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Abstract Herein is presented fabrication of new efficient antibacterial polymer/gold/magnetic

nanohybrids. These nanohybrids consist of a superparamagnetic nanoparticle core, which ensures

their facile separation, purification and recyclability, and polymeric coating which exhibits bacteri-

cidal activity. They were prepared in an efficient four-step synthetic route involving the following:

(1) magnetic nanoparticles fabrication by co-precipitation of Fe2+ and Fe3+ in the presence of

ammonia solution; (2) gold shell formation; (3) immobilization of RAFT/MADIX (reversible

addition-fragmentation transfer/macromolecular design via the interchange of xanthates) initiating

agent on the surface of nanoparticles; and (4) surface-initiated RAFT/MADIX polymerizations of

bactericidal monomers. Physicochemical properties of bare and functionalized magnetic nanopar-

ticles were characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric

analysis (TGA), magnetization measurements, transmission and scanning electron microscopies

(TEM and SEM). Hemolytic and antibacterial activity of the obtained materials (monomers and

polymer/gold/magnetic nanohybrids) against human red blood cells and Pseudomonas aeruginosa

was determined. It was demonstrated that the tested agents do not affect red blood cells membrane

permeability at the concentration range of 1–100 lg/ml. Simultaneously, at this concentration, they
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effectively kill and restrict metabolic activity of planktonic P. aeruginosa as well as prevent its bio-

film formation.

� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

anopenaccess article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Magnetic nanoparticles (MNPs) have been widely investigated in

numerous applications, including microelectronics, catalysis and nano-

medicine (Kainz and Reiser, 2014; Niemirowicz et al., 2012;

Wilczewska and Misztalewska, 2014). In the biomedical field, research

has mainly focused on the drug and gene delivery, hyperthermia and

magnetic resonance imaging (Jiang et al., 2014; Kashevsky et al.,

2015; Niemirowicz et al., 2012; Wilczewska et al., 2012). Recently, dif-

ferent studies suggested that some properties of nanoparticles such as

resistance to biodegradation processes, surface activity and ability to

penetrate bacteria cell membranes, could be beneficial in developing

new methods for antibacterial treatment (Azam, 2012; Azam et al.,

2012; Webster and Seil, 2012). Therefore, significant efforts have been

made to develop nanosystems with antimicrobial activity (Dong et al.,

2011; Webster and Seil, 2012; Webster and Taylor, 2011).

As bare MNPs tend to aggregate and phase separate in solutions,

stabilization by appropriate surface modification is essential to assure

they bioapplications. Magnetic nanoparticles may be covered with dif-

ferent materials e.g. gold or polymers (Jafari et al., 2010; Kainz and

Reiser, 2014). Gold coating improves MNPs stability and biocompat-

ibility, and it also enables their functionalization by organosulfur com-

pounds (Moraes Silva et al., 2016). In turn, polymers ensure an

efficient stabilization of nanoparticles and enable easy adjustment of

chemical composition (homopolymer, copolymer) and properties

(e.g. hydrophobic, hydrophilic) of a shell (Beija et al., 2011). Addition-

ally, a suitably designed polymeric shell can offer other functions such

as lower cytotoxicity, complexing properties or biological activity,

leading to multifunctional nanosystems.

Herein formation of new antibacterial polymer/gold/iron oxide

nanohybrids using surface-initiated RAFT/MADIX (reversible

addition-fragmentation transfer/macromolecular design via the inter-

change of xanthates) polymerization method is described. In presented

approach immobilization of RAFT/MADIX active species (chain

transfer agents) on gold-coated magnetic cores is followed by

surface-initiated polymerization. This way polymer chains are grown

directly from the MNPs surface and high grafting density is achieved

(Zhao and Perrier, 2015). The ability to control the thickness of poly-

meric shell by RAFT/MADIX method is demonstrated using commer-

cially available monomer – styrene. Recently, we synthesized and fully

characterized carbamohydrazonothioate-based monomers using

thiosemicarbazide as starting material (Markiewicz et al., 2016;

Bankiewicz et al., 2016). Thiosemicarbazide and certain of its deriva-

tives (e.g. thiosemicarbazones) are known for their antimicrobial activ-

ity related to the ability to diffuse through semipermeable cell

membranes (Bharti et al., 2003; Genova et al., 2004; Lobana et al.,

2009; Sankaraperumal et al., 2013; Soykan and Erol, 2003). However,

none of the reports concerns antibacterial properties of carbamohydra-

zonothioate derivatives or their polymeric nanohybrids with magnetic

nanoparticles. Therefore, the obtained carbamohydrazonothioate-

based monomers and carbamohydrazonothioate-based polymer-

coated MNPs were tested in terms of their bactericidal properties.

