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Abstract: Formal Bayesian comparison of two competing models, based on the posterior odds ratio,
amounts to estimation of the Bayes factor, which is equal to the ratio of respective two marginal
data density values. In models with a large number of parameters and/or latent variables, they are
expressed by high-dimensional integrals, which are often computationally infeasible. Therefore, other
methods of evaluation of the Bayes factor are needed. In this paper, a new method of estimation of the
Bayes factor is proposed. Simulation examples confirm good performance of the proposed estimators.
Finally, these new estimators are used to formally compare different hybrid Multivariate Stochastic
Volatility–Multivariate Generalized Autoregressive Conditional Heteroskedasticity (MSV-MGARCH)
models which have a large number of latent variables. The empirical results show, among other things,
that the validity of reduction of the hybrid MSV-MGARCH model to the MGARCH specification
depends on the analyzed data set as well as on prior assumptions about model parameters.

Keywords: Bayesian model comparison; Markov chain Monte Carlo; stochastic volatility

1. Introduction

The Bayes factor, defined as a ratio of the marginal likelihoods for the two models
being compared, is an important quantity in Bayesian model comparison and hypothesis
testing, see, e.g., in [1]. The posterior odds ratio, used for comparing two competing
models, is equal to the product of the prior odds and the Bayes’ factor. Therefore, one of
the challenges for Bayesians is to accurately estimate the factor, especially in models with a
large number of parameters and/or latent variables. Most popular methods of calculating
the Bayes factor, based on estimation of the marginal likelihoods of each model separately,
are very time-consuming (or even computationally infeasible) in high-dimensional cases.
Therefore, methods for direct estimation of the Bayes factor, instead of estimating two
marginal likelihoods, have been devised. There already exist different approaches, such as
the product-space approach, reversible jump MCMC, and path sampling (see, e.g., in [2–5]),
which make it possible to estimate the Bayes factor without calculation of the marginal
densities of the data, but in many empirical cases (especially in the case of a large number
of model parameters) they require extremely complicated and extensively time-consuming
operations, with no general guarantees of success.

Note that for nested models with a large number of latent variables such as stochastic
volatility models, Jacquier et al. [6] have shown how to estimate the Bayes factor directly
using Markov Chain Monte Carlo (MCMC) simulations from the posterior distribution.
They pointed out that the Bayes factor can be expressed as the expected value of the ratio of
corresponding densities with respect to the posterior distribution of parameters and latent
variables. This expected value can be estimated by averaging over the MCMC draws. Thus,
using the special structure of stochastic volatility models and exploiting prior assumptions
about parameters, they have estimated Bayes factors for comparing the basic stochastic
volatility model to the models with fat tails and correlated errors. Unfortunately, the finite
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sample properties of the estimator have not been analyzed by the authors. In this paper, we
will show that even in very simple models it does not perform well, but it can be improved
by trimming the space of parameters and latent variables.

Now, the issue of a direct estimation of the Bayes factor will be described more
formally. Let us consider a Bayesian model, in which

1. the space of parameters is denoted by Θ and p(θ) is a prior density function of the
parameters collected in θ ∈ Θ,

2. the space of latent variables is denoted by H and p(h|θ) is a prior density function of
the latent variables collected in h ∈ H, and

3. y is a vector of observations.

The marginal data density, p(y), is defined as the integral (calculated over the whole
space of parameters and latent variables, Θ× H) of the conditional data density given the
vector of parameters and latent variables, p(y|θ, h), with respect to the prior distribution of
the parameters and latent variables:

p(y) =
∫

Θ×H

p(y, h, θ) dθ dh =
∫

Θ×H

p(y|h, θ) p(h|θ) p(θ) dθ dh. (1)

In the majority of models it is impossible to analytically integrate out parameters and latent
variables from the joint distribution for y, h, and θ, p(y, h, θ). It very often results from
the number of dimensions of the space of the latent variables and parameters being too
large. Furthermore, a correct assessment of the marginal likelihood is computationally
challenging (see, e.g., in [7–9], where summaries of various methods can be found). In the
presence of a large number of latent variables (e.g., in stochastic volatility models) popular
methods of Monte Carlo estimation of p(y) for the observed vector y are computationally
extremely intensive, and often they turn out to be infeasible. Fortunately, we can consider
the ratio of marginal data densities instead of p(y). In fact, the main criterion of comparison
of two competing models Mi and Mj is the posterior odds ratio between the two models:

Oij =
p(Mi|y)
p(Mj|y)

=
p(y|Mi)

p(y|Mj)
× p(Mi)

p(Mj)
, (2)

where p(Mi|y) is the posterior probability of the model Mi, p(Mi) is the prior probability
of the model Mi, and p(y|Mi) =

∫
Θi×Hi

p(y|hi, θi, Mi) p(hi|θi, Mi) p(θi|Mi) dθi dhi is the

marginal data density value (the marginal likelihood) in the model Mi.The ratio Bij =
p(y|Mi)
p(y|Mj)

is referred to as the Bayes factor in favor of the model Mi against the model Mj,

in turn, the ratio p(Mi)
p(Mj)

is the prior odds ratio. Thus, if the prior odds ratio is equal to 1

(i.e., both models are equally probable a priori, p(Mi) = p(Mj)), the posterior odds ratio
between the two models is then equal to the Bayes factor. Moreover, if we assume that the
set of models {M1, . . . , Mm} is exhaustive, Bayes factors can be used to obtain the posterior
model probabilities:

p(Mi|y) =
p(Mi)p(y|Mi)

p(y|Mk)
m
∑

j=1
p(Mj)p(y|Mj)

p(y|Mk)

=
p(Mi)Bik

m
∑

j=1
p(Mj)Bjk

, (3)

for i, k ∈ {1, . . . , m}. By choosing k = i, we obtain

p(Mi|y) =
p(Mi)

m
∑

j=1
p(Mj)Bji

, (4)
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for i ∈ {1, . . . , m}.
Thus, the Bayes factors can be used instead of the marginal data density values. Note

that in many situations it is easier to estimate the Bayes factor than the marginal likelihood.
In this paper, we show how to estimate the Bayes factor in models with a large number of
parameters and/or latent variables, in which calculation of the marginal data density value
is numerically impossible. It will be shown that the Bayes factor is equal to the posterior
mean, restricted to a certain subset D of the parameter and latent variable space, of the
ratio of conditional densities of the corresponding quantities times the reciprocal of the
posterior probability of the subset D. This fact leads the researcher to using arithmetic
mean estimator of the ratio based on simulation from the posterior distribution restricted
to the subset D.

It is well known that the Savage–Dickey density ratio and its generalizations (see
in [10–12]) are relatively simple and widely used methods for computing Bayes factors
for nested models. The Savage–Dickey method requires an estimate of the value of the
posterior distribution at a single point. It is not reliable when this point lies in the tail of
the posterior distribution. As has already been mentioned, the Savage–Dickey method
can be used only for nested models. Our method can be applied for both nested and
non-nested ones.

