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Abstract
The legality of wood products often depends on their origin, creating a need for forensic tools that verify claims of provenance 
for wood products. The neotropical tree species Cedrela odorata (Spanish cedar) is economically valuable for its wood and 
faces threats of overexploitation. We developed a 140 SNP assay for geographic localization of C. odorata specimens. Target 
capture and short-read sequencing of 46 C. odorata specimens allowed us to identify 140 spatially informative SNPs that 
differentiate C. odorata specimens by latitude, temperature, and precipitation. We assessed the broad applicability of these 
SNPs on 356 specimens from eight Cedrela species, three tissue types, and a range of DNA mass inputs. Origin prediction 
error was evaluated with discrete and continuous spatial assignment methods focusing on C. odorata specimens. Discrete 
classification with random forests readily differentiated specimens originating in Central America versus South America 
(5.8% error), while uncertainty increased as specimens were divided into smaller regions. Continuous spatial prediction with 
SPASIBA showed a median prediction error of 188.7 km. Our results demonstrate that array SNPs and resulting genotypes 
accurately validate C. odorata geographic origin at the continental scale and show promise for country-level verification, but 
that finer-scale assignment likely requires denser spatial sampling. Our study underscores the important role of herbaria for 
developing genomic resources, and joins a growing list of studies that highlight the role of genomic tools for conservation 
of threatened species.
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Introduction

Biodiversity loss is of global concern, and is due in part to 
deforestation and high consumer demand for wood and wood 
products (Nellemann 2012; Elias 2012; van Zonneveld et al. 
2018). Forests of Central and South America (or “neotropi-
cal” forests) face the largest threat because they support the 
most terrestrial biodiversity, with an estimated 16,000 tree 
species contained within the Amazon rainforest alone (Pen-
nington et al. 2015; Pennington and Lavin 2016; Dick and 
Pennington 2019). Thirty-five to 72% of wood sourced in 

the Amazon is thought to be acquired from illegal logging 
(Saunders and Reeve 2014), and illegal logging accounts for 
50–90% of forestry activities across tropical forests globally 
(Hoare 2015; Sheikh et al. 2019). Laws are in place to pro-
tect economically valuable tree species from overexploita-
tion and promote sustainable practices (e.g., U.S. Lacey Act 
[2008]; European Union timber regulation [2010]; Austral-
ian Illegal Logging Prohibition Act [2012]; Japanese Clean 
Wood Act [2017]), but these remain difficult to enforce 
because of the sheer scale of illegal logging, and the chal-
lenge of identifying protected species and their countries of 
origin, especially after wood is transported from the site of 
harvest, processed, and enters commercial markets (Dor-
montt et al. 2015, 2020; Wiedenhoeft et al. 2019).

Illegal logging affects many tree species, but highly val-
uable—often rare and endangered—species are common 
targets. Spanish cedar (Cedrela odorata L.; Meliaceae) 
and congeners are among the most valuable neotropical 
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hardwoods, making them particularly vulnerable to illegal 
harvesting. In 2001, C. odorata was listed under the protec-
tions of the Convention on International Trade in Endan-
gered Species of Wild Fauna and Flora (CITES) Appendix 
III requiring validated documentation of species identity and 
source for both export and import documentation, protecting 
populations in Bolivia, Brazil, Colombia, Guatemala, and 
Peru (Ferriss 2014), and in 2019, C. odorata and all spe-
cies in the genus Cedrela were elevated to CITES Appendix 
II, due to the similarity of sawn logs and processed wood 
across species (Gasson 2011). However, CITES protection 
does not entirely eliminate illegal harvesting. An investiga-
tion focused on logging of Spanish cedar (C. odorata) and 
mahogany (Swietenia macrophylla King) in Peru found 112 
CITES export records of illegal wood listing origins that 
had been fabricated (Urrunaga et al. 2012). Urrunaga et al. 
(2012) provided evidence that illegal logging is systematic, 
common, and environmentally and economically damaging 
in Peru. In 2017, a snapshot of the scale of illegal logging 
in Peru was provided by the same team of investigators; 
a cargo ship from Peru, the Yaca Kallpa, was seized and 
contained nearly 10,000 m3 of illegal wood (Conniff 2017; 
Bargent 2017). Despite the anticipated increase in global 
scrutiny for Cedrela wood and wood products regardless 
of geographic origin, tools for predicting the origin of C. 
odorata wood remain valuable to process seizures predat-
ing CITES Appendix II listing, and could be valuable for 
verifying supply chains and identifying responsible parties.

Forensic tools that can accurately predict the geographic 
origin of wood have potential to assist the enforcement of 
trade restrictions for protected species. Genetic approaches 
have been used to determine the origin and trade routes of 
protected species, including elephant ivory (Wasser et al. 
2004, 2018), sturgeon and paddlefish caviar (Doukakis 
et al. 2012; Ogden et al. 2013), tigers (Linacre and Tobe 
2008; Gupta et al. 2011; Kitpipit et al. 2012), birds (Abe 
et al. 2012; Coghlan et al. 2012; White et al. 2012), fishes 
(Zarraonaindia et al. 2012; Clemento et al. 2014), and plants 
(Ogden et al. 2008; Degen et al. 2013; Blanc-Jolivet et al. 
2018; Paredes-Villanueva et al. 2019). Anatomical, chemi-
cal, genetic, and isotopic methods have all been applied to 
address questions of taxonomy and origin of wood (Dor-
montt et  al. 2015); however, a single method does not 
typically address questions of both taxonomy and source. 
Cedrela odorata and closely allied species will likely require 
multiple techniques for validation of taxonomy and origin 
because its wood lacks the anatomical features required for 
discrimination among species (Gasson 2011), and varia-
tion in wood chemistry does not vary in a manner that is 
geographically predictive (Paredes-Villanueva et al. 2018). 
While methods for DNA extraction and recovery from wood 
are improving (Dumolin-Lapègue et al. 1999; Asif and Can-
non 2005; Rachmayanti et al. 2006; Tnah et al. 2012; Jiao 

et al. 2012, 2018; Yu et al. 2017; Dormontt et al. 2020), 
genetic markers of short length, such as single nucleotide 
polymorphisms (SNPs), are increasingly being used in wild-
life forensics because they are suitable for low concentra-
tion, degraded DNA extracts (Ogden et al. 2009). Here, we 
evaluate the power of SNPs to resolve geographic origin of 
C. odorata across much of its range in Central America and 
western South America.