Magnetic nanocores covered with antibacterial polymeric shell are

promising candidates as bactericidal agents that could be easily sepa-

rated and reused. In our study we assess antibacterial activity of the

obtained materials against Pseudomonas aeruginosa, an opportunistic

pathogen responsible for different hospital infections. This pathogen

frequently affects immunocompromised patients and those suffering

from cystic fibrosis (de Bentzmann and Plésiat, 2011; Movahedi
et al., 2013). It is demonstrated that magnetic nanohybrids containing

carbamohydrazonothioate-based polymers effectively kill and restrict

metabolic activity of planktonic P. aeruginosa cells as well as cells

embedded in a biofilm matrix. Furthermore, these nanosystems are

characterized by low lytic activity against human red blood cells sug-

gesting their biocompatibility.

2. Experimental section

2.1. Materials and methods

2-Mercaptoethanol, sulfuryl chloride, 2-bromopropionyl bro-
mide, styrene, ethylenediamine, iron(III) chloride hexahydrate
FeCl3�6H2O, iron(II) chloride tetrahydrate FeCl2�4H2O, and

gold(III) chloride (HAuCl4) solution were purchased from
Sigma–Aldrich and used as received. Triethylamine was pur-
chased from Avantor Performance Materials and was distilled

before use. Initiator 2,20-azobis(2-methylpropionitrile) (AIBN)
was obtained from MERCK and was recrystallized from chlo-
roform. All solvents were bought from Avantor Performance

Materials and were distilled before use.
1H and 13C NMR spectra were recorded on a Bruker

Avance spectrometer (400 and 100 MHz, respectively) as solu-
tions in CDCl3, CD3OD or DMSO. Chemical shifts are

expressed in parts per million (ppm, d) downfield from tetram-
ethylsilane (TMS). FT IR spectra were recorded using Thermo
Scientific Nicolet 6700 FT IR spectrophotometer. A thin layer

of sample was placed in direct contact with an infrared atten-
uated total reflection (ATR) diamond crystal. All FT IR spec-
tra were collected in the wave number range of 4000–500 cm�1

by co-adding 32 scans with a resolution of 4 cm�1. TEM pho-
tographs and TEM/EDX analyses were done on Tecnai G2 X-
TWIN transmission electron microscope. Energy-dispersive X-

ray spectroscopy (EDX–detector Ametek Octane Pro) analyses
were collected from the samples imaged by SEM (TFP 2017/12
Inspect S50 FEI). Samples for SEM microscopy were prepared
on aluminum tables. Dynamic light scattering (DLS) was con-

ducted using a Zetasizer Nano-ZS (Malvern Instruments, Ltd,
UK) with integrated 4 mWHe-Ne laser, k = 633 nm. Thermo-
gravimetric analyses (TGA) were performed on a Mettler

Toledo Star TGA/DSC unit. Nitrogen was used as a purge
gas (10 mL min�1). Samples between 2 and 10 mg were placed
in aluminum pans and heated from 25 �C to 1000 �C (TGA)

with a heating rate of 10 �C/min. Magnetic properties of the
nanoparticles were studied using a Quantum Design MPMS
5XL SQUID-type magnetometer. Each sample was placed in
a standard gelatine capsule and immobilized with varnish glue

for the measurement. All data were carefully corrected for the
diamagnetic contribution of the holder.

Antimicrobial activity. Bioluminescent Pseudomonas aerugi-

nosa Xen 5 strain (human septicaemia isolate which possesses a
stable copy of the Photorhabdus luminescens lux operon on
the bacterial chromosome-PerkinElmer, USA) was used to

evaluate antimicrobial activity and ability of tested agents to

http://creativecommons.org/licenses/by-nc-nd/4.0/
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prevent biofilm formation. Bacteria cells were cultured on
Cetrymide agar at 37 �C for 24 h. The bactericidal activities
of tested agents were measured using a killing assay and by

monitoring changes of chemiluminescence intensity, which
was performed using a Labsystems Varioscan Lux (Thermo
Scientific) according to previously published methods

(Niemirowicz et al., 2015a). Activity of nanoparticles in com-
parison with free monomers against biofilm form was deter-
mined using spectrophotometric methods. To assess anti-

biofilm activity crystal violet (CV) staining (0.1%) methods
have been used. Briefly, biofilm of P. aeruginosa was grown
for 48 h at 37 �C with and without the antibacterial agents
(100 lg/ml). Each well was washed carefully with deionized

water to remove planktonic bacteria. Then, 50 ll of crystal vio-
let (0.1%) was added for 15 min. After incubation, excess stain
was rinsed off with deionized water and dried. In next step

90 ll ethanol was added and optical density (OD) was deter-
mined at the wavelength of 570 nm. Hemolytic activity was
investigated using human red blood cells (RBCs) suspended

in phosphate-buffered saline (PBS) (hematocrit �5%) with a
concentration of tested antibacterial agents ranging from 0
to 100 lg/ml. RBCs were incubated with tested agents for

1 h at 37 �C. Relative hemoglobin concentration in super-
natants after centrifugation at 2500 rpm for 15min was moni-
tored by measuring optical absorbance at 540 nm. 100%
hemolysis was taken from samples in which 1% Triton X-