Note that although the posterior odds principle is fundamental, there are other Bayesian
approaches to model comparison or hypothesis testing, e.g., the so-called Lindley type test
(see [13]) or the Full Bayesian Significance Test (FBST), introduced by Pereira and Stern [14] as
a Bayesian significance test for precise (sharp) hypotheses. A solid theoretical background
of the FBST can be found in [15]. Detailed discussions and extensions of the Pereira–Stern
test as well as of its applications are presented in, e.g., [16–21]. Our approach to Bayesian
model comparison (or comparing hypotheses) is based on posterior probabilities associated
with models (or hypotheses). This leads directly to the so-called posterior odds approach.
Motivations for the formal Bayesian approach to model selection and for the use of Bayes
factors are discussed in [22]. First of all, the Bayes factors and posterior model probabilities
are easy to understand. Moreover, this approach is consistent, penalizes model complexity,
remains conceptually the same regardless of the number of models (or hypotheses) under
consideration, and does not require nested models or regular asymptotics. This approach
allows one not only to test hypotheses, but also to compare them—“the process of revising
prior probabilities associated with alternative hypotheses does not necessarily involve a
decision to reject or accept these hypotheses” (see [1], p. 291). Furthermore, the Bayes factors
make it possible to compare models whose prior distributions are different. Finally, the
posterior probabilities of models or the Bayes factors can be used in the so-called Bayesian
pooling approach (or Bayesian model averaging, see, e.g., in [23]). This paper is organized
as follows. In Section 2, our new method is presented. Section 3 contains the simulation
study. In Section 4, we present results of comparison of hybrid MSV-MGARCH models.
The last section contains conclusions and direction of further research.

2. New Estimators of the Bayes Factor

It is easy to show that the Bayes factor in favor of the model Mi against the model Mj
can be expressed as an integral:

p(y|Mi)

p(y|Mj)
=

∫
Θi×Hi

p(y|θi, hi, Mi)p(hi|θi, Mi)p(θi|Mi)

p(y|θ j, hj, Mj)p(hj|θ j, Mj)p(θ j|Mj)
p(θ j, hj|y, Mj) dθi dhi, (5)

where p(y|θi, hi, Mi), p(hi|θi, Mi), and p(θi|Mi) denote the conditional probability density
function of the vector of observations (conditional sampling density), the conditional
probability density function of latent variables, and the prior density of parameters in the
model Mi, respectively. Note that when the two competing models Mi and Mj have the
same parameter vector and the vector of latent variables (i.e., θi = θj = θ, hi = hj = h,
Θi = Θj = Θ, Hi = Hj = H), then the Bayes factor can be computed in a relatively
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straightforward way which does not require estimation of marginal data density values
for each model separately. Of course, it is possible only if draws from one of the posterior
distributions are available (see in [24]). We have

BFij =
∫

Θ×H

rij(θ, h) p(θ, h|y, Mj) dθ dh, (6)

where

rij(θ, h) =
p(y|θ, h, Mi)p(h|θ, Mi)p(θ|Mi)

p(y|θ, h, Mj)p(h|θ, Mj)p(θ|Mj)
.

Therefore, given the sample {(θ(q) ′, h(q) ′)}k
q=1 from the posterior distribution p(θ, h|y, Mj),

an estimator of BFij can be expressed as

B̂Fij =
1
k

k

∑
q=1

rij(θ
(q), h(q)). (7)

As was pointed out in [24], it is crucial that the variability of the ratio rij(θ, h) is small under
the posterior distribution p(θ, h|y, Mj); otherwise, estimates of BFij might be driven by few
values of h(q) and θ(q), and thus an extremely large simulation sample could be required to
obtain adequate result. To deal with this problem, we propose a certain modification of
the estimator (7). The idea of this modification is based on trimming the posterior sample
to a certain subset of parameter and latent variable space, similarly to the idea of the
correction of arithmetic mean estimator, proposed in [25]. Let us assume that D ⊆ Θ× H
and 0 < Pr(D|y, Mi) < ∞. The equality

p(y|Mi)

p(y|Mj)
Pr(D|y, Mi) =

∫
Θ×H

ID(θ, h)
p(y|Mi)

p(y|Mj)
p(θ, h|y, Mi) dθ dh , (8)

implies that

p(y|Mi)

p(y|Mj)
Pr(D|y, Mi) =

∫
Θ×H

ID(θ, h)
p(y, θ, h|Mi)

p(y|Mj)
dθ dh.

We can see immediately that

p(y|Mi)

p(y|Mj)
Pr(D|y, Mi) =

∫
Θ×H

ID(θ, h)
p(y|θ, h, Mi)p(θ, h|Mi)

p(y|θ, h, Mj)p(θ, h|Mj)
p(θ, h|y, Mj) dθ dh,

thus
p(y|Mi)

p(y|Mj)
=

1
Pr(D|y, Mi)

∫
Θ×H

ID(θ, h)rij(θ, h) p(θ, h|y, Mj) dθ dh. (9)

Equality (9) means that the Bayes factor can be expressed as a product of the recipro-
cal of the posterior probability of the subset D in the model Mi, Pr(D|y, Mi), and of the
expected value of the indicator function of subset D times the ratio rij(θ, h), ID(θ, h)rij(θ, h).
This expected value is calculated with respect to the posterior distribution of the model pa-
rameters and latent variables in the model Mj. Therefore, given the sample {(h(q) ′, θ(q) ′)}k

q=1
from the posterior distribution p(θ, h|y, Mj), an estimator of BFij can be expressed as

B̂Fij,D =
1

P̂r(D|y, Mi)

[
1
k

k

∑
q=1

ID(θ
(q), h(q))rij(θ

(q), h(q))

]
, (10)
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where P̂r(D|y, Mi) is an assessment of the posterior probability of the subset D in the model
Mi. Unfortunately, this assessment requires also sampling from the posterior distribution
in the model Mi.

Note that equality (9) can obviously be written as

p(y|Mi)

p(y|Mj)
=

Pr(D|y, Mj)

Pr(D|y, Mi)

∫
D

rij(θ, h) p(θ, h|D, y, Mj) dθ dh, (11)

provided that 0 < Pr(D|y, Mj) < ∞. This equality suggests that the Bayes factor can be
estimated by the product of the ratio of posterior probabilities of the subset D and the
sample arithmetic mean of the ratio rij(θ, h):

B̂Fij,D =
P̂r(D|y, Mj)

P̂r(D|y, Mi)

[
1
k

k

∑
q=1

rij(θ
(q), h(q))

]
, (12)

based on {(h(q) ′, θ(q) ′)}k
q=1 drawn from the posterior distribution given by p(θ, h|y, Mj),

truncated to the subset D, that is, p(θ, h|D, y, Mj).
As a by-product of our considerations, we have just shown that if a Monte Carlo

sampler only visits a subset of the support of the posterior distribution, the correction of
the sample arithmetic mean of the ratio rij(θ,h) is needed.

Now, we will extend our analysis to models which contain two groups of parameters:
the parameters common to both models and parameters specific to only one of them.
Moreover, additional assumptions pertaining to conditional probability density functions
will be discussed.