Materials and methods

Development of the SNP genotyping array for this study 
first involved the sequencing of a design panel of C. odorata 
specimens. From SNP variants detected in a design panel of 
specimens, we selected 140 candidate SNPs for the geno-
typing array on the basis of geographic and environmental 
differentiation. DNAs from a screening panel of 376 speci-
mens were genotyped with these 140 array SNPs, and we 
were able to assess genotyping efficiency for DNAs derived 
from eight Cedrela species, three tissue types, a range of 
mass inputs. We evaluated discrete and continuous spatial 
origin prediction methods on a group of specimens from the 
screening panel, representing C. odorata and closely allied 
taxa (referred to as C. odorata sensu lato). Methods for each 
of these steps are described below.

Design panel sequencing

We used hybridization-based target capture and massively-
parallel sequencing (Cronn et al. 2012; Heyduk et al. 2016) 
to identify SNPs from a panel of 46 C. odorata herbarium 
specimens (Appendix 1; Table S1; Fig. S1) from Peru and 
surrounding countries. Hybridization capture probes were 
designed based on gene models of a C. odorata individual 
originating in Mexico as described in Finch et al. (2019). 
Sequencing yield and depth were assessed using meth-
ods previously described (Finch 2018; Finch et al. 2019) 
and included in the Supporting Information for this article 
(Appendix 1; Table S2) (Finch 2019a, b). One Peruvian 
specimen (C. odorata 300; Table S1) was selected as the 
nuclear reference, and captured sequence reads were assem-
bled de novo using SPAdes (v. 3.6.1; Bankevich et al. 2012). 
These enriched nuclear contigs were filtered to ensure that 
assembled sequences contained the target probe sequences, 
and did not contain sequences with identity to the C. odo-
rata chloroplast genome (Finch et al. 2019) or mitochondrial 
genes (Kuravadi et al. 2015) (Appendix 2; Table S3).

Sequence reads from the 46 specimens were aligned to 
the C. odorata 300 reference using BWA-MEM (v. 0.7.17; 
Li and Durbin 2010; Li 2013), and sequence alignments 
were used as inputs for probabilistic variant calling using 
SAMtools (v. 1.10; Li et al. 2009) and the Genome Analysis 
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Toolkit (GATK) (v. 3.7; McKenna et al. 2010). Best-practice 
guidelines for GATK variant calling were used, including 
indel region realignment, and high-stringency variant filter-
ing for coverage, mapping quality, and variant position. Ini-
tial SNP filtering was performed with VCFtools (v. 0.1.17; 
Danecek et al. 2011) to remove insertion/deletion variants, 
sites with greater than 85% missing data, sites with more 
than two alleles, and sites with a minor allele frequency 
(MAF) lower than 5%. By applying these filtering param-
eters, we sought to provide a set of ‘high confidence’ SNPs 
for further analysis and eventual candidate selection for 
inclusion on a genotyping array.

Candidate SNP selection and SNP assay 
development

We identified SNPs showing the highest differentiation in 
allele frequencies (FST) (Weir and Cockerham 1984) for 
groups based on latitude (LAT; decimal degrees), mean 
annual temperature (MAT; °C × 10), and annual precipita-
tion (AP; mm). In this way, FST was used to measure the 
partitioning of allelic variance in alternative groupings, 
not to make specific statements or inferences of population 
genetic parameters (e.g., probability of identity by descent, 
panmixis, or migration). Specimens were divided into a 
northern and southern LAT group based on a gap in the 
sampling distribution at 7.5° S latitude (Fig. 1a). Specimens 
were grouped into low, moderate, or high MAT (low < 20 
°C; 20° < moderate < 25 °C; high > 25 °C; Fig. 1b) and AP 
(low < 2000 mm; 2000 < moderate < 3000 mm; high > 3000 
mm; Fig. 1c) categories based on their tercile rank for these 
climate variables (Table S1) at their geographic source based 
on the WorldClim 2 dataset (Fick and Hijmans 2017) using 
R (see Table S7 for R packages and citations; R. Core Team 
et al. 2013; Finch 2019a, b). These measures exhibit low 
pairwise correlations (LAT × AP, r2 = 0.29; LAT × MAT, 
r2 = 0.01; AP × MAT, r2 = 0.14; Fig. S2), so genetic asso-
ciations with these gradients are likely to include SNPs that 
respond to different neutral and selective forces.