100 was added to disrupt all cell membranes.
The hemolytic activity tests were performed under the Insti-

tutional Review Board (IRB) of the Medical University of Bia-

lystok approval (R-I-002/382/2012). IRB according to the
Medical Profession Act of 5th December 1996(Article 29.2)
provides opinions on medical research projects taking into

account the ethical criteria, and the advisability and feasibility
of the project. All experiments were performed in compliance
with the Polish Code of Medical Ethics (Chapter II ‘‘Research

and biomedical experiments”) and general principles of
research ethics (the Helsinki Declaration, and Good Clinical
Practice). The hemolytic activity of the tested agents was eval-
uated in blood samples from adult healthy volunteers. All sub-

jects provided informed written consent and collected samples
were anonymous.

2.2. Synthetic procedures

Synthesis of disulfanediylbis(ethane-2,1-diyl)bis(2-((ethoxy-
arbono-thioyl)thio)propanoate) (DTC). 2,20-Disulfanediylbis

(ethan-1-ol) (1). 2-Mercaptoethanol (2.7 mL, 38.5 mmol, 2
equiv.) was dissolved in sulfuryl chloride (1.6 mL, 19 mmol,
1 equiv.) and stirred for 10 min at room temperature. The
excess of sulfuryl chloride was removed under reduced pres-

sure. The crude product was purified by silica gel chromatog-
raphy (hexane/ethyl acetate v/v 6:4) to give pale yellow oil
(1.57 g, 54%); 1H NMR dH (400 MHz, CDCl3): 3.89 (4H, t,

J = 5.9), 2.88 (4H, t, J = 5.9); 13C NMR dC (100 MHz,
CDCl3): 60.3 (ACH2AOA), 41.2 (ACH2ASA); FT IR mmax

(CHCl3): 3412 (OAH), 2931, 2879 (CAH), 1465 (CAH),

1402 (OAH), 1056 (CAO).
Disulfanediylbis(ethane-2,1-diyl) bis(2-bromopropanoate)

(2). 2-Bromopropionic acid (2 mL, 18.8 mmol, 2 equiv.) was

added dropwise to a solution of compound 1 (1.45 g,
9.4 mmol, 1 equiv.) and triethylamine (2.6 mL, 18.8 mmol) in
dry dichloromethane (10 mL). The mixture was stirred at room
temperature under argon gas protection for 8 h. Next, the reac-
tion was quenched with water and the mixture was extracted

with dichloromethane. The organic phases were washed with
5% K2CO3 and water, dried over anhydrous sodium sulfate,
and concentrated under reduced pressure. The crude product

was purified by silica gel chromatography (hexane/ethyl acet-
ate v/v 9:1) to give yellow oil 2 (1.92 g, 48%); 1H NMR dH
(400 MHz, CDCl3): 4.43–4.34 (6H, m, ACHAC(O)A, ACH2-

AOA), 2.95 (4H, t, J = 7.0, ACH2ASA), 1.81 (6H, d,
J = 7.0); 13C NMR dC (100 MHz, CDCl3): 169.9 (AC(O)A),
63.4 (ACH2AO), 39.7 (ACHA), 36.6 (ACH2ASA), 21.5
(ACH3); FT IR mmax (CHCl3): 2930, 2890 (CAH), 1740

(C‚O), 1157 (CAO), 1074 (CAO).
Disulfanediylbis(ethane-2,1-diyl) bis(2-(ethoxycarbono

thioyl)thio) propanoate (3). Potassium ethyl xanthate

(1.35 g, 8.6 mmol, 2 equiv.) was gradually added to the solu-
tion of compound 2 (1,8 g, 4.3 mmol, 1 equiv.) in acetone
(20 mL). The reaction mixture was stirred for 30 min at 0 �C.
White powder which precipitated in the course of the reaction
was filtered and next, extracted with water and dichloro-
methane. The organic phases were dried over anhydrous

sodium sulfate, and concentrated under reduced pressure to
afford 2.96 g (83%) of yellow oil 3; 1H NMR dH (400 MHz,
CDCl3): 4.65–4.59 (2H, k, J = 7.1, ACH2AOA), 4.40–4.35
(6H, m, ACHAC(O)A, ACH2AOA), 2.92 (2H, t, J = 6.5,

ACH2ASA), 1.56 (3H, d, J = 7.4, -CH3), 1.40 (3H, t,
J = 7.1, ACH3);

13C NMR dC (100 MHz, CDCl3): 211.8
(AC(S)A), 171.1 (AC(O)A), 70.2 (ACH2A), 63.2 (ACH2-

AOA), 46.7 (CH), 36.8 (ACH2ASA), 16.7 (ACH3), 13.6
(ACH3); FT IR mmax (CHCl3): 2961, 2939, 2874 (CAH), 1736
(C‚O), 1227 (CAS), 1047(C‚S).