Let us assume that

(i) θj = θU = (θ′A, θ′R)
′ ∈ ΘU = ΘA ×ΘR denotes all the parameters of the model Mj

(since called MU), while θi = θR contains the parameters common to both models:
MU and Mi (since called MR), and the vector θA denotes specific parameters of MU ;

(ii) p(θU |MU) = p(θA, θR|MU) = p(θA|MU)p(θR|MU), i.e., the random vectors θR and
θA are a priori independent;

(iii)
∫

ΘA

p(θA|MU) dθA = 1, i.e., the prior distribution for the vector of parameters θA is

proper; and
(iv) hi = hj = h; Hi = Hj = H, i.e., competing models have the same vector of latent vari-

ables.

2.1. Different Prior Distributions of Latent Variables in Both Models

In this section, we additionally assume that

(v) p(y|θU , hU , MU) = p(y|θR, hR, MR), i.e., competing models have the same conditional
sampling density and

(vi) p(θR|MU) = p(θR|MR), i.e., in both models, the common parameters have the same
prior distribution.

Under above assumptions the Bayes factor in favor of the model MR versus the model
MU is given by the following integral:

p(y|MR)

p(y|MU)
=

∫
ΘA×ΘR×H

p(h|θR, MR)

p(h|θA, θR, MU)
p(θA, θR, h|y, MU) dθA dθR dh. (13)

Thus, the estimator of the Bayes factor takes the form

B̂FR,U,h =
1
k

k

∑
q=1

p(h(q)|θ(q)R , MR)

p(h(q)|θ(q)A , θ
(q)
R , MU)

, (14)
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where {(θ(q)A
′, θ

(q)
R
′, h(q) ′)}k

q=1 are drawn from the posterior distribution of parameters and
latent variables in the model MU , i.e., from the distribution given by p(θA, θR, h|y, MU).

On the other hand, it is easy to show that the Bayes factor in favor of the model MU
against the model MR is as follows:

p(y|MU)

p(y|MR)
=

∫
ΘA×ΘR×H

p(h|θA, θR, MU)

p(h|θR, MR)
p(θR, h|y, MR)p(θA|MU) dθA dθR dh, (15)

and consequently

B̂FU,R,h =
1
k

k

∑
q=1

p(h(q)|θ(q)A , θ
(q)
R , MU)

p(h(q)|θ(q)R , MR)
, (16)

where {(θ(q)R
′, h(q) ′)}k

q=1 and {θ(q)A }
k
q=1 are drawn from the posterior distribution

p(θR, h|y, MR) and from the prior distribution, p(θA|MU), respectively. However, if the
dimension of the vector (θ′, h′)′ is high, then the estimators B̂FU,R,h and B̂FR,U,h tend to
suffer from the so-called “simulation pseudo-bias”, similarly to the harmonic mean estima-
tor (see in [26]). This “simulation pseudo-bias” of the estimators will be illustrated on the
basis of simulation studies in the next section. To deal with the problem of “pseudo-bias”,
we propose drawing from the posterior and prior distributions restricted to a subset of the
space of parameters and latent variables with non-zero posterior probability, and correct-
ing the arithmetic mean of the ratio by the posterior probability of the subset visited by
the sampler.

Let us assume that DR ⊆ ΘR × H and DA ⊆ ΘA, 0 < Pr(DA × DR|MU) < ∞,
0 < Pr(DA × DR|y, MU) < ∞.

Starting from the identity

p(y|MR)

p(y|MU)
Pr(DR|y, MR)Pr(DA|MU) =

=
∫

DA×DR

p(y|MR)

p(y|MU)
p(θR, h|y, MR)p(θA|MU) dθA dθR dh,

(17)

we obtain
p(y|MR)

p(y|MU)
Pr(DR|y, MR)Pr(DA|MU) =

=
∫

ΘA×ΘR×H

IDA×DR(θA, θR, h)
p(θR, h, y|MR)p(θA|MU)

p(y|MU)p(θA, θR, h|y, MU)
p(θA, θR, h|y, MU)dθA dθR dh =

=
∫

ΘA×ΘR×H

IDA×DR(θA, θR, h)
p(θR, h, y|MR)p(θA|MU)

p(θA, θR, h, y|MU)
p(θA, θR, h|y, MU)dθA dθR dh.

On the basis of the fact that

p(θR, h, y|MR)p(θA|MU)

p(θA, θR, h, y|MU)
=

p(y|θR, h, MR)p(h|θR, MR)p(θR|MR)p(θA|MU)

p(y|θA, θR, h, MU)p(h|θA, θR, MU)p(θA, θR|MU)
,

and under assumptions (i)–(vi), we have

p(θR, h, y|MR)p(θA|MU)

p(θA, θR, h, y|MU)
=

p(h|θR, MR)

p(h|θA, θR, MU)
.

Therefore,
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p(y|MR)

p(y|MU)
=

1
Pr(DR|y, MR)Pr(DA|MU)

×

×
∫

ΘA×ΘR×H

IDA×DR(θA, θR, h)
p(h|θR, MR)

p(h|θA, θR, MU)
p(θA, θR, h|y, MU) dθA dθR dh.

(18)

Identity (18) naturally leads to the following estimator of the Bayes factor:

B̂FR,U,D,h =
1

P̂r(DR|y, MR)P̂r(DA|MU)
×

×
k

∑
q=1

p(h(q)|θ(q)R , MR)

p(h(q)|θ(q)A , θ
(q)
R , MU)

IDA×DR(θ
(q)
A , θ

(q)
R , h(q)),

(19)

where {(θ(q)A
′), θ

(q)
R
′, h(q) ′)}k

q=1 are drawn from p(θA, θR, h|y, MU), or equivalently

B̂FR,U,D,h =
P̂r(DA × DR|y, MU)

P̂r(DR|y, MR)P̂r(DA|MU)
×

× 1
k

k

∑
q=1

p(h(q)DA×DR
|θ(q)R,DA×DR

, MR)

p(h(q)DA×DR
|θ(q)A,DA×DR

, θ
(q)
R,DA×DR

, MU)
,

(20)

where {(θ(q)A,DA×DR
′, θ

(q)
R,DA×DR

′, h(q)DA×DR
′)}k

q=1 are drawn from p(θA, θR, h|y, MU) truncated
to the subset DA × DR. Because the posterior simulation support is the subset DA × DR of
the parameter and latent variable space, most of the {(θ(q)A,DA×DR

′, θ
(q)
R,DA×DR

′, h(q)DA×DR
′)}k

q=1
have “similar” values of the ratio of the conditional densities of latent variables, so that, hav-
ing probabilities P̂r(DA × DR|y, MU), P̂r(DR|y, MR), P̂r(DA|MU), the simulation process
will be numerically more efficient than in the case of unrestricted space of parameters and
latent variables. The estimates will not be dominated by few values of the ratio. Therefore,
a smaller simulation sample will be required to obtain adequate precision in B̂FR,U,D,h.

Now suppose that D ⊆ ΘA ×ΘR × H and 0 < Pr(D|MU) < ∞, 0 < Pr(D|y, MU) <
∞. This time we start with the identity

p(y|MU)

p(y|MR)
Pr(D|y, MU) =

∫
D

p(y|MU)

p(y|MR)
p(θA, θR, h|y, MU) dθA dθR dh, (21)

and we obtain
p(y|MU)

p(y|MR)
Pr(D|y, MU) =

=
∫

ΘA×ΘR×H

ID(θA, θR, h)
p(θA, θR, h, y|MU)

p(y|MR)p(θR, h|y, MR)
p(θR, h|y, MR) dθA dθR dh =

=
∫

ΘA×ΘR×H

ID(θA, θR, h)
p(θA, θR, h, y|MU)

p(θR, h, y|MR)
p(θR, h|y, MR)dθA dθR dh.

In this case,

p(θA, θR, h, y|MU)

p(θR, h, y|MR)
=

p(y|θA, θR, h, MU)p(h|θA, θR, MU)p(θA, θR|MU)

p(y|θR, h, MR)p(h|θR, MR)p(θR|MR)
,
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and under assumptions (i)–(vi)

p(θA, θR, h, y|MU)

p(θR, h, y|MR)
=

p(h|θA, θR, MU)p(θA|MU)

p(h|θR, MR)
.

Thus,

p(y|MU)

p(y|MR)
=

1
Pr(D|y, MU)

×

×
∫

ΘA×ΘR×H

ID(θA, θR, h)
p(h|θA, θR, MU)

p(h|θR, MR)
p(θR, h|y, MR)p(θA|MU) dθA dθR dh.

(22)

Given a sample {(θ(q)R
′, h(q) ′)}k

q=1, {θ(q)A }
k
q=1 from the distributions p(θR, h|y, MR) and

p(θA|MU), respectively, then, as results from (22), an estimator of the Bayes factor for the
model MU against the model MR can be

B̂FU,R,D,h =
1

P̂r(D|y, MU)

1
k

k

∑
q=1

p(h(q)|θ(q)A , θ
(q)
R , MU)

p(h(q)|θ(q)R , MR)
ID(θ

(q)
A , θ

(q)
R , h(q)). (23)

Additionally, if D = DA × DR ⊆ ΘA ×ΘR × H, then

B̂FU,R,D,h =
P̂r(DR|y, MR)P̂r(DA|MU)

P̂r(D|y, MU)

1
k

k

∑
q=1

p(h(q)D |θ
(q)
A,D, θ

(q)
R,D, MU)

p(h(q)D |θ
(q)
R,D, MR)

, (24)

where {(θ(q)R,D
′, h(q)D

′)}k
q=1, {θ(q)A,D}

k
q=1 are drawn from the distributions determined by

p(θR, h|y, MR) and p(θA|MU), respectively, restricted to the subset D.

2.2. Different Prior Distributions for Common Parameters in Both Models

Now, let us assume that

(v) p(y|θU , hU , MU) = p(y|θR, hR, MR), i.e., competing models have the same sampling
density and

(vii) p(h|θA, θR, MU) = p(h|θR, MR), i.e., in both models, the latent variables have the
same prior distribution, instead of (vi) p(θR|MU) = p(θR|MR).

Then, it is easy to show that in the first case

p(y|MR)

p(y|MU)
=

1
Pr(DR|y, MR) Pr(DA|MU)

×

×
∫

ΘA×ΘR×H

IDA×DR(θA, θR, h)
p(θR|MR)

p(θR|MU)
p(θA, θR, h|y, MU) dθA dθR dh, (25)

and in the second case

p(y|MU)

p(y|MR)
=

1
Pr(D|y, MU)

×

×
∫

ΘA×ΘR×H

ID(θA, θR, h)
p(θR|MU)

p(θR|MR)
p(θR, h|y, MR)p(θA|MU) dθA dθR dh.

(26)

Basing on identities (25) and (26), the following estimators of the Bayes factors can be
formulated:

B̂FR,U,D,θ ==
1

P̂r(DR|y, MR)P̂r(DA|MU)

1
k

k

∑
q=1

p(θ(q)R |MR)

p(θ(q)R |MU)
IDA×DR(θ

(q)
A , θ

(q)
R , h(q)), (27)
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where {(θ(q)A
′, θ

(q)
R
′, h(q) ′)}k

q=1 are drawn from p(θA, θR, h|y, MU),

B̂FU,R,D,θ =
1

P̂r(D|y, MU)

1
k

k

∑
q=1

p(θ(q)R |MU)

p(θ(q)R |MR)
ID(θ

(q)
A , θ

(q)
R , h(q)), (28)

where {(θ(q)R
′, h(q) ′)}k

q=1, {θ(q)A }
k
q=1 are drawn from p(θR, h|y, MR) and p(θA|MU), respectively.

2.3. Different Conditional Sampling Distributions of the Vector of Observations

Now we assume that conditions (i)–(iv), (vi), and (vii) hold. Thus, the conditional
distribution of the observable vector can be different, but the prior distributions for vector
of latent variables and common parameters are the same in both competing models. Then,
it is easy to show that

p(y|MR)

p(y|MU)
=

1
Pr(DR|y, MR) Pr(DA|MU)

×

×
∫

ΘA×ΘR×H

IDA×DR(θA, θR, h)
p(y|θR, h, MR)

p(y|θA, h, MU)
p(θA, θR, h|y, MU) dθA dθR dh,

(29)

and for the reciprocal of this Bayes factor we have

p(y|MU)

p(y|MR)
=

1
Pr(D|y, MU)

×

×
∫

ΘA×ΘR×H

ID(θA, θR, h)
p(y|θR, h, MU)

p(y|θR, h, MR)
p(θR, h|y, MR)p(θA|MU) dθA dθR dh.

(30)

Similarly to the above, basing on identities (29) and (30), the following estimators of
the Bayes factors can be formulated:

B̂FR,U,D,y =
1

P̂r(DR|y, MR)P̂r(DA|MU)
×

× 1
k

k

∑
q=1

p(y|θ(q)R , h(q), MR)

p(y|θ(q)A , h(q), MU)
IDA×DR(θ

(q)
A , θ

(q)
R , h(q)),

(31)

where {(θ(q)A
′, θ

(q)
R
′, h(q) ′)}k

q=1 are drawn from p(θA, θR, h|y, MU), and

B̂FU,R,D,y =
1

P̂r(D|y, MU)

1
k

k

∑
q=1

p(y|θ(q)R , h(q), MU)

p(y|θ(q)R , h(q), MR)
ID(θ

(q)
A , θ

(q)
R , h(q)), (32)

where {(θ(q)R
′, h(q) ′)}k

q=1, {θ(q)A }
k
q=1 are drawn from p(θR, h|y, MR) and p(θA|MU), respectively.

Note that the estimators (19), (22), (27), (28), (31), and (32) are based on the arithmetic
mean of the ratio of densities times the indicator function of an arbitrary subset of the space
of model parameters and latent variables. Additionally, this arithmetic mean is corrected
by the reciprocal of the posterior probability of the subset.

3. Simulation Study

In this section, we present a simple simulation study for models with latent variables
in which, after having integrated out latent variables analytically, the true values of the
marginal likelihoods can easily be assessed using, e.g., the corrected arithmetic mean esti-
mator (CAME [25]). These assessments will be applied to obtain estimates of Bayes factors
used as benchmark values for evaluation of the performance of the new method proposed.
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Let us consider the Student t model

yt|µ, v ∼ iit(µ, 1, v), t = 1, 2, ..., T,

µ ∼ N(µ0, σ2
0 ), v ∼ Exp(λ0)

(33)

where t(µ, 1, v) denotes the Student t distribution with mode µ, precision 1, and v degrees
of freedom. N(µ0, σ2

0 ) denotes the Normal distribution with mean µ0 and variance σ2
0 , in

turn, Exp(λ0) stands for the Exponential distribution with mean λ−1
0 and variance λ−2

0 .
The symbol iid stands for independent and identically distributed. Thus, the random
variables y1, . . . , yT are independent and have the same Student t distribution.

The Student t distribution can be expressed as a scale mixture of Gaussian distributions
by introducing a random variable ht that is inverse-gamma distributed. The model can be
written as

yt|ωt, µ, v ∼ iiN(µ, h−1
t ),

ht| v ∼ iiG(v/2, v/2),

µ ∼ N(µ0, σ2
0 ), v ∼ Exp(λ0),

(34)

where G(v/2, v/2) denotes the gamma distribution with shape v/2 and rate v/2.
To simulate datasets we generated samples of size T = 500, 1000, 2000, data points

from model (33) with µ = 0, 0.25, 0.5, v = 8, and µ0 = 0; σ2
0 = 1; λ0 = 0.1.

In turn, to simulate from the posterior distribution the Gibbs algorithm was used and
run for 20,000 iterations. The conditional posterior distribution for µ is Normal, i.e.,

µ|h, v, y ∼ NK(µ1, σ2
1 ), (35)

where σ2
1 = (

T
∑

t=1
ht + σ−2

0 )−1, µ1 = σ2
1 (

T
∑

t=1
ytht + µ0σ−2

0 ), while the conditional posterior

distribution for ht is Gamma:

ht|µ, v, y ∼ G((v + 1)/2, [(yt − µ)2 + v]/2), t = 1, ..., T. (36)

An easy computation shows that the conditional posterior distribution of v is nonstandard:

v|h, µ, y ∼ p(v|h, y, µ) ∝
(v

2

) Tv
2 Γ
(v

2

)−T
e−vκ/2, (37)

where κ =
T
∑

t=1
ht −

T
∑

t=1
ln ht + 2λ0.

However, reliable numerical methods for generating from this distribution do exist.
We use one of them, the rejection sampling proposed by [27].

In the model under consideration, θU = (µ, v)′, θR = v, and h = (h1, . . . , hT)
′; thus,

the number of latent variables is equal to the number of observations: 500, 1000, and
2000, respectively. The direct computation of the marginal likelihood for model (34) is
intensive and unstable due to the presence of latent variables. However, by integrating
out the latent variables from the joint distribution of parameters, latent variables, and
data, p(y|h, µ, v)p(h, µ, v), the conditional density of the data given parameters only can be
written in the following form:

p(y|µ, v) =
T

∏
t=1

Γ
(

v+1
2

)
Γ
( v

2
)√

vπ

(
1 +

(yt − µ)2

v

)− v+1
2

. (38)

Unfortunately, the marginal density of the data (i.e., p(y)) cannot be presented in
closed form. However, due to the lack of latent variables as well as thanks to the small
number of parameters, the marginal data density value can easily and precisely be evalu-
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ated by using the corrected arithmetic mean estimator (CAME [25]). Estimates obtained by
the use of the CAME are treated as benchmark values.

In order to show performance of our new estimators of the Bayes factor, we assume
that the subset D is an intersection of the space of parameters and latent variables, ob-
tained from the condition that the ratio of conditional density functions p(y|θU , h, MU)
and p(y|θR, h, MR) is between the lowest and the highest values of the ratio evaluated on
the basis of pseudo-random sample {θ(q), h(q)}k

q=1 in both models, and the hyper-cuboid
limited by the range of the sampler output, i.e.,

D = (A× B) ∩ C,

where
A = ⊗

i
[ max
m∈{MU ,MR}

min
qm
{θ(qm)

i }, min
m∈{MU ,MR}

max
qm
{θ(qm)

i }],

B = ⊗
t
[ max
m∈{MU ,MR}

min
qm
{h(qm)

t }, min
m∈{MU ,MR}

max
qm
{h(qm)

t }],

C = {(θ′U , h′) : L ≤ p(y|θU , h, MU)

p(y|θR, h, MR)
≤ Q},

L = max
m∈{MU ,MR}

min
qm
{

p(y|θ(qm)
U , h(qm), MU)

p(y|θ(qm)
R , h(qm), MR)

},

Q = min
m∈{MU ,MR}

max
qm
{

p(y|θ(qm)
U , h(qm), MU)

p(y|θ(qm)
R , h(qm), MR)

}.

In the restricted models (MR), it is assumed that µ = 0, whereas in the unrestricted
model (MU) µ 6= 0. The ratio of density functions of the conditional distributions of the
observable vector is as follows:

p(y|θU , h, MU)

p(y|θR, h, MR)
= e
− 1

2

T
∑

t=1
[(yt−µ)2−y2

t ]ht
= e
− 1

2 µ2
T
∑

t=1
ht+µ

T
∑

t=1
ytht

. (39)

In Tables 1–3, we present results obtained by using newly proposed estimators of Bayes
factors (i.e., the corrected arithmetic means of the ratio of the densities of the conditional
distributions of the observable vector, B̂FU,R,D,y and B̂FR,U,D,y) and uncorrected arithmetic
means of the ratios B̂FU,R,y and B̂FR,U,y. Tables 1–3 present means, standard deviations,
root mean square errors and average errors (relative to the CAM estimates) of the decimal
logarithm of estimates obtained in models under consideration. As mentioned earlier,
closed-form expressions for the marginal likelihoods do not exist. Therefore, the root mean
square errors and average errors are determined relative to the CAM estimates obtained
for each marginal likelihood separately.

To estimate Pr(D|y, MU), Pr(DR|y, MR), and Pr(DA|MU), we use simulation from
appropriate posterior or prior distributions, e.g.,

P̂r(D|y, MU) =
1
k

k

∑
q=1

ID(θ
(q)
A , θ

(q)
R , h(q)), (40)

where {(θ(q)A
′, θ

(q)
R
′, h(q) ′)}k

q=1 are drawn from the posterior distribution p(θA, θR, h|y, MU).
The remaining probabilities are calculated in a similar manner. Furthermore, we consider
uncorrected arithmetic means of the ratios B̂FU,R,y and B̂FR,U,y to investigate sampling
properties of these estimators.

Figure 1 indicates that even in such simple models performance of the uncorrected
estimators are not satisfactory. The estimator B̂FR,U,y is downwardly “pseudo-biased”
(respective average errors are negative). On the other hand, our simulation study demon-
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strates that the performance of the estimators B̂FU,R,y and B̂FR,U,y can be improved by
trimming the posterior simulation support to a given subset of the space of latent variables
and parameters, and next making the correction of the arithmetic mean of the ratios using
the posterior probabilities of the subset. As can be seen from Tables 1–3 and Figures 1–3,
corrected estimators of the Bayes factors perform very well in comparison to uncorrected
ones. The estimators B̂FU,R,D,y and B̂FR,U,D,y produce estimates which are very close to
those obtained on the basis of the CAME, while the estimators B̂FU,R,y and B̂FR,U,y, based
on uncorrected arithmetic mean, provide biased estimates.

Table 1. Mean (M), standard deviation (SD), average error (AE; corrected arithmetic mean estimator
(CAME)—estimated), and root mean square error (RMSE) in the Student t model. The number of
observations and of latent variables is equal to T = 500.

Estimator and Its Sample Characteristics
for µ = 0 for µ = 1/2

log BFU,R log BFR,U log BFU,R log BFR,U

CAME −1.256 1.256 21.191 −21.191

logB̂FU,R: M −1.254 – 19.826 –
SD 0.012 – 0.748 –
AE −0.001 – −1.340 –

RMSE 0.011 – 1.631 –

logB̂FU,R,D: M −1.255 – 21.02 –
SD 0.013 – 0.357 –
AE −0.003 – −0.209 –

RMSE 0.013 – 0.589 –

logB̂FR,U : M – 0.498 – −22.981
SD – 0.165 – 0.505
AE – −0.776 – −1.870

RMSE – 0.783 – 1.935

logB̂FR,U,D: M – 1.249 – −21.238
SD – 0.032 – 0.284
AE – −0.010 – −0.100

RMSE – 0.036 – 0.246
Notes: Results obtained for T = 500 observations from a Student t distribution with mean µ, precision equal to
1 and 8 degrees of freedom. Estimations of the Bayes factors were repeated 100 times. The Bayes factors were
estimated with Monte Carlo sampler based on 20,000 iterations. The log BFR,U denotes the decimal logarithm of
the Bayes factor in favor of model MR against model MU . The log BFU,R denotes the decimal logarithm of the
Bayes factor in favor of model MU against model MR. B̂FU,R denotes the estimator of the Bayes factor calculated
using simulation from untruncated distributions, whereas B̂FU,R,D denotes the estimator of the Bayes factor based
on simulation from truncated distributions to the set D (the subscript y is omitted for convenience).
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Table 2. Mean (M), standard deviation (SD), average error (AE; CAME—estimated), and root mean
square error (RMSE) in the Student t model. The number of observations and of latent variables is
equal to T = 1000.

Estimator and Its Sample Characteristics
for µ = 0 for µ = 1/2

log BFU,R log BFR,U log BFU,R log BFR,U

CAME −1.309 1.309 37.266 −37.266

logB̂FU,R: M −1.305 – 34.806 –
SD 0.016 – 0.738 –
AE 0.004 – −2.485 –

RMSE 0.020 – 2.612 –

logB̂FU,R,D: M −1.306 – 37.093 –
SD 0.017 – 0.423 –
AE 0.002 – −0.151 –

RMSE 0.018 – 0.403 –

logB̂FR,U : M – 0.415 – −40.079
SD – 0.201 – 0.598
AE – −0.813 – −2.626

RMSE – 0.850 – 2.753

logB̂FR,U,D: M – 1.304 – −37.341
SD – 0.032 – 0.258
AE – 0.0003 – −0.137

RMSE – 0.028 – 0.265
Notes: Results obtained for T = 1000 observations from a Student t distribution with mean µ, precision equal to 1
and 8 degrees of freedom. Meaning of symbols used the same as in Table 1.
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Figure 1. Estimates of the log-Bayes factor in the Student t model, obtained with the use of uncor-
rected ratios (blue line), and of the corrected arithmetic mean estimator after having integrated out
latent variables (red line). Simulation study of the Student t model using 2000 simulated data points
(T = 2000, which is also equal to the number of latent variables); 20,000 Gibbs sampler iterations for
estimation were used. The logBFR,U denotes the decimal logarithm of the Bayes factor in favor of
model MR against model MU .
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Table 3. Mean (M), standard deviation (SD), average error (AE; CAME—estimated), and root mean
square error (RMSE) in the Student t model. The number of observations and of latent variables is
equal to T = 2000.

Estimator and Its Sample Characteristics
for µ = 0 for µ = 1/4

log BFU,R log BFR,U log BFU,R log BFR,U

CAME −1.500 1.500 23.837 −23.837

logB̂FU,R: M −1.482 – 22.683 –
SD 0.017 – 0.53 –
AE 0.021 – −1.204 –

RMSE 0.030 – 1.321 –

logB̂FU,R,D: M −1.480 – 23.638 –
SD 0.016 – 0.371 –
AE 0.024 – −0.134 –

RMSE 0.031 – 0.325 –

logB̂FR,U : M – 0.451 – −25.521
SD – 0.108 – 0.517
AE – −1.070 – −1.715

RMSE – 1.072 – 1.755

logB̂FR,U,D: M – 1.497 – −23.874
SD – 0.039 – 0.226
AE – −0.010 – −0.051

RMSE – 0.039 – 0.283
Notes: Results obtained for T = 2000 observations from a Student t distribution with mean µ, precision equal to 1
and 8 degrees of freedom. Meaning of symbols used the same as in Table 1.
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Figure 2. Estimates of the log Bayes factor in the Student t model, obtained with the use of the new
estimators (blue line), and of the corrected arithmetic mean estimator after having integrated out
latent variables (red line). Simulation study of the Student t model using 1000 simulated data points
(T = 1000, which is also equal to the number of latent variables); 20,000 Gibbs sampler iterations for
estimation were used. The symbol B̂FR,U,D denotes corrected estimator of the Bayes factor in favor of
model MR against model MU . The symbol B̂FU,R,D denotes corrected estimator of the Bayes factor
in favor of model MU against model MR.
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Figure 3. Estimates of the log Bayes factor in the Student t model, obtained with the use of the new
estimators (blue line), and of the corrected arithmetic mean estimator after having integrated out
latent variables (red line). Simulation study of the Student t model using 1000 simulated data points
(T = 2000, which is also equal to the number of latent variables); 20,000 Gibbs sampler iterations for
estimation were used. The symbol B̂FR,U,D denotes corrected estimator of the Bayes factor in favor of
model MR against model MU . The symbol B̂FU,R,D denotes corrected estimator of the Bayes factor
in favor of model MU against model MR.

Finally, note that by using both estimators for the ratio of densities and their reciprocals,
i.e., B̂FU,R,D,y and B̂FR,U,D,y, one can check the accuracy of assessments and of adequate
(from numerical point of view) selection of the subset D. This is because, roughly speaking,
the equality BFU,R = 1

BFR,U
implies that it is natural to use B̂FU,R,D,y and 1

B̂FR,U,D,y
to estimate

BFU,R. Different estimates for BFU,R can indicate numerical inadequacy of selection of the
subset D and/or too small simulation sample.

4. Empirical Illustration: Formal Bayesian Comparison of Hybrid MSV-MGARCH Models

In this section, the new method will be applied in order to formally compare the
hybrid Multivariate Stochastic Volatility–Multivariate Generalized Autoregressive Condi-
tional Heteroskedasticity (MSV-MGARCH) models and thus to show that it can be used
in practice. The hybrid MSV-MGARCH models were proposed in [28–30] for modeling
financial time series. These hybrid models are characterized by relatively simple model
structures that exploit advantages of both model classes: flexibility of the Multivariate
Stochastic Volatility (MSV) class, where volatility is modeled by latent stochastic processes,
and relative simplicity of the Multivariate GARCH (MGARCH) class. The simplest specifi-
cation of MSV-MGARCH model (called LN-MSF-SBEKK) is based on one latent process
(Multiplicative Stochastic Factor (MSF)) and on the scalar BEKK [31] covariance structure.
The LN-MSF-SBEKK structure is obtained by multiplying the SBEKK conditional covari-
ance matrix Ht by a scalar random variable ht such that {ln ht} is a Gaussian AR(1) latent
process with autoregression parameter φ. The hybrid LN-MSF-SBEKK specification has
been recognized in the literature [32–35] and proved to be useful in multivariate model-
ing of financial time series as well as of macroeconomic data [36–41]. The drawback of
the LN-MSF-MGARCH process is that it cannot be treated as a direct extension of the
MGARCH process with the Student t conditional distribution. When φ = 0, the LN-MSF-
SBEKK process reduces itself to the SBEKK process with the conditional distribution being
a continuous mixture of multivariate normal distributions with covariance matrices Htht
and ht log-normally distributed. However, the multivariate Student t distribution can be
expressed as a scale mixture of normal distributions with the inverted gamma as a mixing
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distribution. This fact was exploited in [42,43], where the IG-MSF-SBEKK specification was
proposed as a natural hybrid extension of the SBEKK process with the Student t conditional
distribution (t-SBEKK). In the new specification, the latent process {ln ht} remains an
autoregressive process of order one, but it is non-Gaussian. For φ = 0 the latent variables
ht (where t ∈ Z) are independent and have inverted gamma (IG) distribution. Unfortu-
nately, for φ 6= 0 the unconditional distribution of the latent variables ht is unknown. To
summarize, the IG-MSF-SBEKK model is obtained by multiplying the SBEKK conditional
covariance matrix Ht by a scalar random variable ht coming from such latent process
(with autoregression parameter φ) that, for φ = 0, ht has an inverted gamma distribution.
Thus, φ = 0 leads to the t-SBEKK specification, in which the conditional distribution is
represented as a continuous mixture of multivariate normal distributions with covariance
matrices Htht, where ht is inverted gamma distributed. If φ 6= 0, the latent variables ht
(t ∈ Z) are dependent, so (in comparison to the t-SBEKK model) in the IG-MSF-SBEKK
model there exists an additional source of dependence.

Let us consider a two-dimensional autoregressive process rt = (r1,t, r2,t) defined by
the equation

rt = δ0 + rt−1∆ + εt, t = 1, . . . , T, (41)

where δ0 and ∆ are, respectively, 2× 1 and 2× 2 matrix parameters, and T is the length of
the observed time series. The hybrid MSF-MGARCH specification for the disturbance term
εt is defined by the following equality:

εt = ζt H1/2
t h1/2

t , (42)

where
Ht = (1− β1 − β2)A + β1

(
εt−1

′εt−1
)
+ β2Ht−1, (43)

ln gt = φ ln gt−1 + ln γt, (44)

{ζt} is a Gaussian white noise sequence with mean vector zero and unit covariance matrix;
{γt} is a sequence of independent positive random variables; γt is inverted gamma dis-
tributed with mean v

v−2 for v > 2, i.e., {γt} ∼ iiIG(v/2, v/2), ζt⊥γs for all t, s ∈ {1, . . . , T},
0 < |φ| < 1; β1 and β2 are positive scalar parameters such that β1 + β2 < 1; and A is a
free symmetric positive definite matrix of order 2. Under (41) and (42), the conditional
distribution of rt (given the past of rt and the current latent variable ht) is Normal with
mean vector µt = δ0 + rt−1∆ and covariance matrix Σt = Htht. For φ = 0 (this value
is excluded in the definition of the hybrid models under consideration) ht = γt, so the
distribution of ht is an inverted gamma. In this case, rt in (41) is, given its past, an IG
mixture of two-variate normal distributions N(µt, htHt), i.e., it has the two-variate Student
t distribution.

The assumptions presented so far determine the conditional distribution of the ob-
servations and latent variables given the parameters. Thus, it remains to formulate the
prior distributions of parameters. We use the same prior distributions as in [42,43]. Six
elements of δ = (δ0vec(∆)′) are assumed to be a priori independent of other parameters,
with the N(0, I6) prior. Matrix A has an inverted Wishart prior distribution such that
A−1 has the Wishart prior distribution with mean I2; the elements of β = (β1, β2)′ are
jointly uniformly distributed over the unit simplex. As regards the initial conditions for
Ht, we take H0 = h0 I2 and treat h0 > 0 as an additional parameter, a priori exponentially
distributed with mean 1; φ has the uniform distribution over (−1, 1), and for v we assume
the gamma distribution with mean λa/λv, truncated to (2,+∞). We assume that λv = 0.1
with two cases: λa = 3 and λa = 1 (note that λa = 1 leads to exponential distribution for v).

Furthermore, we use the same bivariate data sets as those modeled in [30,42,43]. The
first data set consists of the official daily exchange rates of the National Bank of Poland
(NBP fixing rates) for the US dollar and German mark in the period 1 February 1996–
31 December 2001. The length of the modeled time series of their daily growth rates
(logarithmic return rates) is 1482. The second data set consists of the daily quotations of the
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main index of the Warsaw Stock Exchange (WIG) and the S&P500 index of NYSE—1727
logarithmic returns are modeled from the period 8 January 1999–1 February 2006.

In order to obtain pseudo-random sample from the posterior distribution of parame-
ters and latent variables, we use MCMC simulation techniques described in [42,44] and
implemented within the GAUSS programming environment.

Using fully Bayesian methods, we want to answer the question whether the IG-MSF-
SBEKK model can be reduced to the t-SBEKK case. Thus, we consider the hypothesis that a
scalar parameter φ = 0 (the t-SBEKK model, MR) and the alternative hypothesis that φ 6= 0
(the IG-MSF-SBEKK model, MU). For the exchange rate data, the posterior probability that
φ < 0 is approximately 0.001 only and φ = 0 is included in the highest posterior density
(HPD) interval of probability content as high as 0.996. Thus, Lindley’s procedure leads
to the conclusion that the t-SBEKK is inadequate. But for the stock data, the posterior
probability that φ < 0 is 0.017 for λa = 3 and 0.054 for λa = 1, and φ = 0 is included in the
HPD interval of probability content 0.87 or 0.80, depending on the prior hyperparameter
λa. In the case of the stock data, Lindley’s testing procedure yields results that the t-SBEKK
model cannot be rejected by the data.

Now, our new estimators of the Bayes factors will be used. We start with the assump-
tion that the subset D is an intersection of the subspace of parameters and latent variables,
obtained by the condition that the ratio of conditional density functions p(h|θU , MU) and
p(h|θR, MR) is between the lowest and the highest values of the ratio evaluated at pseudo-
random sample {θ(q), h(q)}k

q=1 in both models, and the hyper-cuboid limited by the range
of the sampler output, i.e., D = (A× B) ∩ C, where

A = ⊗
i
[ max
m∈{MU ,MR}

min
qm
{θ(qm)

i }, min
m∈{MU ,MR}

max
qm
{θ(qm)

i }],

B = ⊗
t
[ max
m∈{MU ,MR}

min
qm
{h(qm)

t }, min
m∈{MU ,MR}

max
qm
{h(qm)

t }],

C = {(θ′U , h′) : L ≤ p(h|θU , MU)

p(h|θR, MR)
≤ Q},

L = max
m∈{MU ,MR}

min
qm
{

p(h(qm)|θ(qm)
U , MU)

p(h(qm)|θ(qm)
R , MR)

},

Q = min
m∈{MU ,MR}

max
qm
{

p(h(qm)|θ(qm)
U , MU)

p(h(qm)|θ(qm)
R , MR)

}.

The ratio of the densities of the conditional distributions of the vector of latent variables
is as follows:

p(h|θU , MU)

p(h|θR, MR)
=

T

∏
t=1

h
v
2 φ
t−1e

v
2ht

(1−hφ
t−1). (45)

In Table 4, we present results obtained by using newly proposed estimators of Bayes
factors—the corrected arithmetic means of the ratio of the densities of the conditional distri-
butions of latent variables, B̂FU,R,D and B̂FR,U,D; the subscript h is omitted for convenience.
Results obtained on the basis of our new method confirm that in the case of exchange rates,
the t-SBEKK model is strongly rejected by the data, whereas it seems that the t-SBEKK
specification can be adequate for stock indices. Under equal prior model probabilities, the
IG-MSF-SBEKK model for exchange rates is about 14–15 times more probable a posteriori
than the t-SBEKK model, indicating a strong (but not very strong) evidence against the
t-SBEKK model. In turn, for stock indices the decimal logarithm of the Bayes factor of
t-SBEKK relative to IG-MSF-SBEKK depends on prior distribution of the number of degrees
of freedom, v. The Bayes factor in favor of t-SBEKK is equal to about 1.25 and 0.4 in models
with λa = 1 and λa = 3, respectively. Of course, according to scale of Kass and Raftery
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(1995) these results indicate evidence for a given model that is negligible: “not worth more
than a bare of mention”.

Table 4. Estimates of Bayes factors for the IG-MSF-SBEKK (MU) and t-SBEKK (MR) models.

Estimator
Exchange Rates, T = 1482 Stock Indices, T = 1742

λa = 1 λa = 3 λa = 1 λa = 3

log B̂FU,R,D 1.147 1.191 −0.110 0.400
(NSE) (0.017) (0.024) (0.012) (0.014)

log B̂FR,U,D −1.134 −1.182 0.092 −0.388
(NSE) (0.009) (0.019) (0.011) (0.024)

log SD ratio −1.159 −1.167 0.118 −0.396

Notes: The Bayes factors were estimated with Monte Carlo sampler based on 2,000,000 iterations. The log B̂FR,U,D
denotes the decimal logarithm of the estimator of the Bayes factor in favor of model MR against model MU .
NSE denotes the numerical standard error and the log SD ratio stands for the decimal logarithm of the Savage–
Dickey density ratio. Scale for the strength of evidence against MR [45]: 0 < log BFU,R ≤ 1/2—negligible;
1/2 < log BFU,R ≤ 1—mild; 1 < log BFU,R ≤ 2—strong; 2 < log BFU,R—very strong.

For the sake of comparison, in the last row of the Table 4 the estimates of the Savage–
Dickey ratio is presented. The marginal posterior density of φ is evaluated at φ = 0 on the
basis of the histogram of the sampled values of φ from the posterior distribution. The main
conclusions pertaining to the validity of the reduction of the IG-MSF-SBEKK model to the
t-SBEKK one are very similar.

Additionally, it is very important to stress that our method makes it possible to
compare IG-MSF-SBEKK models whose prior distributions are different (e.g., in respect of
the number of degrees of freedom). As can be seen from Table 5, for exchange rates the
IG-MSF-SBEKK and t-SBEKK models with exponential distribution for v are more probable
a posteriori than those with the gamma distribution for v with the hyperparameter λa = 3.
In contrary, for stock indices the IG-MSF-SBEKK model with the hyperparameter λa = 3
is more probable a posteriori than the same model with λa = 1, but this improvement
is negligible.

Table 5. Estimates of Bayes factors for the IG-MSF-SBEKK models with different prior distributions
of the number of degrees of freedom.

Exchange Rates, T = 1482 Stock Indices, T = 1742

Estimator φ 6= 0 φ = 0 φ 6= 0 φ = 0
(IG-MSF-SBEKK) (t-SBEKK) (IG-MSF-SBEKK) (t-SBEKK)

B̂Fλa=1,λa=3,D 8.123 9.517 0.524 1.487
log B̂Fλa=1,λa=3,D 0.910 0.979 −0.281 0.172

B̂Fλa=3,λa=1,D 0.123 0.105 1.850 0.622
log B̂Fλa=3,λa=1,D −0.909 −0.978 0.269 −0.206

Notes: The Bayes factors were estimated with Monte Carlo sampler based on 2,000,000 iterations. The log
B̂Fλa=1,λa=3,D denotes the decimal logarithm of the estimator of the Bayes factor in favor of the IG-MSF-SBEKK
model with λa = 1 against the IG-MSF-SBEKK model with λa = 3.

5. Discussion

In this paper, a new method of the estimation of the Bayes factor is proposed. The
idea of proposed estimators is based on correction of the arithmetic mean estimator of the
ratio of conditional distributions by trimming the posterior sample to a certain subset of
the space of parameters and latent variables, D, and correcting the arithmetic mean by the
posterior probabilities of this subset. The new method makes it possible to compare a finite
number of different models with a large number of parameters and/or latent variables in
respect to the goodness of fit measured by their posterior probabilities. Our simulation
study and empirical illustration show that the method performs well.



Entropy 2021, 23, 399 19 of 20

In this paper, the question of an adequate selection of the subset D used in the method
proposed is not addressed. The choice of the subset which minimizes the variance of
the estimator remains an open question. The simulation study and empirical example
considered in the paper indicate that the choice of D as an intersection of the parameter
space (with additional restrictions) and the hyper-cuboid limited by the range of the
posterior sampler outputs leads to acceptable results.
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