LAT, MAT, and AP groups were then treated as ‘pop-
ulations’ for calculating FST on a per-marker basis with 
VCFtools resulting in three lists of SNPs associated with 
these groups. To develop a SNP assay based on these loci, 
we sorted each SNP-FST list in descending order, concat-
enated the 150 top FST SNPs from each group into a sin-
gle list, and filtered redundant SNPs to one SNP per contig 
of reference sequence. If two or more non-identical SNPs 
appeared on the same contig, we selected the SNP position 
with the highest FST. We further filtered the list to retain 
SNPs with a MAF ≥ 20% to avoid SNPs that were nearly-
fixed across much of the geographic range. This resulted in 
152 high FST and high MAF SNPs, none of which showed 
evidence of linkage disequilibrium (r ≤ 0.3). Contig names 

and SNP positions were converted into BED format, and 
BEDtools (v. 2.25.0; Quinlan and Hall 2010) was used to 
extract a multi-fasta file containing positions ± 100 bp flank-
ing each SNP. The multi-fasta was used in primer design 
and multiplexing for a MassARRAY iPLEX® assay (Agena 
Bioscience, Inc., San Diego, CA, USA), using the MassAR-
RAY Assay Design Suite software (Agena Bioscience, Inc.). 
From this list of sequences, we identified 140 SNP loci that 
could be evaluated in 4 multiplex groups. Resulting mass 
spectra were scored using Typer Viewer (v. 4.0.24.17; Agena 
Bioscience). All steps of SNP analysis (assay design, oligo-
nucleotide synthesis, amplification, mass spectrometry, and 
SNP calling) were performed by NeoGen Genomics Inc. 
(Lincoln, NE, USA).

SNP assay screening

Samples screened for our selected SNPs derived from three 
sources (Table S4; Fig. S3): (i) 234 herbarium specimens 
from the Missouri Botanical Garden Herbarium (MO), 
(ii) 36 field collections by collaborators at the Universidad 
Nacional Agraria La Molina (Lima, Peru), Universidad Cay-
etano Heredia (Lima, Peru), and Servicio Nacional Forestal 
y de Fauna Silvestre (SERFOR; Lima, Peru), and (iii) 86 
field collections by collaborators at the Instituto de Inves-
tigaciones de la Amazonía Peruana (IIAP; Iquitos, Peru), 
von Thüenen Institute of Forest Genetics (VTI; Braunsch-
weig, Germany), and Universidad Autónoma Gabriel René 
Moreno (Santa Cruz, Bolivia). DNA was extracted using 
a modified CTAB procedure (AG-Biotech LLC, Monterey, 
CA, USA) from herbarium-derived dry leaf tissue from MO 
(150–200 mg from fragment packets). Leaf- and cambium-
derived DNA from La Molina/Cayetano/SERFOR were 
extracted from fresh tissue using a modified CTAB protocol 
(Healey et al. 2014). These samples yielded < 100 ng of total 
DNA, so we used whole-genome amplification (Genomi-
phi™ V2 Amplification Kit, GE Healthcare, Chicago, IL, 
USA) to amplify the DNA using manufacturer’s instruc-
tions. DNA from the remaining 86 samples was derived 
from fresh material dried in silica gel according to Dumolin 
et al. (1995) at VTI or IIAP. All samples were quantified 
via fluorometry (Qubit, ThermoFisher Scientific, Waltham, 
MA, USA).

MassARRAY SNP genotyping was performed on 376 
samples representing 356 unique specimens and 20 techni-
cal replicates. Included in our assay were representatives of 
C. odorata (n = 196), C. fissilis Vell. (n = 62), C. angustifolia 
DC (n = 28), C. montana Mortiz ex Turcz. (n = 22), C. nebu-
losa T. D. Penn. & Daza (n = 17), C. saltensis M. A. Zapater 
& del Castillo (n = 10), C. longipetiolulata Harms (n = 2), 
C. weberbaueri Harms (n = 2), and Cedrela field-collected 
samples that were not identified to species (n = 17; Table S4; 
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Fig. 1   SNP candidate selection via identification of highly differenti-
ated SNPs (high relative FST) among C. odorata specimens (n = 46) 
based on: a Latitudinal (LAT) groups, b Mean Annual Temperature 
(MAT) groups, and c Annual Precipitation (AP) groups. Bar plots 
show the distribution of values and the number of counts in d LAT, 
e MAT, and f AP groups. g The distribution of FST for 140 SNPs 
selected for genotyping array development (gray), superimposed 

with the individual distributions of FST for SNPs selected for LAT 
(green), MAT (gold), and AP (blue). h The proportion of 140 SNPs 
selected for genotyping array development that were differentiated 
based on LAT (green), MAT (gold), and AP (blue). Map labels show 
country codes: COL (Colombia), ECU (Ecuador), PER (Peru), BOL 
(Bolivia), and BRA (Brazil)
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Fig. S3). Replicated DNAs from two C. odorata individuals 
(C. odorata 83, C. odorata 291; Table S4) were examined 
across a range of DNA mass inputs (50, 75, 100, 200, and 
300 ng). Our target DNA mass was 300 ng (recommended 
by NeoGen Genomics Inc.), although some samples had as 
little as 50 ng. In total, 330 DNAs derived from leaf tis-
sue (primarily herbarium specimens) and 26 derived from 
cambium.

Assay assessment

To evaluate the broader use of the SNP array, SNP call rates 
(the proportion of successful diploid SNP genotyping calls at 
140 diploid loci; Table S4) were determined for all samples, 
species, tissue types, and input concentrations. For popula-
tion comparisons involving replicated samples (C. odorata 
83, C odorata 291), we chose replicates with the highest 
call rates (50 ng dilutions in both cases). Loci were removed 
from all analyses if genotyping call rates were < 0.75 across 
specimens to strike a balance between missing information 
and sample retention. R packages adegenet (Jombart and 
Ahmed 2011), poppr (Kamvar et al. 2014), and hierfstat 
(Goudet 2005) were used to calculate observed heterozy-
gosity, MAF, and FST for each SNP. FST was calculated on 
a per-marker basis treating species as populations, and by 
comparing northern and southern LAT groups (described 
above) as populations for C. odorata based on herbarium 
labels or field identification.