Synthesis of MNP@Au-DTC (MNP-6). Iron oxide
nanoparticles (MNP-4) were synthesized according to the pub-
lished method (Wilczewska and Markiewicz, 2014). Au coating

procedure (MNP@Au-5) was carried out in an ultrasound
bath, according to the known method (Tamer et al., 2010).
MNP@Au particles (0.4 g) were suspended in methanol
(25 mL). Next, the solution of DTC (0.2 g) in dichloromethane

(10 mL) was added dropwise. The resulting mixture was stirred
for 24 h. MNP@Au-DTC particles were separated by mag-
netic decantation, washed twice with methanol and dichloro-

methane and dried into powder at 60 �C. ATR FTIR mmax:
3343 (OAH), 2920 (CAH), 1728 (C‚O), 1367 (CAN), 1218
(CAH), 1044 (C‚S), 546 (FeAO).

General procedure for RAFT/MADIX polymerization on
MNP@Au-DTC. A typical polymerization procedure was as
follows: the mixture of MNP@Au-DTC, monomer, solvent
and initiator was sonicated until a homogeneous suspension

was formed. The dispersion was degassed by bubbling argon
for 15 min, and then, the mixture was transferred into an oil
bath with a constant temperature. Polymerization was stopped

by diluting the mixture in solvent (toluene, THF, methanol)
and magnetic decantation. The cycle of redispersion and mag-
netic separation was repeated several times to rinse free poly-

mer chains and obtain ‘pure’ polymer-grafted nanoparticles.
MNP@Au-PS ATR FTIR mmax: 3058, 3024 (CArAH), 2916,
2847 (CAH), 1599, 1490, 1448 (C‚C), 1067 (C‚S), 693

(CAH), 546 (FeAO). MNP@Au-PBM ATR FTIR mmax:
3024 (CArAH), 2921 (CAH), 1603 (NH), 1410 (CH), 1327
(CAN), 839 (NAH), 726 (CAS), 692 (CArAH), 559 (FeAO).
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MNP@Au-PBMS ATR FTIR mmax: 3019 (CArAH), 2911
(CAH), 1666, 1605, 1507 (NAH), 1418 (CAH), 1325 (CAN),
828 (NAH), 691 (CArAH), 559 (FeAO). MNP@Au-PBM_2

ATR FTIR mmax: 3054 (CArAH), 2918 (CAH), 1603, 1544
(NAH), 1404 (CAH), 1326 (CAN), 1235, 1017 (CAH), 843
(NAH), 725 (CAS), 691 (CArAH), 554 (FeAO). MNP@Au-

PBM-r-PS ATR FTIR mmax: 3056 (CArAH), 2908 (CAH),
1605, 1549 (NAH), 1445 (C‚C), 1397 (CAN), 1205, 1015
(CAH), 840 (NAH), 720 (CAS), 689 (CArAH), 547 (FeAO).

3. Results and discussion

Synthesis of RAFT/MADIX chain transfer agent. RAFT/

MADIX technique is a type of controlled radical polymeriza-
tion which uses xanthates/dithiocarbonates to mediate poly-
merization process (Destarac et al., 2002; Taton et al., 2001).

In this study, RAFT/MADIX chain transfer agent – dithiocar-
bonate 3 – was obtained in a simple and efficient synthetic way
presented in Scheme 1. Initially, the reaction of 2-
mercaptoethanol with sulfuryl chloride gave compound 1 in

yield 54%. Next, esterification of diol 1 with 2-
bromopropionic acid bromide provided product 2 (48%).
The reaction of bromoester 2 with potassium ethyl xanthate

led to the formation of dithiocarbonate 3 (DTC) in a high yield
(83%) (Supporting material, Figs. S1–S3).

Immobilization of dithiocarbonate 3 on MNP@Au. The for-

mation of MNP@Au-DTC involved three steps: iron oxide
Scheme 1 Synthesis of RAFT/MADIX chain transfer agent – dithi
cores synthesis (MNP-4), gold coating (MNP@Au-5), and
immobilization of RAFT/MADIX chain transfer agent
(MNP@Au-DTC-6). Iron oxide nanoparticles were synthe-

sized according to the well-established method by coprecipita-
tion of Fe2+ and Fe3+ (in the molar ratio of 1:2) in the
presence of 25% NH4OH solution (Wilczewska and

Markiewicz, 2014). Gold shell around magnetic cores was
obtained using the most common procedure i.e. reduction of
HAuCl4 by sodium borohydride (Tamer et al., 2010). Immobi-

lization of DTC 3 on gold-coated MNPs was achieved by
chemisorption (Scheme 1). Organosulfur compounds bind
strongly to gold surfaces forming self-assembled monolayers
(SAMs) (Rudolf et al., 2011). The reactivity of alkanethiols

and di-n-disulfides toward gold has been thoroughly studied
(Bain et al., 1989; Ulman, 1996). Although they form undistin-
guishable SAMs on gold, the mechanism of their chemisorp-

tion is different and disulfides show lower activation barrier
for adsorption than thiols. Chemisorption of thiols involves
e.g. breaking of the SAH bond and formation of the HAAu

bonds, HAH bonds, whereas disulfide chemisorption requires
only cleavage of the SAS bond and formation of two thiolate-
gold bonds (Lavrich et al., 1998). Fenter et al. reported that

disulfides may chemisorb as dimers without dissociation
(Fenter et al., 1994).

