100	33	1.2	1.8
11	(K201×38-11)×Kys		3		77	42	100	37	1.0	.8
14	$(K201 \times 38-11) \times K4$				80	47	98	35	1.0	0
18	$(K201 \times 38-11) \times Ky36-11$		4	8 19	81	72	100	35	2.2	1.7
56	(K201×38-11)×Ky106		4	7 16	80	65	100	35	1.0	0
20	(K201×38-11)×Ky118				78	67	99	34	1.0	. 9
21	(K201×38-11)×Ky120		4	2 19	79	78	100	33	1.2	2.6
19	$(K201 \times 38-11) \times Ky126$		5	3 19	84	80	99	36	2.0	.8
28	$(K201 \times 38-11) \times N5$		3	6 18	82	39	100	34	1.0	0

^a Grade 1 is most resistant; grade 4 is most susceptible to high temperature. (Table is concluded on next page)

Table 11. - Concluded

Code	e I	Entry		Acre yield	Mois- ture in grain		Erect plants	Stand	Ear height	Leaf firing ^a	Dropped ears
A — Three-way crosses (concluded)											
29 30 31 55 12	(K201× (K201×	$38-11) \times N$ 38-11) × O	9 10 15 h7B 1401	bu. 48 37 47 42 37	perct. 16 16 22 17 14	<i>perct.</i> 80 82 83 84 80	<i>perct.</i> 62 83 49 89 65	<i>perct.</i> 100 100 99 100 99	in. 33 28 29 33 30	grade 1.5 2.0 1.2 2.0 2.5	<i>perct.</i> 0 1.7 0 .9
13 5 9 6 7	(K201 × (K201 × (K201 × (K201 × (K201 ×	$38-11 \times 01$ $38-11 \times 01$ $38-11 \times 01$ $38-11 \times 01$ $38-11 \times 01$ $38-11 \times 01$	n443 x11 x12 x15 x19	$38 \\ 48 \\ 36 \\ 46 \\ 40$	16 18 17 18 18	80 82 78 80 79	$57 \\ 76 \\ 40 \\ 34 \\ 80$	$100 \\ 100 \\ 100 \\ 99 \\ 99 \\ 99$	36 30 34 34 33	$1.8 \\ 1.5 \\ 2.8 \\ 2.5 \\ 2.2$	0 1.7 .8 10.8 .9
	$(K201 \times$	$38-11) \times C$	c22. .7. .7.A. .21E	39 44 38 49 46	17 20 18 17 17	79 83 79 80 84	70 72 56 81 39	99 100 99 100 100	32 36 32 33 34	$2.2 \\ 1.0 \\ 1.5 \\ 1.0 \\ 1.2$	
34 35 36 37 38	$(K201 \times (K201 \times (K2))))))))))))))))))))))))))))))))))))$	38-11) × K 38-11) × K 38-11) × K 38-11) × K 38-11) × K	ans. 52:1326 ans. 52:1349 ans. 52:1351 ans. 52:1357 ans. 52:1363	49 44 41 49 46	16 17 17 17 19	82 84 82 85 81	64 58 62 42 72	$100 \\ 100 \\ 100 \\ 100 \\ 99$	32 29 30 28 26	$2.8 \\ 1.8 \\ 2.0 \\ 3.5 \\ 3.8 $	$2.5 \\ 0 \\ .9 \\ 2.5 \\ 1.7$
39 40 41 42 43	(K201× (K201×	38-11)×K 38-11)×K	ans. 52:1367 ans. 52:1385 ans. 52:1391 ans. 52:1394 ans. 52:1409	43 37 41 43 44	16 18 16 16 20	82 75 80 78 82	68 72 60 66 60	100 100 99 99 100	32 33 32 32 35	$2.2 \\ 1.0 \\ 2.2 \\ 2.8 \\ 1.0$	0 0 1.7 0
44 45 46 47 48	1 K201 X	$38-11) \times K$	ans. 52:1411 ans. 52:1412 ans. 52:1421 ans. 52:1430 ans. 52:1430	43 49 45 44 45	18 18 23 17 16	79 82 80 82 80	82 36 25 62 85	$100 \\ 100 \\ 98 \\ 100 \\ 99$	31 36 36 32 31	$1.5 \\ 1.8 \\ 1.0 \\ 3.5 \\ 1.5$	$ \begin{array}{r} .8 \\ 0 \\ .9 \\ .9 \\ 2.8 \end{array} $
49 22 23 24 25	$(K201 \times (K201 \times$	$38-11) \times K$ $38-11) \times K$	ans. 50:1109 y52:130 y52:132 y52:134 y52:134	$45 \\ 44 \\ 36 \\ 32 \\ 41$	18 15 17 18 18	82 83 82 74 80	96 97 62 84 74	97 100 98 99 99	32 30 36 34 31	$2.5 \\ 4.0 \\ 1.0 \\ 2.2 \\ 1.5$	$5.0 \\ 0 \\ 0 \\ .9$
26 27 17 32 16	(K201 × (K201 ×	$38-11) \times N$ $38-11) \times N$	y52:138 y52:140 47556 47587-9 47904	40 40 31 30 36	18 19 18 16 18	84 80 76 77 81	54 93 92 70 63	100 98 99 98 98	$30 \\ 26 \\ 35 \\ 34 \\ 31$	$3.0 \\ 2.0 \\ 2.5 \\ 3.5 \\ 2.0$	$1.7 \\ 1.8 \\ 2.5 \\ 2.9 \\ 3.3$
$33 \\ 54 \\ 50 \\ 53 \\ 52$	(K201R (K201R (K201R	\times 38-11) \times \times 38-11) \times \times 38-11) \times \times 38-11) \times	82481 Kys. K4. Ky36-11 CI.7	$ \begin{array}{r} 40 \\ 31 \\ 44 \\ 36 \\ 40 \end{array} $	18 17 19 21 18	79 80 82 79 81	98 22 46 55 78	100 99 98 99 100	34 32 37 36 35	$1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	$3.6 \\ 0 \\ 4.3 \\ 2.7$
51			CI.21E	49 42	18 18	82 81	58 65	100 99	32 33	1.0 1.8	0 1.3
			E	3 — D	ouble	cross	es				
	AES 804 K1830. Ill. 1850 Avera	5 	ence	$50 \\ 48 \\ 45 \\ 41 \\ 46 \\ 9$	18 15 16 18 17	82 80 80 80 80	75 57 52 85 67 20	$ \begin{array}{r} 100 \\ 100 \\ 100 \\ 99 \\ 100 \\ 2 \end{array} $	$34 \\ 31 \\ 34 \\ 33 \\ 33 \\ 33 \\ 3$	1.5 1.5 1.2 2.2 1.6 .9	.9 1.7 1.7 .8 1.3