The R package adegenet was used to evaluate genetic 
structure among screening panel specimens with Discrimi-
nant Analysis of Principal Components (DAPC) (Jombart 
and Ahmed 2011), an ordination method based on genetic 
distances. We used DAPC clusters to define a reference 
database of specimens representing C. odorata and closely 
allied species (referred to as C. odorata sensu lato; n = 190; 
Appendix 3).

Discrete spatial classification with random forests

We classified C. odorata into discrete regional groups based 
on SNPs using random forests, a classification method that 
provides a consensus classification based on ‘a forest’ 

of many classification trees (Breiman 2001). Since our 
screened specimens represented dispersed samples and not 
necessarily populations, we designed classification tests 
to determine the classification accuracy obtained with our 
specimens and the SNP array at three geographic scales: (i) 
‘range-wide’ with categories “Central America” and “South 
America,” (ii) ‘target countries’ with categories “Ecuador,” 
“Peru,” and “Bolivia,” and (iii) ‘narrow regional,’ within our 
target countries, with categories “NW,” “NE,” “SW,” and 
“SE.” Narrow regional groups were selected to represent an 
area approximately the size of Peruvian departments, and to 
maintain approximately equal sample sizes within groups.

For this analysis, we used our reference database of C. 
odorata s. l. and loci showing a call rate ≥ 0.75 with geno-
types coded as categorical variables ‘0’ (genotype homozy-
gous for the reference allele), ‘1’ (heterozygous), or ‘2’ 
(homozygous for the alternate allele). Since random forests 
is not tolerant of missing data, we used the R package syn-
breed (Wimmer et al. 2012) to impute allelic data on a per-
locus basis from sampled genotypes under the assumption 
of Hardy–Weinberg equilibrium.

We generated a random forest of 500 classification trees 
for each classification question allowing each tree to have 
as many branches as loci (mtry = number of loci minus 1). 
In each case, predictor variables for classification were 
the loci and region of origin was the grouping variable for 
each specimen. To avoid biasing misclassifications, sample 
sizes for each regional class in the grouping variable were 
held constant, with the sample size determined by the class 
with the smallest number of specimens (Table 1) (Sun et al. 
2009). Since classification error varies in random forests 
due to random sampling (i.e., random starting specimen 
and random starting locus), we calculated the mean of the 
median error across 5000 random forests (2,500,000 total 
classification trees), and evaluated the range and distribu-
tion of errors. Observed classification error was compared 
to random expectations by randomizing the classes by the 
grouping variable. This method was used to understand the 
baseline random classification accuracy for random forest 
tests with different numbers of classes (Finch et al. 2017).

Table 1   Abbreviations used to identify each random forest classifi-
cation model, descriptions of regional classes examined, the number 
of samples per class used to train the model (n), and results for each 

model. Note: n is limited by the sample size for the regional class 
with the fewest samples

Model identifier Regional classes Estimated mean of the median classification error (%)

n per class Randomized (95% CI) Observed (95% CI)

Range-wide C. America, S. America 36 51.1 (50.9, 51.3) 5.8 (5.7, 5.8)
Target country Ecuador, Peru, Bolivia 23 68.4 (68.2, 68.6) 34.3 (34.2, 34.4)
Narrow regional NW, NE, SW, SE 20 76.9 (76.8, 77.1) 34.7 (34.6, 34.9)
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Continuous spatial assignment with SPASIBA

Spatial classification methods have been developed to pro-
vide continuous estimates of origin based on an interpo-
lated surface of allele frequencies. The R package SPASIBA 
(Guillot et al. 2016) uses a training set of georeferenced gen-
otypes to predict the highest probability origin for test gen-
otypes. SPASIBA estimates the spatial auto-covariance of 
allele frequencies assuming that covariance diminishes with 
increased geographic distance (i.e., isolation-by-distance). 
Allele frequencies for individuals geographically proximate 
to those included in the training set are estimated under the 
assumption of a population in Hardy–Weinberg equilibrium, 
and loci are assumed to be in linkage equilibrium. Predicted 
origins for “unknowns” can be estimated for areas where no 
training genotypes exist.

We used the same data in SPASIBA analysis as was used 
in random forest analysis above with the exception that we 
limited the geographic scope of our analysis to specimens 
from the target countries (Ecuador, Peru, Bolivia) and addi-
tional samples from Brazil and Bolivia below − 17.5° S 
latitude (n = 148). We used two cross-validation methods to 
assess the performance of SPASIBA. The first method was 
a k-fold cross-validation (k-fold CV); we modeled spatial 
auto-covariance of allele frequencies by randomly selecting 
90% of C. odorata specimens (n = 133) as a training set, and 
used the remaining 10% (n = 15) as validation samples to 
determine the error of predicted origins. K-fold CV follows 
recommendations to assess model performance, avoid over-
fitting, and increase computational efficiency (Lever et al. 
2016). In practical use, however, a legal inquiry involving 
wood would likely employ all reference specimens to iden-
tify the origin of confiscated material. To assess the predic-
tive accuracy of SPASIBA via this framework, we performed 
a leave-one-out cross-validation (LOOCV) by predicting 
the origin of each specimen based on composite allele fre-
quencies from all other available specimens (n = 147). By 
including both cross-validation techniques, we: (i) gain an 
understanding of the range of prediction errors for a single 
individual as a function of different training and validation 
sets, (ii) provide a conservative estimate of prediction error 
that is less prone to overfitting, and (iii) obtain the optimal 
predictive accuracy for each specimen in our dataset. For 
both cross-validation methods, we defined prediction error 
as the distance between the known and predicted origins. 
Spatial predictions were made in decimal degrees; these 
were converted to Haversine distances (in kilometers) with 
the R package geosphere (Hijmans 2016).