Bare and functionalized MNPs were characterized by sev-
eral methods including transmission electron microscopy

(TEM), scanning electron microscopy (SEM), energy disper-
ocarbonate (DTC) and its immobilization on gold-coated MNPs.



Figure 1 TEM images of (a) bare and (b) gold-modified MNPs (insets show histograms of the diameter distribution), (c) TEM/EDX

spectrum of MNP@Au nanoparticles.
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sive X-ray analysis (EDX), X-ray powder diffraction (XRPD),

Fourier transform infrared (FT-IR) spectroscopy, and thermo-
gravimetric analysis (TGA).

Iron oxide nanoparticles are likely to agglomerate and in

TEM micrographs aggregates of magnetic cores are observed
(Fig. 1). Particles were found to be spherical with a relatively
narrow size distribution and an average size of �12 (±2) nm

and �13 (±2) nm for MNPs (Fig. 1a) and MNP@Au
(Fig. 1b), respectively. The average size of magnetic nanoparti-
cles was determined by measuring the diameter of 100–200
particles on TEM images. No difference in mean particle size

was observed after DTC chemisorption (Supporting material,
Fig. S4). The atomic composition of modified magnetic
nanoparticles was determined using energy dispersive X-ray

(EDX) method. TEM/EDX analysis confirmed the presence
of gold in MNP@Au sample (3.60%). It is worth nothing that
gold in the form of nanoparticles was very rarely observed in

TEM grid. Furthermore, results of SEM/EDX analysis of
MNP@Au particles showed that the sample is relatively
homogeneous. Taking this into consideration, it was con-
cluded that gold is present at the MNPs surface in the form

of a layer. In MNP@Au-DTC specimen, gold (2.48%) and
sulfur (0.93%) were detected by TEM/EDX analysis (Support-
ing material, Table S1).
Figure 2 (a) ATR FT IR spectra and (b) T
The phase composition of MNPs and MNP@Au samples

was investigated by X-ray powder diffraction (Supporting
material, Fig. S5). In the diffractograms of both samples, typ-
ical set of signals of magnetite/maghemite (Fe3O4/c-Fe2O3)

[(220), (311), (400), (422), (511), (440)] (Kalska-Szostko
et al., 2015; Mahadevan et al., 2007) can be seen. In MNP@Au
diffractogram the crystalline structure of metallic gold is also

observed (111), (200), (220), (311) (Robinson et al., 2010).
A set of ATR FT-IR spectra of bare and modified MNPs is

presented in Fig. 2a. In each spectrum, the presence of the
magnetic core is indicated by broad band at 550 cm�1 which

corresponds to the Fe-O stretching modes. No substantial
changes were observed after gold coating step, whereas strong
modification of IR signals occurred after DTC immobilization.

In the latter case, the peaks at 1218 cm�1 and at 1044 cm�1 can
be assigned to the CAOAC and C‚S stretching vibrations of
ethyl dithiocarbonate groups. The absorption mode at

1728 cm�1 corresponds to the vibrations of carbonyl ester
group and the band around 2920 cm�1 to CAH stretching
modes of DTC. Fig. 2b presents thermograms of MNP,
MNP@Au, and MNP@Au-DTC. The TG curve of bare

MNPs shows a small weight loss (5%), most likely related to
removal of adsorbed solvents. Lower total weight loss (3%)
is observed for MNP@Au sample due to the gold residuals.
G curves of bare and modified MNPs.



Scheme 2 Formation of polymeric shells on DTC-coated MNP@Au.
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The TG curve of MNP@Au-DTC shows 10% of a total
weight loss indicating the presence of additional component
(dithiocarbonate) on magnetic nanoparticles surface.

Surface-initiated RAFT/MADIX polymerization on

MNP@Au-DTC. Immobilization of dithiocarbonate on gold-
coated MNPs was followed by surface initiated RAFT/

MADIX polymerizations of various vinyl monomers
(Scheme 2, Table 1, Table S2). RAFT/MADIX technique
enables to control growth, composition and architecture of

polymers (Perrier and Takolpuckdee, 2005). It can be easily
performed in mild conditions and is compatible with a huge
variety of monomers (Beija et al., 2011; Destarac, 2010;
Perrier and Takolpuckdee, 2005). In the presented approach

dithiocarbonates are anchored to a nanoparticle surface by
their R-group and consequently act as propagating leaving
groups during polymerization. This way polymer chains are

grown directly from a nanoparticle surface. Polymerization
reactions were performed by introduction of a
dithiocarbonate-coated magnetic nanoparticles (MNP@Au-

DTC) to a conventional free-radical system (monomer, solvent
and initiator). Prior to each reaction RAFT/MADIX agent,
monomer, and solvent were sonicated until a homogeneous
suspension was formed. 2,20-Azobis(2-methylpropionitrile)

(AIBN) was used as initiator and toluene or ethanol as sol-
vents. As formation of polymer chains in solution is unavoid-
able, a cycle of redispersion in solvent and magnetic separation

was used several times to rinse free polymer chains and unre-
acted monomer and to obtain ‘pure’ polymer-grafted
nanoparticles.

Initially, to demonstrate the ability to control the thickness
of polymeric shell on MNP@Au-DTC using RAFT/MADIX
method, polymerizations of commercially available styrene

were conducted with various times of reaction (2, 6, 24 h).
The ATR FT-IR spectra of obtained polymer-magnetic
nanohybrids are presented in Fig. 3a. The spectra clearly indi-
cate the presence of polystyrene at the surface of MNP@Au.

The peaks at characteristic frequencies corresponding to vibra-
tions of polystyrene chains (3024, 2920, 1599, 1490, 1448 and
695 cm�1) are observed. Additionally, the intensity ratio of
polystyrene to magnetic core bands increases with the reaction
time indicating thicker polymeric layer.

Fig. 3b and d show thermograms of polystyrene-magnetic

nanoparticles obtained with various reaction time. TG/DTG
curves present one-stage weight loss in temperature range of
400–450 �C and the maximum at 420 �C attributed to the

degradation of polystyrene chains. It can be observed that
the amount of polymer grafted to the MNPs increases with
the reaction time. TG curves of MNP@PS particles 7, 8, and

9 show a total weight loss of 54%, 44% and 18%, respectively,
which can be roughly estimated as the weight of polystyrene
grafted on MNPs surface. The results of FT IR and TG/
DTG analyses indicate dependence of the polymer chains

length on the duration of reaction and confirm ability to con-
trol thickness of polymeric shell around MNPs. Additionally,
polymerization of styrene in the presence of MNP@Au was

carried out. This simple experiment proved that formation of
polymeric shell is inherently related to dithiocarbonates chemi-
sorbed on MNP@Au as no polymer shell was observed in

MNP@Au case.
Magnetization versus field curves were measured within a

range of temperatures. For all of the samples it was necessary
to increase the temperature up to the experimentally available

maximum of 400 K to approach the superparamagnetic region
and to obtain closing of the hysteretic loops that were still vis-
ible at 300 K. Law of approach to saturation (LA) was fitted to

the data in high magnetic fields to obtain the values of the sat-
uration magnetization (Abbas et al., 2013; Guivar et al., 2014).
As can be clearly seen for the polystyrene-coated nanoparti-

cles, increasing the time of the reaction (i.e. increasing the
thickness of the polymeric shell) causes reduction in the satu-
ration magnetization value from 69.61 emu/g for bare

nanoparticles down to 50.14, 45.65, and 39.19 emu/g after 2,
6, and 24 h of polymerization, respectively.

X-ray powder diffraction performed for chosen polymer-
magnetic nanohybrids (Supporting material, Fig. S5) showed

typical signals of magnetite/maghemite and metallic gold.
These results suggest preservation of the core crystal structure
after polymerization.



Table 1 Summary of polymeric shells built on MNP@Au-DTC.

Type of polymerization Type of monomer Nanohybrids TG weight loss [%]

Homopolymerization

MNP@Au-PS_24 h (7) 54
MNP@Au-PS_6 h (8) 44

MNP@Au-PS_2 h (9) 18

MNP@Au-PBM (10) 30

MNP@Au-PBMS (11) 40

One-pot polymerization and post-modification MNP@Au-PBM_2 (12) 41

Random copolymerization MNP@Au-PBM-r-PS (13) 23
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In the next step, in order to prepare multifunctional
polymer-magnetic nanohybrids with antibacterial activity,
polymerizations of original vinyl monomer obtained from

thiosemicarbazide were performed on MNP@Au-DTC
(Table 1). The synthesis and full characterization of monomer
have been recently reported (Markiewicz et al., 2016). Three

types of polymerization were performed: homopolymerization
(MNP-10, MNP-11), one-pot homopolymerization and modi-
fication (MNP-12), and random copolymerization (MNP-13)
(Scheme 2, Table 1). Homopolymerizations were performed

for carbamohydrazonothioate-based monomer (MNP@Au-
PBM) and its hydrochloric salt (MNP@Au-PBMS) that can
be polymerized in less toxic polar solvents (e.g. ethanol). This

kind of polymerization introduces large amount of functional
groups on the surface of MNPs. Due to the possibility of steric
hindrance, random copolymer with styrene as comonomer was

prepared (MNP@Au-PBM-r-PS). Additionally, one-pot poly-
merization of 4-vinylbenzyl chloride with simultaneous modifi-
cation of chloride with benzaldehyde thiosemicarbazone was
performed. The influence of the method of shell preparation
on physicochemical properties of nanohybrids was

investigated.
After reactions, changes in FT-IR spectra of all samples in

comparison with MNP@Au-DTC spectrum are observed, pri-

marily, in the fingerprint region (Fig. 4a). At 690 cm�1 CAH
bending vibrations of aromatic rings are present. Additional
bands around 1200–1450 cm�1 that can be ascribed to vibra-
tions of CH and CH2 groups in polymer chains are present.

The stretching modes of C‚N, and C‚CAr groups showed
up at 1500–1600 cm�1 with various intensity and shape
depending on way of shell preparation. Stretching vibrations

of polymeric CH, CH2 groups and aromatic CAH bonds are
observed around 2920 cm�1 and 3020 cm�1, respectively.

Thermogravimetric studies were performed to investigate

thermal properties of the obtained nanohybrids
(Fig. 4b and d). After polymerizations total weight loss in all



Figure 3 (a) ATR FT-IR spectra; (b) TGA curves; (c) magnetization as a function of external magnetic field measured at 400 K; and (d)

DTG curves of polystyrene-coated magnetic nanoparticles.
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samples is higher than for MNP@Au-DTC (30% for

MNP@Au-PBM, 40% for MNP@Au-PBMS, 41% for
MNP@Au-PBM_2, and 23% for MNP@Au-PBM-r-PS). In
the thermograms of all samples similar curves characteristics

can be observed. TG and DTG curves show three stages of
weight loss at temperature ranges of 200–300 �C, 300–500 �C
and 700–850 �C. The first two ones, with the maxima around

280 �C and 400 �C are most likely related to the decomposition
of carbamohydrazonothioate part, whereas the third one, with
the maximum at 800 �C, is attributed to the degradation of the

polymer chain.
Magnetization measurements of the samples showed simi-

lar dependence as for the polystyrene-grafted MNP. The MS

values observed for polymer-coated MNP are much lower

comparing to the MS of bare MNPs. For the samples
MNP@Au-PBM and MNP@Au-PBMS the MS value is
36.72 and 20.34 emu/g at 300 K, respectively, and for the sam-

ples MNP@Au-PBM-r-PS and MNP@Au-PBM_2 it is equal
to 33.85 and 25.34 emu/g. These results are consistent with our
previous studies which revealed that MS value mostly depends

on the thickness of a shell and barely depends on its composi-
tion (Misztalewska et al., 2015).

Fig. 5 presents TEM and SEM images of MNP@Au-PBM

particles. The shell surrounding MNP@Au core is easily
observable in TEM micrograph. SEM picture shows granular
texture of the material. Similar morphologies were observed in
cases of other nanohybrids; however, the shell thickness varies,

depending on the polymer preparation method (Supporting
material, Fig. S6).
DLS analysis taken for selected samples (MNP,

MNP@Au-DTC, MNP@Au-PBM, MNP@Au-PBMS)
showed that covering nanoparticles with Au, DTC and PBM
shells leads to decrease in their hydrodynamic size (Supporting

material, Fig. S7). It can be explained by the fact that bare
nanoparticles exhibit a strong tendency for aggregation caused
by their high surface area. Formation of covering layer around

magnetic cores prevents agglomeration and thus smaller aggre-
gates are detected by DLS. In the case of MNP@Au-PBMS
sample the measured hydrodynamic size is comparable to the

value obtained for bare MNP. The effect of aggregation in this
case may be related to the chemical nature of the shell (PBMS
is hydrochloric salt of PBM). Zeta potential measurements
show that synthesis of polymeric layers on magnetic cores

leads to formation of more stable particles.
Biological studies. Different mechanisms of MNPs action

against bacteria were described such as generation of reactive

oxygen species (ROS), interference with bacterial electron
transport of oxidation of NADH, membrane disruption, and
damage of macromolecules (DNA, lipids and protein)

(Niemirowicz et al., 2015b; Thomas Webster, 2010; Webster
et al., 2013). However, observed divergent effects of nanopar-
ticles against bacteria cell might be linked with dose, nature of

nanomaterial coating, external factors and type of bacteria
strain (Hajipour et al., 2012; Webster and Taylor, 2011;
Ashkarran et al., 2012). In our study, the potential of bifunc-
tional monomers (BM and BMS), and chosen polymer-

magnetic nanohybrids (MNP-8, MNP-10, MNP-11 and
MNP-12) against Pseudomonas aeruginosa was investigated.



Figure 4 (a) ATR FT-IR spectra; (b) TGA curves; (c) magnetization as a function of external magnetic field measured at 400 K; and (d)

DTG curves of polymer-coated MNP@Au.