^a Grade 1 is most resistant; grade 4 is most susceptible to high temperature.

Table 12. — DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES

Hybrid	Pedigree	Performance given in Table No.
Illinois hybrids		
21	(Hy2 \times 187-2) (WF9 \times 38-11)	2ABCDE, 6ACDE
101	\dots (M14 × WF9) (187-2 × W26) \dots	
200	(WF9 \times 38-11) (L317 \times K4)	10ABCDE
	\dots (Hy2 × WF9) (Oh7 × 187-2) \dots	
972A-1	\dots (Hy2 × L317) (WF9 × Oh7) \dots	4BCDE, 6ABCDE
1091A	\dots (Hy2 × 187-2) (M14 × WF9) \dots	
1277	(M14 × WF9) (I.205 × 187-2)	2ABCDE, 4ABCDE
1279	$(M14 \times WF9)$ $(A375 \times 187-2)$	
1280	\dots (M14 × WF9) (Os420 × 187-2) \dots	2ABCDE, 4ABCDE
	\dots (M14 × WF9) (A374 × A375) \dots	
1289	\dots (M14 × W22) (WF9 × I.205)	
	\dots (M14 × 187-2) (WF9 × I.205)	
	\dots (Hy2 × Oh7) (WF9 × 38-11) \dots	
		10ABCDE
1349	\dots (38-11 × Mo940) (K155 × K201).	10ABCDE
1375	\dots (M14 × WF9) (N6 × Oh51A) \dots	2ABCDE
1421	\dots (Hy2 × WF9) (P8 × Oh7) \dots	6BCDE
1493	\dots (WF9 × I.205) (Oh28 × W22) \dots	2BCDE
1511	\dots (Hy2 × WF9) (38-11 × L304A)	4BCDE, 6ABCDE,
		10CDÉ
1539A	\dots (38-11 × CI.7) (K201 × CI.21E)	
1555A	\dots (WF9 × Oh51A) (I.224 × Oh28).	2ABCDE, 4ABCDE
1557	\dots (M14 × Oh28) (I.205 × Oh51A) \dots	2ABCDE
	\dots (M14 × WF9) (I.205 × Oh28) \dots	
1559B	\dots (M14 × Oh28) (WF9 × Oh51A) \dots	2ABCDE
	(WF9 × Oh51A) (I.205 × Oh28)	
1570	\dots (Hy2 × Oh41) (WF9 × 38-11) \dots	
		10ABCDE
	$\dots (M14 \times WF9) (L12 \times Oh28) \dots$	
	\dots (M14 × Oh43) (A73 × Oh5) \dots	
	\dots (M14 × L289) (Oh5 × Oh43) \dots	
	\dots (WF9 × I.205) (187-2 × W22) \dots	
	$\dots (WF9 \times B10) (Oh7 \times Oh41) \dots$	
	\dots (C103 × Hy2) (WF9 × 38-11) \dots	
	\dots (K4 × Oh7) (K201 × CI.21E) \dots	
	\dots (WF9 × 38-11) (Oh4C × Oh45) \dots	
	$\dots (WF9 \times 38-11) (Oh29 \times Oh45) \dots$	
	$\dots (Hy2 \times WF9) (38-11 \times J47) \dots$	
	\dots (Hy2 × Oh45) (WF9 × 38-11) \dots	
	\dots (Oh7B × CI.7) (T8 × CI.21E) \dots	
1777	\dots (Hy2 × WF9) (R114 × R116) \dots	6BCDE
1788	\dots (WF9 × 38-11) (Oh41 × CI.21E)	6BCDE, 10BCDE
1799	\dots (M14 × WF9) (B8 × Oh51A) \dots	
1800	$\dots \dots (M14 \times WF9) (A73 \times A295) \dots$	2CDE, 3B

(Table is continued on next page)

1955]

[January.

Table 12 — Continued

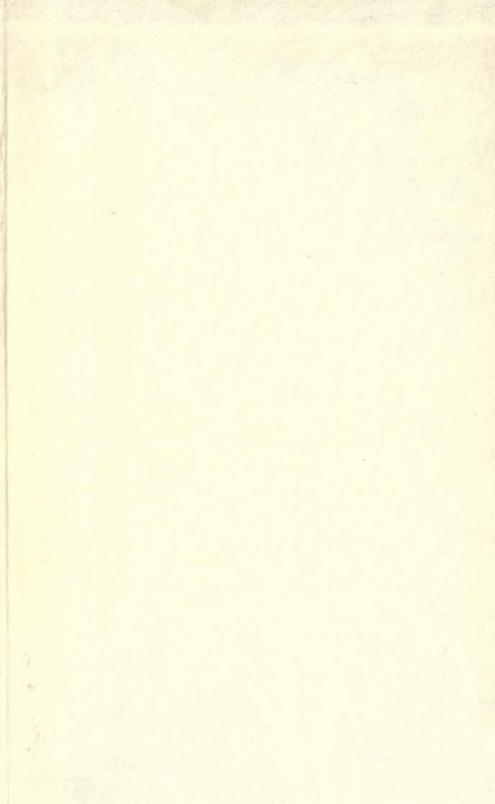
Hybrid	Pedigree	Performance given in Table No.
Illinois hybrids	(continued)	
1802	$\dots \dots (M14 \times WF9) (A295 \times Oh51A) \dots$	2CDE
1813	\dots (C103 × Oh45) (Hy2 × WF9) \dots	
1814	\dots (Hy2 × WF9) (M14 × Oh45) \dots	
1819	$\dots \dots (R2 \times WF9) (R61 \times Oh43) \dots \dots$	4CDE
	$\dots \dots (WF9 \times B35) (K237 \times Oh45) \dots$	
	$\dots \dots (WF9 \times W146) (K237 \times Oh45) \dots$	
1849	$(C103 \times 38-11)$ $(K201 \times CI.21E)$	
1850	$\dots \dots (C103 \times CI.21E) (38-11 \times K201) \dots$	
1851	\dots (C103 × 38-11) (Oh7 × CI.21E) \dots	
$1852\ldots\ldots$	\dots (C103 × CI.21E) (38-11 × Oh7) \dots	
1856	\dots (38-11 × Oh7) (K201 × CI.21E) \dots	
	$\dots \dots (38-11 \times \text{Oh41}) (\text{K201} \times \text{CI.21E}) \dots$	
1859	$\dots \dots (38-11 \times \text{Oh7}) (\text{Oh41} \times \text{CI.21E}) \dots$	10CDE
1861	\dots (M14 × WF9) (I.224 × Oh28) \dots	2DE
1862	\dots (M14 × WF9) (Oh43 × Oh51A) \dots	2 DE
1863	$\dots \dots (M14 \times WF9) (I.205 \times Oh43) \dots$	
1864	\dots (M14 × WF9) (Oh43 × W22) \dots	
1865	\dots (M14 × WF9) (Oh5 × Oh43)	
1866	\dots (M14 × WF9) (Oh26A × Oh45)	
1868	\dots (C103 × Oh43) (Hy2 × WF9) \dots	4DE
1873	$(C103 \times M14)$ $(R75 \times Oh43)$	4DE
1875	$(C103 \times 38-11)$ (Hy2 × WF9)	4DE
	$\dots \dots (R97 \times R98) (WF9 \times 38-11) \dots$	
	$(R99 \times R100) (WF9 \times 38-11) \dots$	
1880	$(R103 \times R104)$ (WF9 \times 38-11)	6DE
	$(C103 \times R100) (WF9 \times 38-11) \dots$	
	$(C103 \times Oh45)$ (38-11 × Oh29)	
	$(C103 \times Oh45)$ (R75 × 38-11)	
1893.	$(C103 \times 38-11)$ (Oh7B × Oh29)	10DE
1896	$(R138 \times R139)$ (R140 × R141)	6DE, 10DE
1896A	$(R139 \times R141)$ (R138 \times R140)	4DE
1897	$\dots \dots (R138 \times R141) (R139 \times R143) \dots$	10DE
1902	$\dots \dots (R138 \times R142) (R139 \times R141) \dots$	2DE
1903.	$(M14 \times WF9)$ (R119 × R120)	2E. 4E
1904	$(R81 \times R85) (WF9 \times 38-11) \dots$	4E. 6E 10E
1905.	$(R81 \times R120) (WF9 \times 38-11) \dots$	4E. 6E 10E
1906.	$(Hy2 \times WF9) (R81 \times R119) \dots$	4E. 6E. 10E
1908.	$(R154 \times R155) (WF9 \times 38-11) \dots$	4E 6E 10E
	$(R130 \times R151) (WF9 \times 38-11) \dots$	
	$(R154 \times R156) (WF9 \times 38-11) \dots$	
		, 101, 101

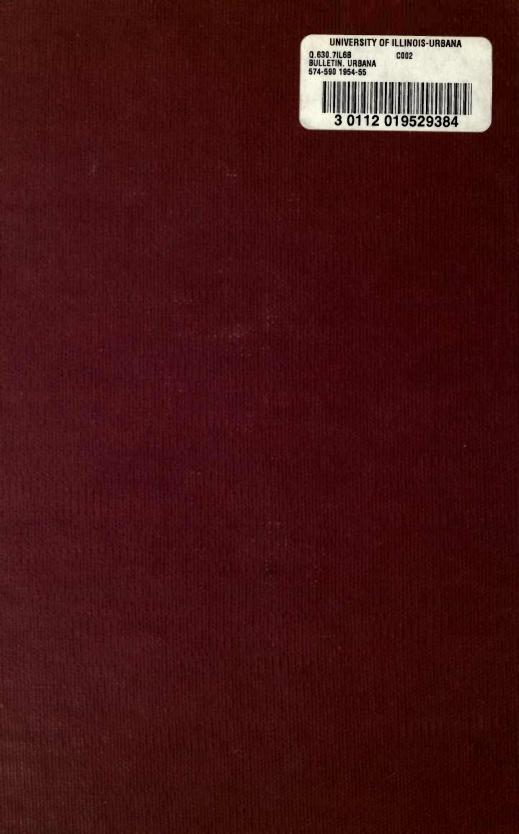
(Table is continued on next page)

Hybrid	Pedigree	Performance giver in Table No.
Illinois hybrids (co	ontinued)	
	(R130 \times R153) (WF9 \times 38-11)	4E. 6E. 10F
1912	\dots (R151 × R156) (WF9 × 38-11)	
1913	(R151 × R154) (WF9 × 38-11)	
1914	\dots (R153 × R155) (WF9 × 38-11)	
1915	(R151 \times R155) (WF9 \times 38-11)	
1916	\dots (R130 × R154) (WF9 × 38-11)	4E, 6E, 10E
1917	\dots (R153 × R154) (WF9 × 38-11)	4E, 6E, 10E
1918	$(R151 \times R153) (WF9 \times 38-11)$	4E, 6E, 10E
1919	\dots (R130 × R156) (WF9 × 38-11)	
2214W	\dots (R30 × Ky27) (H21 × K64) \dots	
2235W	\dots (H21 × K64) (33-16 × Mo2RF) 10 ABCDE
	\dots (R144 × R145) (R148 × R149)	
2247W	\dots (R144 × R145) (R146 × R148)	
	\dots (R84 × 38-11) (R118 × K4) \dots	
	\dots (R78 × K4) (R84 × 38-11) \dots	
	\dots (R75 × R76) (R84 × K4) \dots	
	\dots (R78 × 38-11) (R84 × K4) \dots	
6062	\dots (R76 × K4) (R78 × R84) \dots	2E
6074	\dots (R75 × R87) (R78 × R83) \dots	2DF
6075	\dots (R75 × R83) (R78 × R87) \dots	6DE, 10DE
6076	\dots (R76 × R78) (R87 × R117) \dots	
6079	\dots (R78 × R84) (R87 × R119) \dots	
6102	\dots (R75 × R85) (R84 × R87) \dots	
Miscellaneous hyb	rids	
AES 510	$\dots (WF9 \times W22) (H19 \times B9) \dots$	2E
AES 610	\dots (M14 × A73) (Oh43 × Oh51A)	2CDE
AES 702 (Ill. 179	0)(C103 \times M14) (Hy2 \times WF9)	2BCDE, 3B, 4BCDE, 50
AES 801	\dots (WF9 × B7) (B10 × B14) \dots	6ĆDE
AES 802	\dots (Hy × WF9) (38-11 × N6) \dots	
AES 803	(WF9 \times 187-2) (N6 \times K148)	6CDF
AES 805 (Ill. 177)	$(C103 \times Oh45) (WF9 \times 38-11)$	4BCDE, 6BCDE, 7B
		8C, 9C, 10CDE, 111
	\dots (Hy × WF9) (N6 × N15) \dots	
	\dots (H28 × K55) (H30 × K41) \dots	
	\dots (M14 × WF9) (B9 × W22) \dots	
	$\dots (\mathrm{H41} \times \mathrm{H42}) (\mathrm{H45} \times \mathrm{H46}) \dots$	
Ind. 2401	\dots (M14 × WF9) (K237 × Oh45)	$4\mathbf{E}$
	\dots (WF9 \times 38-11) (H14 \times Oh43).	
	$\dots (H26 \times H27) (H28 \times H29) \dots$	
	\dots (M14 × 187-2) (WF9 × I.205).	
10wa 4558	\dots (M14 × WF9) (B8 × B21) \dots	2E


Table 12 - Continued

(Table is concluded on next page)


Table 12. — Concluded


Hybrid	Pedigree	Performance given in Table No.
Miscellaneous hyb	orids (concluded)	
Iowa 4615	\dots (Hy × WF9) (B14 × B36) \dots	
Iowa 4630	\dots (M14 × B21) (WF9 × Oh51A)	
I.S.P. 2	\dots (C103 × Oh45) (M14 × WF9).	
K1830	\dots (K201 × 38-11) (K4 × CI.7)	
Minn. 4	\dots (A286 × A295) (A375 × Oh51A	A)2E
Minn. 40	\dots (A73 × A401) (A286 × Oh51A))2E
Mo. 804	\dots (CI.7 × K4) (38-11 × CI.21E).	
Mo. 862	\dots (K201 × T202) (CI.21E × Mo	567)10BCDE
Mo. 4041W	\dots (WhHy \times K55) (Wh38-11 \times 33	3-16)6CDE
Mo. 8010W	\dots (K64 × Mo22) (T111 × T115)	
Ohio M15	\dots (Oh26 × Oh51) (A × W23) \dots	
Ohio K24	\dots (WF9 × Oh51A) (Oh33 × Oh40	0B)2BCDE, 3B
Ohio 3247	\dots (Oh43 × Oh45) (Oh51A × W22	(2) $(4E)$
Ohio 4808	\dots (Oh4C × Oh51A) (Oh28 × Oh4	(45)
Ohio 5305	\dots (A73 × Oh5) (Oh26A × Oh51A	.)
Tenn. 3473	\dots (M14 × 751) (T206 × 61.984-8)6E
Tenn. 3744	\dots (H21 × K6) (T111 × T115) \dots	
	(Hy \times L317) (WF9 \times 38-11)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10ABCDE