For the k-fold CV analysis, we tested the spatial resolu-
tion of predicted origins with data sets containing missing 
data and imputed data separately (imputation as described 
above) because SPASIBA is tolerant of missing data. Since 
the selection of training samples influences the accuracy of 

continuous geographic assignment (Guillot et al. 2016), we 
repeated the SPASIBA analysis 100 times with each data 
set (missing data; missing data imputed) to evaluate the dis-
tribution of prediction error. We compared the k-fold CV 
results to our random forest analysis by filtering the k-fold 
CV results to show prediction error for the specimens used 
for the target country and narrow regional analyses. As with 
random forests, observed classification error was compared 
to random expectations by randomizing genotypes of the 
geo-referenced training data set, and repeating predictions 
for the validation samples.

With the LOOCV analysis, we were interested in know-
ing whether the optimal predicted origin and assignment 
errors were related to sample density. To evaluate this, we 
computed the mean pairwise geographic distance to the ten 
nearest neighbors for each sample, and assessed the rela-
tionship between the mean ‘nearest-neighbor distance’ and 
prediction error for each sample (Appendix 4).

All maps were drawn using the base map shapefiles from 
the World Borders Dataset (https​://thema​ticma​pping​.org/).

Results

SNP assay development

Target capture and short read sequencing of the design panel 
of C. odorata specimens (n = 46; Appendix 1) resulted in 
4.4 × 108 paired sequence reads (9.0 × 1010 bp total) with 
a mean individual sequence yield of 9.6 × 106 paired reads 
(range: 6.3 × 105–4.7 × 107). The sequence yield for the 
‘reduced representation’ nuclear reference for C. odorata 300 
was 1.4 × 107 paired reads (2.8 × 109 bp; Table S2). The C. 
odorata 300 de novo assembly (Appendix 2) yielded 9,139 
assembled contigs with a mean length of 982.5 bp (range 
156–4,053 bp; sum of length = 9.0 × 106 bp; Table S3), and 
was used for read mapping and variant calling. On average, 
3.6 × 106 reads mapped to each target reference contig (range 
1.8 × 105–1.7 × 107 reads; Table S2) for an average depth 
of 53.7X per target (range 1.1X–443.6X; Table S2). Esti-
mated mean individual depth ranged from 5.9X to 277.3X 
(Table S2). Our initial vcf contained 1.6 × 106 sequence 
variants before filtering to remove insertion/deletion vari-
ants (5.9% of total variants), multi-allelic variants (7.8%), 
SNPs with greater than 85% missing information (46.1%), 
and SNPs with a MAF less than 5% (31.1%). The resulting, 
filtered sequence matrix of C. odorata specimens from tar-
get countries (n = 46; Table S1; Fig. 1a–c) included 144,083 
SNPs, and was used as the basis for evaluating allelic asso-
ciations with geographic and climatic variation, and for 
developing a SNP assay for spatial assignment.

Figure 1 shows the geographic distribution of samples 
for each grouping (LAT, MAT, and AP) used to identify 

https://thematicmapping.org/
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spatially informative SNPs via FST (Fig. 1a–c), as well 
as their predicted values (Fig. 1d–f). SNPs selected for 
AP showed the strongest allelic differentiation relative to 
SNPs selected for LAT and MAT, with a mean FST of 0.42 
(interquartile range: 0.41—0.45; Fig. 1g). SNPs based on 
MAT showed a similar median FST of 0.44 (interquartile 
range 0.43–0.46; Fig. 1g) with a higher mean FST (0.46) 
and a higher maximum FST (0.62). Surprisingly, LAT SNPs 
showed lower differentiation, with a median FST of 0.23 
(interquartile range 0.22–0.26 Fig. 1g). Our reduced SNP 
assay included 61 SNPs from the AP list, 53 SNPs from the 
MAT list, and 26 SNPs from the LAT list (Fig. 1h). These 
SNPs were converted to an Agena MassARRAY assay, 
and together array SNPs from the LAT, MAT, and AP lists 
showed a mean FST of 0.41 and per-SNP FST values ranged 
from 0.21 to 0.62.

SNP assay results

Across all samples and SNPs screened by MassARRAY, 
we observed 22.3% missing data (23,708 uncalled alleles 
out of 106,400 potential alleles), with specimens showing 
call rates (CR) of 0.00 to 0.96 across 140 SNPs. Three fac-
tors influenced CR: (i) DNA concentration, as input DNA 
mass above 50 ng resulted in decreasing CR (Fig. S4); (ii) 
the use of herbarium leaves, which showed a lower CR on 
average than other sources (Fig. S5); and (iii) the inclusion 
of multiple species, as DNAs derived from C. angustifolia 
and C. montana showing substantially lower mean CR than 
other species (CR = 0.62 and 0.71, respectively; Fig. S6). 
We discarded loci showing CR’s < 0.75 (i.e., 25 additional 
loci) to mitigate the impact of missing data. This yielded a 
Cedrela dataset with 352 individuals (four individuals dis-
carded as failures), 99 loci, and 1.32% missing data. This 
dataset showed a mean observed heterozygosity of 0.05 
(range 0–0.37) and a mean MAF of 0.26 (range 0.02–1). 
Treating species as populations, we calculated a median 
FST of 0.20 (range 0.01–0.56). Filtering for only C. odorata 
from South America (defined by herbarium labels and field 
identifications) produced a dataset with 135 specimens that 
showed a mean call rate of 0.81 (range 0.1–0.95). This C. 
odorata dataset included 99 loci and 1.01% missing data, 
and yielded a mean observed heterozygosity of 0.11 (range 
0–0.44), a mean MAF of 0.34 (range 0.04–1), and a per-SNP 
median FST of 0.01 (range − 0.02 to 0.25) for geographic 
groups similar to those shown in Fig. 1a.

DAPC identified nine clusters (Fig. S7a). Based on label 
and field identification, a reference database for C. odorata 
sensu lato was defined by genetic information with ‘exclu-
sive’ C. odorata (DAPC clusters 1, 2, 4, 7) and closely allied 
taxa (5, 8; Fig. S7b; Finch 2019b; Finch et al. in prepara-
tion), and we used these specimens to test discrete and con-
tinuous spatial assignment methods (Appendix 3; Fig. S7). 

Clusters 9 and 6 were excluded because they were largely 
composed of specimens identified as C. angustifolia and 
C. montana or C. fissilis, respectively (Appendix 3; Fig. 
S7b). Cluster 3 was also excluded because it showed the 
lowest mean CR (0.34 compared to CR > 0.7 for all other 
clusters). The resulting dataset included 190 C. odorata s. 
l. from Central and South America used for random forest 
classification, and 148 C. odorata s. l. for SPASIBA analyses 
focused on South America. After defining the C. odorata s. l. 
dataset and removing individuals with high levels of missing 
information, we were able to retain a larger number of loci 
for random forest classification (116 SNPs) and SPASIBA 
continuous assignment (118 SNPs).

Random forest classification

Range‑wide

This analysis included 190 C. odorata s. l. specimens from 
Central and South America and 116 SNP loci. Each indi-
vidual was assigned to one of two regional classes (Table 1; 
Fig. 2a). The estimated mean of the median classification 
error of 5.8% for observed data was much lower than the 
estimated mean of the median classification error from 5,000 
randomizations (51.1%; Table 1, Fig. 2g).

Target countries

This analysis included 141 C. odorata s. l. specimens from 
three countries (Fig. 2b) and 116 SNP loci. The estimated 
mean classification error of 34.3% for observed data was 
lower than the estimated mean classification error from 
5,000 randomizations (68.4%; Table 1, Fig. 2h).

Narrow regional

This analysis included 129 C. odorata s. l. specimens from 
four narrow regions approximately 3.8 × 105 km2 in size 
(Fig. 2c) and 116 SNP loci. The estimated mean classifi-
cation error of 34.7% was lower than the mean classifica-
tion error of 76.9% estimated from 5000 randomizations 
(Table 1; Fig. 2i).

Classification errors for the range-wide comparison were 
almost equally distributed between groups, with mean errors 
of 4.42% for samples from Central America and 7.05% for 
samples from South America (Fig. 2d). Finer-scale classifi-
cation tests showed classification asymmetry, where spatial 
assignment error was not equal across classes. For exam-
ple, classification errors for the target country comparison 
showed that specimens from Ecuador had lower classifica-
tion error (30.7%) than either Bolivia or Peru (35.1% and 
37.0%, respectively; Fig. 2e). Similarly, specimens from 
the NE class had a substantially lower classification error 
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(21.3%), than specimens from the NW, SW or SE classes 
(39.5%, 39.1%, and 39.0% respectively; Fig. 2f).

SPASIBA assignment

We investigated the accuracy of continuous assignments 148 
C. odorata s. l. specimens with 118 SNPs, SPASIBA, and 
two cross-validation methods (sample distribution shown 
in Fig. S9). The median deviation between the known sam-
pling location and predicted origin for the k-fold CV was 
259.6 km (25%ile = 96.1 km; 75%ile = 820.3 km; Table 2; 
Fig. 3a) with a maximum error of 2540.8 km. Median k-fold 
CV prediction error with observed data was lower than the 
estimated median error from randomized genotypes (median 
904.1 km; 25%ile = 494.6 km; 75%ile = 1408.7 km; maxi-
mum = 3,033.8 km; Table 2). We evaluated the estimation 
error in the imputed dataset used for random forest analysis 
to determine whether imputation of missing data influences 
prediction errors, and found that imputation had little influ-
ence on prediction error (imputed error = 268.4 km; unim-
puted error = 252.5 km; Table S5; Fig. S8).

The k-fold CV results also showed that specimens from 
the Peru (Fig. 2b) showed a lower median prediction error 
(169.8 km) than Ecuador (598.0 km) and Bolivia (341.4 
km; Table 2; Fig. 3b), a pattern that appears different from 
random forest classification results for countries (Fig. 2e). 
Similarly, specimens from the NE narrow region (Fig. 2c) 
showed a lower median prediction error (133.3 km) than the 
other narrow regional groups (NW = 598.1 km; SW = 135.0 
km; SE = 424.0 km; Table 2; Fig. 3b); this pattern appears 
similar to our findings from random forest classification of 
these regional classes (Fig. 2f).

The median prediction error was lower under the LOOCV 
framework than the k-fold CV (188.7 km; 25%ile = 92.2 
km; 75%ile = 754.3 km; Table  2; Fig.  3a). This was a 
27.3% decrease in prediction error compared to the median 
k-fold CV estimate. Despite this improvement, we found no 
relationship between sample density and prediction error 
(Appendix 4).

Table 2   SPASIBA continuous 
prediction errors

Results for the total analysis include: prediction errors from k-fold CV for all specimens after 200 model 
runs with observed genotypes (imputed and unimputed combined) and 200 model runs with randomized 
genotypes, prediction errors from LOOCV, k-fold CV prediction errors for specimens used for the target 
country and narrow regional random forest classification questions. Values are the estimated median pre-
diction error (in km), with the range in parentheses

Total Target country Narrow regional

k-fold CV Observed 259.6 (6.7–2540.8) Ecuador 598.0 (6.7–2516.3) NW 598.1 (6.7–2516.3)
k-fold CV Randomized 904.2 (7.0–3033.8) Peru 169.8 (9.3–2315.2) NE 133.3 (26.7–2315.2)
LOOCV 188.7 (16.6–2472.9) Bolivia 341.4 (22.1–2424.8) SW 135.0 (9.3–1637.7)

SE 424.0 (64.8–2067.4)
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Fig. 3   Distributions of prediction errors (in km) for C. odorata s. l. 
specimens used for continuous spatial assignment with SPASIBA: a 
prediction error for South American specimens across 200 k-fold CV 
replicates (imputed and unimputed combined) with observed geno-
types (light gray) and 148 LOOCV replicates with observed unim-

puted data (blue), b prediction error for specimens from target coun-
try groups, and c prediction error for specimens from narrow regional 
groups. Red dashed lines indicate the estimated mean prediction error 
for randomized genotypes (Table 2)
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Discussion

The neotropical tree species Cedrela odorata is a target of 
illegal logging, and has been heavily used for its timber at 
least since the description of the genus Cedrela in 1756 
(Browne 1756; Pennington and Muellner 2010). Illegal log-
ging of C. odorata typically involves fabrication of source 
on export documentation (Urrunaga et al. 2012), and since 
2001, C. odorata has been protected in at least one coun-
try under CITES Appendix III (Ferriss 2014), increasing 
the importance of technologies that predict the origin of C. 
odorata wood. Country-of-origin declarations on import 
documents for wood can be difficult for wood importers 
to verify, and it is even more challenging for customs and 
border patrol agents to corroborate, making independent 
assessment methods a high-priority tool to aid the legal 
evaluation of wood products. Although, C. odorata and 
all Cedrela species have been elevated to CITES Appen-
dix II, geographic localization of C. odorata wood remains 
relevant for seizures predating CITES Appendix II listing. 
Geographic localization is also essential to discovering the 
networks responsible for illegal logging, as has been shown 
for animal poaching (Wasser et al. 2018). We demonstrated 
that SNPs have the power to at least partially resolve the 
geographic origin of C. odorata across much of its range in 
Central America and western South America, and we pre-
sent results from discrete classification of geographic origin 
with random forests (Breiman 2001) and continuous spatial 
prediction with SPASIBA (Guillot et al. 2016).

Using SNPs to predict the geographic region origin 
for C. odorata via discrete classification

A number of methods have been used for discrete assign-
ment of genotypes to geographic groups (Manel et al. 2005; 
Ogden and Linacre 2015). Some of these methods use 
criteria or assumptions that are explicitly ‘genetic’ (e.g., 
Hardy–Weinberg and linkage equilibrium) (Rannala and 
Mountain 1997; Pritchard et al. 2000; Piry et al. 2004), 
but others are agnostic with regard to the input data type 
or the process(es) underlying the input data (Chen et al. 
2017; Schrider and Kern 2018). ‘Model-free’ methods 
like random forests can use high-dimensional genetic data 
and non-genetic data to produce predictive functions that 
are robust to any type of data and distribution (e.g., non-
normal distributions, zero-truncated, continuous, or cat-
egorical data), allowing genetic data to be combined with 
other information that provides independent evidence of 
geographic origin such as specifically stable isotope pro-
files (Kagawa and Leavitt 2010; Gori et al. 2015, 2018). 
This is especially important in cases involving plantation 
grown timber, where genotypic data may correctly identify 

the ancestral geographic origin, but not the growing location 
for a specific tree (e.g., plantation-grown C. odorata from 
Africa). This flexibility has led to the adoption of random 
forest methods for multiple applications in ecology and evo-
lution (Boulesteix et al. 2012; Brieuc et al. 2018), genom-
ics and genetic association analysis (Goldstein et al. 2011; 
Stephan et al. 2015), and population assignment based on 
genetic variation (Bertolini et al. 2015; Chen et al. 2017; 
Sylvester et al. 2018) and parasite community (Perdiguero-
Alonso et al. 2008; Pérez-Del-Olmo et al. 2010). Random 
forests have been less frequently used for spatial classifica-
tion, with current published cases based on reflection and 
chemical spectra rather than genotypes (Li et al. 2012; Finch 
et al. 2017).

In our specific analysis, we determined that random 
forest classification based on SNP genotypes can predict 
whether C. odorata s. l. specimens originated in Central 
or South America with 5.8% classification error (Table 1). 
This method offers high discrimination accuracy for broad-
scale geographic source validation, and could serve as a 
‘first-pass’ test for questions related to provenance on trade 
documentation. We found that random forest classification 
was less precise for identifying finer-scale questions, such 
‘country-of-origin’ or ‘department-sized regions-of-origin’ 
within a country (34.3% error and 34.7% error, respectively). 
We suspect that within-class sample size was at least partly 
responsible for the relatively high error estimations at this 
scale, since both of these analyses (target country and nar-
row regional) indicated that some geographic signal was 
available for classification with our SNP assay (Table 1). 
It is important to note that while our method did not show 
high precision for identifying the country-of-origin, the four 
South American countries that listed C. odorata as CITES 
Appendix III (Bolivia, Brazil, Columbia, Peru) account 
for > 63% of the land area of the continent. With denser sam-
pling across northern and eastern South America, it should 
be possible to test this classification method using CITES 
III protection status (protected versus non-protected) as the 
classifier, as exports from all of these countries are highly 
restricted.

Using SNPs to predict the geographic origin of C. 
odorata by continuous assignment

Methods have also been developed for estimating the origin 
of genotypes using continuous assignment (Wasser et al. 
2004; Yang et al. 2012; Rañola et al. 2014; Guillot et al. 
2016). These methods assume Hardy–Weinberg and linkage 
equilibrium and only use genetic data, but these limitations 
are balanced by the potential power of providing a precise 
geospatial source for a sample, rather than a categorical 
assignment (Degen et al. 2017; Chen et al. 2017). Continu-
ous assignment with methods like SPASIBA are particularly 
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relevant for questions involving wood legality because har-
vest locations are frequently not included in genetic refer-
ence populations, especially for geographically widespread 
species.

Our median prediction error for continuous assign-
ment of C. odorata in South America was ~ 189 km via the 
LOOCV method, and ~ 260 km via the more conservative 
k-fold CV method (Table 2). These error estimates show 
promise for country-of-origin predictions, but may be less 
helpful for smaller countries and areas near international 
borders. Assignment errors ranged from 170 to 598 km for 
target countries (with Peru showing the lowest mean error; 
Fig. 3b), and from 133 to 598 km for department-sized geo-
graphic regions in our study area (with NE and SW regions 
in Peru showing the lowest errors; Fig. 3c). These errors 
– while large – are comparable to the continuous geographic 
assignment errors from other organisms based on similarly-
sized datasets. For example, the mean error for the place-
ment of humans based on 100 SNPs was ~ 430 km (Rañola 
et al. 2014), the 75% placement error of Arabidopsis based 
on 100 SNPs was 375 km (Guillot et al. 2016), and the 
median error for the geographic assignment of elephants 
based on 16 microsatellites ranged from 267 km (savannah) 
to 301 km (forest populations) (Wasser et al. 2015).

Despite the practical advantages of SPASIBA for providing 
continuous origin prediction, a potential disadvantage of the 
method lies in the assumption that spatial auto-covariance of 
allele frequencies diminishes with geographic distance. The 
assumptions of this simple gradient function may introduce 
error if allele frequency surfaces are irregular or lack a domi-
nant cline. In our study, we also stratified samples by precipita-
tion, temperature, and latitude (Fig. 1) to identify genes that 
might be responsive to different climate factors over small geo-
graphic distances, as might be the case due to heterogeneous 
elevation gradients imposed by the Andes Mountains. In doing 
so, SNPs selected for this assay appear biased towards genes 
showing stronger differentiation by climatic gradients than 
to spatial gradients of geographic distance; we observed that 
pairwise genetic distance was more strongly associated with 
pairwise MAT and AP distances than pairwise geographic 
distance (genetic distance ~ MAT distance Mantel r = 0.42; 
genetic distance ~ AP distance Mantel r = 0.26; genetic dis-
tance ~ geographic distance Mantel r = 0.08; Appendix 5) 
(Goslee and Urban 2007). This bias may have reduced the 
accuracy of our SPASIBA predictions, either by violating 
assumptions of simple gradients, or by selecting genes that 
show weaker correlations with geographic distances than they 
do to climatic distances. We will explore solutions to this in 
the future, by examining additional loci that show higher cor-
relations to geography than climate, and testing continuous 
assignment methods that relax the assumption of isolation-by-
distance allele frequency gradients (Rañola et al. 2014; Battey 
et al. 2019).

Recommendations for improving SNP‑based 
geographic predictions for Cedrela

The accuracy of assignment can be dramatically influenced 
by the pattern of geographic sampling and density of genome 
coverage, especially for continuous assignment methods. 
Although we did not observe a relationship between sam-
ple density and prediction error (Appendix 4), continuous 
methods have been shown to provide highest accuracies 
when training datasets include individuals from the same 
genetic background as test individuals (Guillot et al. 2016). 
Additionally, the impact of the size of the genetic database 
on assignment accuracy can also be substantial. For exam-
ple, two independent analyses have shown that increasing 
genomic density from 100 to 1,000 SNPs leads to significant 
reductions in prediction error (Rañola et al. 2014; Guillot 
et al. 2016). Our foundation dataset of 144,083 SNPs for 
C. odorata offers a rich resource that can be used to further 
refine SNP assays for geographic assignment. In this context, 
we note that additional SNPs (~ 350) are currently being 
evaluated for spatial assignment of C. odorata and C. fis-
silis, and this includes different nuclear and organelle mark-
ers from different source populations (Blanc-Jolivet et al., 
unpublished; Paredes-Villanueva et al. 2019). Joint analy-
sis of these two marker sets using common samples should 
show whether simply doubling the number of genotypes and 
SNPs offers significant improvements in geographic assign-
ment accuracy. Finally, different Cedrela species can show 
different allele frequencies across loci, and this may distort 
allele frequency surfaces used in spatial assignment and lead 
to less accurate geographic predictions for C. odorata. In 
this regard, we recommend exploration of genetic structure 
across reference specimens with DAPC (Appendix 3) or a 
similar method. In our reference database for C. odorata, we 
identified examples of specimens that were taxonomically 
misidentified, and this is common in natural history collec-
tions of tropical plants (Goodwin et al. 2015). Additional 
“C. odorata” reference specimens should be assessed for 
taxonomic cohesiveness with C. odorata before usage with 
evidence.

Conclusions

We identified greater than 100,000 SNPs that can be used 
to develop and refine assays for geographic localization 
of C. odorata wood specimens. From this database, we 
designed and tested a 140 SNP assay to predict the geo-
graphic origin of C. odorata, and we evaluated discrete 
(random forest) and continuous (SPASIBA) prediction 
methods. These methods make different assumptions with 
regard to the Hardy–Weinberg and linkage equilibrium; as 
such, they may show different performance depending on 
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the degree to which SNPs track selective (environmental) 
gradients or deviate from genetic assumptions. Although 
the observed error estimates from our geographic predic-
tions are too large for fine-scale geographic assignment, 
the assay shows high accuracy for determining the conti-
nent of origin and promise for country-level verification 
of specimens. This assay provides a tangible first step for 
determining the origin and legality of C. odorata wood, 
and these SNP resources and methods should provide the 
wood products industry with new (and developing) tools 
to improve the legality of C. odorata and closely allied 
species in wood trade.
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