Figure 5 TEM and SEM images of MNP@Au-PBM nanoparticles.
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This pathogen is responsible for increased morbidity and mor-
tality of hospitalized patients (Wnorowska et al., 2015).

Fig. 6a shows that antibacterial effect of nanoparticles

modified with PBM and PBMS against P. aeruginosa is much
higher comparing to commercially available styrene. Addition-
ally, the activity of MNP@Au-PBMS is 20% stronger than the

activity of free monomer. Similar inhibitory effect (�80%) of
P. aeruginosa growth was observed in the case of BM and
MNP@Au-PBM. The decrease of P. aeruginosa Xen 5 chemi-

luminescence indicates the ability of nanohybrids to affect bac-
teria metabolism (Fig. 6b). Additionally, this effect reached up
to 80% within �60 s of treatment at dose 100 lg/ml and was
observed for PBM and PBMS coated MNPs. Our recent

report indicated that colistin which is an antibiotic mostly used
for the treatment of lung infection in CF patients decreased the
luminescence signal by �24% at dose 100 lg/ml (Niemirowicz

et al., 2015a). The formation of a biofilm is associated with
increased resistance to an antibiotic treatment. It is estab-
lished, that to kill bacteria cells embedded in biofilm matrix

1000 – fold dose of antibiotics are required. Moreover, data



Figure 6 Biological properties of obtained materials: (a) bactericidal activity against P. aeruginosa strains; (b) reduction of P. aeruginosa

chemiluminescence signal after MNP addition, (c) activity against bacteria biofilm formation and (d) hemocompatibility. CT - control

sample – untreated Pseudomonas aeruginosa cells.

Scheme 3 Proposed mechanism of nanohybrids action and their regeneration.
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show that biofilm plays a key role in chronic and recurrent
Pseudomonas infections (Cantón et al., 2011; Cervia et al.,
2009; de Bentzmann and Plésiat, 2011). Therefore, new strate-

gies to prevent bacterial biofilm formation are a great chal-
lenge. As is indicated in Fig. 6c, MNP@Au–PBMS and
MNP@Au-PBM are able to prevent biofilm formation and
effectively kill bacteria embedded into the biofilm matrix. Both
nanohybrids at the concentration of 100 lg/ml inhibited bio-
film formation by �70%. It should be emphasized that this

effect is twice stronger when compared to anti-biofilm proper-
ties of compounds in free forms. For MNP@Au-DTC and
MNP@Au-PS the reduction in adhesion of Pseudomonas
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aeruginosa was established around 40%, which indicated that
the presence of polystyrene surface does not exert changes in
anti-biofilm properties of tested nanohybrids. Our results show

that PBM and PBMS coatings are useful to prevent bacteria
biofilm formation and have stronger activity in comparison
with previously described nanosystems (Webster et al., 2013).

Leuba et al. indicated that bare MNPs and their derivatives
coated with various functional groups such as amine, carboxyl
and isocyanate are able to decrease the formation of biofilm;

however, dose around 1 mg/mL is needed (Webster et al.,
2013). Additionally, recently published data show that mag-
netic nanoparticles have a capability to penetrate biofilm
(Hetrick et al., 2009; Sathyanarayanan et al., 2013). Park

et al. presented that magnetic nanoparticles are able to inacti-
vate pathogens in the presence of external magnetic field after
induction of hyperthermia (Park et al., 2011). It is established

that divalent cations such as Mg2+ are essential for biofilm
formation (Cavaliere et al., 2014). The ability of PBM and
PBMS to chelate divalent cations may explain their additional

mechanism of action. Based on our results and published
reports it is postulated that possible mechanism of action
strongly depends on the nature of nanomaterial surface. It is

likely that nanohybrids due to interaction with surface mole-
cules which built bacteria cell wall, and ability to penetrate
membranes and/or form pores, cause destruction of plasma
membrane. In the next step they probably interfere the meta-

bolic pathway in bacteria cells that lead to restriction of their
growth. The proposed mechanism of nanohybrids action and
their regeneration is presented in Scheme 3.

Several data revealed that there is a relationship between a
particle type and a toxic effect which is observed during expo-
sition (Choi et al., 2010; Kai et al., 2011). Additionally, a lot of

reports demonstrated that cytotoxic effects commonly depend
on basic physicochemical and morphological parameters of
nanomaterials (Nagy et al., 2012; Sohaebuddin et al., 2010).

Our recent results indicate that core-shell nanoparticles exert
low hemolytic activity and low cytotoxic effect against host
cells (Niemirowicz et al., 2015b, 2016; Car et al., 2014). In this
study, data shown in Fig. 6d indicate that tested agents do not

affect red blood cells membrane permeability at the concentra-
tion range of 1–100 lg/ml. However, at this concentration,
PBM and PBMS coated MNP effectively kill and restrict meta-

bolic activity of planktonic P. aeruginosa as well as prevent
against bacteria biofilm formation.

4. