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Sub-Sharvin conductance and enhanced shot noise in doped graphene
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Ideal Sharvin contact in a multimode regime shows the conductance G ≈ GSharvin = g0kFW/π (with g0 the
conductance quantum, kF the Fermi momentum, and W the contact width) accompanied by strongly suppressed
shot noise quantified by small Fano factor F ≈ 0. For ballistic graphene away from the charge-neutrality point,
sub-Sharvin transport occurs, characterized by suppressed conductance G ≈ (π/4) GSharvin and enhanced shot
noise F ≈ 1/8. All these results can be derived from a basic model of quantum scattering, involving assumptions
of infinite height and a perfectly rectangular shape of the potential barrier in the sample. Here we have carried
out the numerical analysis of the scattering on a family of smooth barriers of finite height interpolating between
parabolic and rectangular shapes. We find that, tuning the barrier shape, one can modify the asymmetry between
electron- and hole-doped systems. For electronic dopings, the system crosses from the Sharvin to sub-Sharvin
transport regime (indicated by both the conductance and the Fano factor) as the potential becomes closer to
the rectangular shape. In contrast, for hole dopings, the conductivity is strongly suppressed when the barrier
is parabolic and slowly converges to G ≈ (π/4) GSharvin as the potential evolves toward a rectangular shape. In
such a case, the Sharvin transport regime is inaccessible, shot noise is generically enhanced (with much slower
convergence to F ≈ 1/8) compared to the electron-doped case, and aperiodic oscillations of both G and F are
prominent due to the formation of quasibound states.
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I. INTRODUCTION

Soon after the isolation of monolayer graphene [1], exper-
imental and theoretical physicists have reexamined classical
effects from mesoscopic physics [2–10]. In ballistic graphene
ribbons [5] or constrictions [6] showing conductance quan-
tization, electrical conductance approaches the fundamental
upper bound given by the Sharvin formula [11,12]. A few
years ago, ultraclean graphene samples exhibiting a viscous
charge flow due to electron-electron interactions [13] allowed
us to detect the conductance exceeding the Sharvin bound
[14,15].

Since the spectrum of excitations in graphene consists of
two conical bands and is described by a two-dimensional
analog of the relativistic Dirac equation [16–18], several novel
effects can be identified even at low temperatures, where
interactions become negligible and ballistic (or Landauer-
Büttiker) transport regime is restored [19–25]. For instance,
the phenomenon of Klein tunneling [26] manifests itself via
the universal conductivity (σ0 = 4e2/πh, with the electron
charge −e and the Planck constant h) and the so-called pseu-
dodiffusive shot noise power (quantified by the Fano factor
F = 1/3) [20–22] provided that carrier concentration is close
to the charge-neutrality point.
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Although several features of ballistic graphene may also be
observed in other two-dimensional systems [27–29], universal
conductivity seems to be the unique feature of graphene, hav-
ing no direct analog even in bilayer graphene [30].

Remarkably, in the universal-conductivity range (for a rect-
angular sample, it is further required that the width W � L
with L being the length, see Ref. [31]), the conductance is
enhanced due to the transport via evanescent waves, while
the shot noise is suppressed. However, tuning the carrier con-
centration away from the charge-neutrality point results in the
Fano factor approaching values in a range of F ≈ 0.10 ÷ 0.15
[20,22], being significantly greater then F ≈ 0 expected for
a ballistic system. The conductance is difficult to determine
experimentally due to resistances of contacts, but the simple
analytical discussion leads to the value reduced by a factor
of π/4 compared to the Sharvin formula in the high-doping
limit [32,33]. (The same analysis leads to the Fano factor
converging to F → 1/8).

The purpose of this paper is to investigate numerically
how the conductance and Fano factor for a ballistic graphene
sample behave as functions of doping, supposing that the
electrostatic potential barrier is smooth (i.e., potential varies
slowly on the scale of atomic separation). Similar problems
were addressed previously [32,34–36], but here we focus on
the effects of the potential profile, which is gradually tuned
from a parabolic to a rectangular shape (see Fig. 1), on the
selected transport properties.

The paper is organized as follows. In Sec. II, we present
the details of our numerical approach. The key results for a
rectangular barrier are summarized in Sec. III. Our main re-
sults, concerning the conductance and Fano factor for smooth
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FIG. 1. Top: Schematic of a graphene strip of width W , contacted
by two electrodes (dark areas) at a distance L. A voltage source drives
a current through the strip. A separate gate electrode (not shown)
allows us to tune the carrier concentration around the neutrality
point. The lattice parameter a = 0.246 nm is also shown. Middle:
Electrostatic potential profiles given by Eq. (4) with m = 2, 8, 32,

and m = ∞ (i.e., the rectangular barrier). The Fermi energy E is
defined with respect to the top of a barrier. E > 0 corresponds to
unipolar n-n-n doping in the device; for E < 0, an n-p-n structure
is formed. Bottom: A symbolic representation of the incident and
reflected waves in left electrode (x < −x0) and the transmitted wave
in right electrode (x > x0) with the amplitudes r and t .

potentials, are presented in Sec. IV. The conclusions are given
in Sec. V.

II. MODEL AND METHODS

We start from the scattering problem for massless Dirac
fermions in graphene at the energy E , in the case when the
electrostatic potential energy depends only on the x coordi-
nate, i.e., V ≡ V (x). The wave equation can be written as

[vF p · σ + V (x)]� = E�, (1)

where vF = √
3 t0a/(2h̄) ≈ 106 m/s is the energy-

independent Fermi velocity in graphene (with t0 = 2.7 eV the

nearest-neighbor hopping integral and a = 0.246 the lattice
parameter), p = (px, py) is the in-plane momentum operator
with p j = −ih̄∂ j , and σ = (σx, σy) with σ j being the Pauli
matrices. Taking the wave function in a form � = φ(x)eikyy,
with φ(x) = (φa, φb)T and ky the transverse wave number,
brought us to the system of ordinary differential equations for
the spinor components:

φ′
a = kyφa + i

E − V (x)

h̄vF
φb, (2)

φ′
b = i

E − V (x)

h̄vF
φa − kyφb. (3)

In a general case of ky 	= 0, Eqs. (2) and (3) need to
be integrated numerically [34]. If one assumes the so-called
infinite-mass boundary conditions [37] at y = 0 and y = W ,
in the momentum ky gets quantized k(n)

y = π (n + 1
2 )/W , with

n = 0, 1, 2, . . . , [20]. This form is used throughout the paper.
(In the limit of W � L, one can also treat ky as a as a contin-
uous variable).

The electrostatic potential energy is chosen as

V (x) = −V0 ×
{ |x/x0|m if |x| � x0

1 if |x| > x0,
(4)

such that changing the value of m tunes the potential from
a parabolic shape (m = 2) to rectangular shape (m → ∞).
Above we use a parameter x0 = L/2, with L the sample
length. The potential given by Eq. (4) is continuous and con-
stant in the leads (x < −L/2 or x > L/2).

The basis solutions in the leads, for E > −V0, are

φ(+) =
(

1
eiθ

)
eiKxx, φ(−) =

(
1

−e−iθ

)
e−iKxx, (5)

where eiθ = (Kx + iky)/K , K = (E + V0)/h̄vF , and Kx =√
K2 − k2

y . Transverse momentum is conserved in the scat-

tering [38], so the value of the quantum number ky is the same
for both leads and the sample area. Supposing scattering from
the left direction (x = −∞), the wave functions in the left (L)
and right (R) leads can be written as

φ
(L)
E ,ky

= φ(+) + rφ(−), φ
(R)
E ,ky

= tφ(+), (6)

where we have defined the reflection (r) and transmission (t)
amplitudes.

For the sample area (−L/2 < x < L/2), the wave function
takes a form

φ
(c)
E ,ky

= Aφ(1) + Bφ(2), (7)

where φ(1), φ(2) denote the two linearly independent solutions
of Eqs. (2) and (3), which can be obtained numerically choos-
ing the initial conditions, say φ(1,2)|x=−x0 = (1,±1)T , and A,
B are arbitrary complex coefficients.

The matching conditions for x = ±x0, namely,

φ
(L)
E ,ky

= φ
(c)
E ,ky

∣∣
x=−x0

and φ
(c)
E ,ky

= φ
(R)
E ,ky

∣∣
x=x0

, (8)
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immediately leads to the linear system of equations⎡
⎢⎢⎢⎢⎣

φ(−)
a (−x0) −φ(1)

a (−x0) −φ(2)
a (−x0) 0

φ
(−)
b (−x0) −φ

(1)
b (−x0) −φ

(2)
b (−x0) 0

0 −φ(1)
a (x0) −φ(2)

a (x0) φ(+)
a (x0)

0 −φ
(1)
b (x0) −φ

(2)
b (x0) φ

(+)
b (x0)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

r
A
B
t

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

−φ(+)
a (−x0)

−φ
(+)
b (−x0)

0

0

⎤
⎥⎥⎥⎦, (9)

where we have explicitly written the spinor components and
omitted repeating indices (E , ky) for clarity.

Solving Eq. (9), one finds the transmission amplitude t
for a given E and ky, and the corresponding transmission
probability Tky (E ) = |t |2. The conductance and Fano factor
follow by summing over the modes,

G = g0

N−1∑
n=0

Tn, F =
∑N−1

n=0 Tn(1 − Tn)∑N−1
n=0 Tn

, (10)

with g0 = 4e2/h (the factor 4 accounts for spin and valley
degeneracy), Tn = Tky (E ) for k(n)

y = π (n + 1
2 )/W , and N =


W K/π� being the number of propagating modes in the
leads, see Eqs. (5). In the linear-response regime, imposed
in Eqs. (10), the energy E is equivalent to the Fermi energy
[39]; for E > 0, the sample and the leads show a unipolar
(n-n-n) doping, for −V0 < E < 0 we have an n-p-n structure
with two interfaces separating the central region and the leads
(see Fig. 1).

III. THE RECTANGULAR BARRIER VERSUS
SHARVIN CONTACT

Before presenting the numerical results for smooth bar-
riers, we first recall analytic expressions for a rectangular
barrier of infinite height, corresponding to m → ∞, V0 → ∞
in Eq. (4). Adapting the notation of Ref. [31], the transmission
probability can be written as

Tky (E ) =
[

1 +
(

ky

κ

)2

sin2 (κ L)

]−1

, (11)

where

κ =
⎧⎨
⎩

√
k2

F − k2
y , for |ky| � kF

i
√

k2
y − k2

F , for |ky| > kF ,
(12)

and the Fermi wave number kF = |E |/(h̄vF ).
In Fig. 2, we compare the results obtained from Eq. (11)

for the length fixed at L = 200 nm (black dashed lines) with
the results of our numerical approach [see Eqs. (2)–(9)] for
V0 = t0/2, and m = ∞ or m = 2 (blue solid or red solid lines).
Here, continuous ky corresponds to the W � L limit. (We
further limit the discussion to ky � 0, as the mirror symmetry
guarantees that Tky = T−ky for any case). The Fermi energy
is E = 0.1 eV in Figs. 2(a) and 2(b), or E = −0.1 eV in
Figs. 2(c) and 2(d).

In is clear from Figs. 2(a) and 2(c) that the results, a
finite and infinite V0, are very close to each other, as long
as |E | � V0. Analytic results for V0 → ∞ are invariant upon
the particle-hole transformation (E ↔ − E ); for a finite V0,
this invariance is only approximate, since the number of

propagating modes in the leads per unit width, N/W ≈ (E +
V0)/(π h̄vF ) changes upon E ↔ − E . In both cases of E > 0
and E < 0, we observe fast, aperiodic oscillations of Tky with
ky approaching kF , and a sudden decay for ky > kF , signalling
that the role of evanescent waves is negligible (notice that
kF L � 1).

For the case of a finite and smooth parabolic barrier, a
striking particle-hole asymmetry is visible, see Figs. 2(b) and
2(d). For E > 0, we have a smooth crossover from Tky ≈ 1
to Tky ≈ 0 near ky = kF , resembling the well-known solution
for Schrödinger electrons [40]. For E < 0, the transmission
is strongly suppressed, except from the resonances due to
quasibound states [34].

Let us now comment on obtaining simple, analytically
tractable estimates of the conductance and Fano factor.

A closer look at Eq. (11) allows one to find out that, when
calculating the transport properties from Eqs. (10) for kF L �
1, summing over the modes averages out fast oscillations
originating from sin2(κL), and exact transmission probability
may be approximated by(

Tky

)
approx

= 1

π

∫ π

0

dϕ

1 + (
k2

y /κ
2
)

sin2 ϕ

=
√

1 − (ky/kF )2 (13)

ky/kFky/kF

0

1

0 1
0

1

0 1

(a)

(b)

(c)

(d)

E = 0.1 eV E = −0.1 eVm=∞

m=2

m=∞

m=2

k
k

V0→∞T
T

FIG. 2. Transmission probability as a function of the transverse
momentum ky (specified as a fraction of kF = |E |/h̄vF ) at the Fermi
energies E = 0.1 eV (a), (b) and E = −0.1 eV (c), (d). The barrier
length is L = 200 nm. Solid lines present results obtained numer-
ically for the potential given by Eq. (4) with V0 = t0/2 = 1.35 eV
and m = ∞ or m = 2 (specified at each panel). Dashed lines depict
exact expression [see Eq. (11)] for infinite rectangular barrier (a)–(d).
Shaded areas mark the approximations given by Eq. (13) (a), (c) or
by the step function Tky ≈ 	(kF − |ky|) (b), (d).
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for |ky| � kF ; otherwise, (Tky )approx = 0. In particular, for the
conductance G in the W � L limit, we can put

G ≈ g0W

π

∫ ∞

0
dky

(
Tky

)
approx

= π

4
GSharvin, (14)

with GSharvin = g0kFW/π . It is worth noticing that G ≈
GSharvin corresponds to Tky ≈ 	(kF − |ky|), where 	(x) de-
notes the Heaviside step function—see shaded areas in
Figs. 2(c) and 2(d)—representing a reasonable approximation
in the m = 2 (parabolic barrier) and E > 0 case, at least if one
focuses on the area under the Tky plot. In the remaining parts
of this paper, G close to the approximation given by Eq. (14)
is called the sub-Sharvin conductance.

For the Fano factor, see Eqs. (10), we need to employ both
Eq. (13) and the analogous expression for T 2

ky
, namely,

(
T 2

ky

)
approx

= 1

π

∫ π

0

dϕ[
1 + (

k2
y /κ

2
)

sin2 ϕ
]2

=
√

1 −
(

ky

kF

)2[
1 − 1

2

(
ky

kF

)2]
, (15)

for |ky| � kF or (T 2
ky

)approx = 0 for |ky| > kF . In turn, we
immediately obtain

F ≈ 1 −
∫ ∞

0 dky
(
T 2

ky

)
approx∫ ∞

0 dky
(
Tky

)
approx

= 1

8
, (16)

constituting a hallmark of the sub-Sharvin transport regime.
For the sake of completeness, we also recall the results of

Refs. [19,20] for E = 0. In such a case, Eq. (11) reduces to

Tky (0) = 1

cosh2 (kyL)
, (17)

and integrations over ky, analogous to the performed in
Eqs. (14) and (16), leads to

Gmin = g0W

πL
and Fmax = 1

3
, (18)

indicating the pseudodiffusive transport regime. [It is further
denoted in Eq. (18) that G has a minimum, whereas F has a
maximum at E = 0]. The energy range −Ediff < E < Ediff ,
in which the pseudodiffusive transport prevails the ballis-
tic transport, can roughly be estimated comparing Gmin =
GSharvin(±Ediff ), which leads to

Ediff = h̄vF

L
≈ 2.9 meV for L = 200 nm. (19)

The above is close to a familiar energy uncertainty in quantum
mechanics, since the ballistic time of flight is 
t ∼ L/vF (up
to the order of magnitude).

IV. RESULTS AND DISCUSSION

In this section, we present central results of the paper, con-
cerning the conductance and the Fano factor for a graphene
strip depicted in Fig. 1. The numerical calculations are car-
ried out according to Eqs. (2)–(10), for the system with
infinite-mass boundary conditions and the width W = 5 L =
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FIG. 3. Conductance as a function of the Fermi energy for the
system of Fig. 1. The parameters are W = 5 L = 1000 nm, V0 =
t0/2 = 1.35 eV. The exponent m in Eq. (4) is specified for each data
set (solid lines). Dashed line depicts the sub-Sharvin conductance
given by Eq. (14). (The values of GSharvin are not shown, as they
closely follow the numerical results for m = 2). Bottom panel is
zoom-in of the data presented in top panel.

1000 nm. The step height in Eq. (4) is V0 = t0/2 (correspond-
ing to 691 � N � 802 propagating modes in the leads for
−0.1 eV � E � 0.1 eV) [41].

The evolution of the conductance spectrum with the expo-
nent m in Eq. (4), defining the potential profile, is visualized
in Fig. 3 (solid lines). We focus now on the behavior of G(E )
for |E | � Ediff , see Eq. (19), since a close vicinity of E = 0
requires a separate discussion.

Depending on whether the system is unipolar (E > 0) or
contains p-n junctions (E < 0), different behaviors are ob-
served: For E > 0, G(E ) shows a transition, with growing m,
from GSharvin to sub-Sharvin G ≈ (π/4) GSharvin [dashed line].
Comparing the plots with different energy ranges (top and
bottom panels in Fig. 3) we immediately notice that the higher
the energy, the slower convergence with growing m occurs.
In fact, even the results for a rectangular barrier (m = ∞)
do not match precisely Eq. (14) due to a finite value of V0.
The deviations are, however, within the scale of Fabry-Perrot
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FIG. 4. Fano factor as a function of the Fermi energy for the same
system parameters as in Fig. 3 (solid lines). The exponent m in Eq. (4)
is varied between the panels. Dashed line at each panel depicts the
sub-Sharvin value of F = 1/8, see Eq. (16).

oscillations, as long as |E | � 0.1 eV. For E < 0, the conduc-
tance is noticeably suppressed for any finite m and shows a
slow convergence (from the bottom) to sub-Sharvin values
with growing m. Contrary to the E > 0 case, the values of
G > (π/4) GSharvin are not observed for E < 0, except from
a close surrounding of E = 0. As a secondary feature of the
E < 0 data, we notice relatively strong conductance oscilla-
tions due to resonances with quasibound states.

The above observations are further supported with the
evolution of the Fano factor presented in Fig. 4. Again, for
|E | � Ediff , the role of pseudodiffusive transport is irrelevant
and the evolution of F , with growing m, follows one of two
distinct scenarios: For E > 0, we have a systematic crossover
from F ≈ 0 to F ≈ 1/8; see Eq. (16). In contrast, for E < 0,
strong oscillation of F is first suppressed with increasing m,
and than — for higher m — slow convergence of a mean to
F ≈ 1/8 (from the top) becomes visible. Similarly as for the
conductance, the particle-hole symmetry is only approximate
even for m = ∞, since the barrier height V0 = t0/2 < ∞.

To describe the above-presented evolution of G and F
upon tuning the potential profile in a quantitative manner, we
display now (in Fig. 5) some characteristic values extracted
from the curves in Figs. 3 and 4.

Let us focus on the low-energy behavior of G and F ,
which have not been addressed so far in this Section. Using
the value of Ediff given by Eq. (19), one can define the ef-
fective (m-dependent) length Ldiff , such that a barrier can be
regarded as flat for −Ldiff/2 < x < Ldiff/2. Requesting that
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FIG. 5. (a)–(f) Selected characteristics of the data sets pre-
sented in Figs. 3 and 4 displayed as functions of the dimensionless
Ldiff (m)/L, see Eq. (20). Data points: (a) Minimal conductance.
(b) Maximal Fano factor. (c) Conductance and (d) Fano factor at
E = 0.1 eV. (e), (f) Same as (c), (d) but for E = −0.1 eV. Dashed
horizontal lines depict theoretical values for m → ∞, V0 → ∞, see
Eqs. (14), (16), and (18). Vertical lines (c)–(f) mark a bound on the
right-hand side of Eq. (22) for |E | = 0.1 eV. Grey solid lines (a)–(f)
show the results for trapezoidal barrier, see Eqs. (23) and (24).

V (±Ldiff/2) = −Ediff , one obtains

Ldiff (m) = L

(
h̄vF

LV0

)1/m

, (20)

reducing to Ldiff (∞) = L for a rectangular barrier. Such a
definition allows one to present the results for any m > 0 in
a compact range, i.e. 0 < Ldiff (m)/L � 1.

Both the minimal conductance and the maximal Fano fac-
tor, see Figs. 5(a) and 5(b), show rapid convergence (with
Ldiff/L → 1) to the values predicted for infinite rectangular
barrier, see Eqs. (18). In particular, Fmax ≈ 0.325 for the
lowest considered m = 2 (corresponding to Ldiff/L ≈ 0.046).
This finding illustrates how the precise value of Fmax is insen-
sitive to the details of electrostatic potential profile, helping
us to understand why experimental values of F are sometimes
surprisingly close to 1/3 [22,42,43].

Away from the charge-neutrality point, the system charac-
teristics presented in Figs. 5(c)–5(f) show a different behavior,
namely, they generally take values rather distant from pre-
dictions given (respectively) in Eqs. (14) and (16), except
from a relatively narrow interval near Ldiff/L = 1, in which
systematic convergence occurs.

A brief explanation is provided below.
For |E | � Ediff , the evolution of G and F depends on

a mutual relation between the Fermi wavelength λF (E ) =
2π/kF = hvF /|E | and the characteristic length scale of a
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potential jump, which can be defined as 
x = (L − Ldiff )/2,
with Ldiff given by Eq. (20). If

λF /2 � 
x, (21)

the barrier can no longer be regarded as (even approximately)
rectangular. Since 
x is related to m via Ldiff , Eq. (21) can be
rewritten as

Ldiff

L
� 1 − 2π h̄vF

L|E | , (22)

giving Ldiff/L � 0.82 for |E | = 0.1 eV. The structure of
Eq. (22) guarantees that the inequality is always satisfied
for Ldiff < L (i.e., the smooth potential, m < +∞) and suf-
ficiently high |E |. In such a case, the measurable quantities
deviate from the predictions for a rectangular barrier.

Once the upper bound in Eq. (22) marked with vertical line
in Figs. 5(c)–5(f) is exceeded (i.e., λF > 2
x), a systematic
convergence of all the considered quantities, with Ldiff/L →
1, to the predictions for a rectangular barrier becomes visible.

Finally, it is worth comparing our results with those corre-
sponding for trapezoidal barriers, discussed in Ref. [32]. The
electrostatic potential energy can be written as

V (x) = −V0 ×
⎧⎨
⎩

0 if |x| � x1
|x|−x1

x0−x1
if x1 < |x| � x0

1 if |x| > x0,

(23)

with 0 � x1 � x0, parametrizing the barrier evolution between
the limiting cases of triangular (x1 = 0) and rectangular shape
(x1 = x0). In analogy to Eq. (20), we have

Ldiff (x1) = 2x1 + h̄vF

LV0
(L−2x1) ≈ 2x1. (24)

Taking the same values of W , L, and V0 as before, and
varying x1, one can easily find that the conductance and Fano
factor spectrum evolves in a qualitatively similar manner as
the spectra depicted in Figs. 3 and 4. Several quantitative
differences can be identified, however, referring to the nu-
merical characteristics presented in Fig. 5 (grey solid lines).
First, for Ldiff � L and E > 0, the conductance significantly
exceeds the value of GSharvin and the Fano factor is also en-
hanced compared to the smooth potentials; see Figs. 5(c) and
5(d). Most remarkably, the values of G ≈ GSharvin and F ≈ 0
are never approached for trapezoidal potentials, showing that
standard ballistic transport may be restored in bulk graphene
(W � L) only for smooth barriers. For E < 0, the behavior
of G and F is similar for smooth and trapezoidal potentials,
see Figs. 5(e) and 5(f); some enhancement of G (and slightly
faster convergence to sub-Sharvin value with Ldiff/L → 1)
can be noticed for trapezoidal barriers.

V. CONCLUSIONS

We have identified sub-Sharvin transport regime in bal-
listic graphene, which manifests itself via the suppressed
conductivity, G ≈ (π/4) GSharvin (with GSharvin = g0kFW/π ,
g0 = 4e2/h the conductance quantum, kF the Fermi wave
number, and W the sample width), and the enhanced shot
noise, F ≈ 1/8, compared to standard quantum point con-
tacts. Solving the scattering problem numerically for different
electrostatic potential profiles, we find that such a regime
appears generically for rectangular and smooth potential bar-
riers, provided that the following conditions are satisfied: (i)
the sample width W � L, with L the sample length, (ii) the
Fermi wave number kF � L−1, and (iii) the Fermi wavelength
λF = 2π/kF � 
x, with 
x being the linear size of an inter-
face between weakly and heavily doped graphene areas (i.e.,
the sample and the leads).

Taking into account that highest accessible Fermi energies
in electrostically doped graphene devices are E = ±h̄vF kF ≈
±0.1 eV, condition (iii) is equivalent to 
x � 36 nm, show-
ing that atomistic precision in tailoring the spatial potential
profile is not necessary to detect the effects we describe.
Moreover, for λF � 2
x (being equivalent to kF � π/
x),
we predict a monotonous convergence, with increasing λF (or
shrinking 
x), of the transport characteristics to the values
expected for the sub-Sharvin regime.

Our results thus complement previous studies (see
Refs. [32,34,35]) in which the range of W � L and L−1 �
kF � π/
x have not been elaborated. In such a range, a fam-
ily of smooth barriers considered here leads to clear crossover
(for electronic dopings) from Sharvin to sub-Sharvin transport
regime upon tuning the barrier shape, with Sharvin character-
istics occurring in a considerable range of steering parameters.
This feature is absent for the trapezoidal barriers proposed in
Ref. [32]. Since the carrier diffusion in a real device must
lead to the effective potential varying smoothly in an inter-
face between areas of different dopings, we believe the above
mentioned crossover should be observable.

Although the present paper focuses on graphene, we expect
the main effects to reappear in other two-dimensional systems
such as silicene [28], since the sub-Sharvin transport is linked
to the conical dispersion relation rather then to the transmis-
sion via evanescent waves (responsible for graphene-specific
phenomena occurring at the charge-neutrality point).
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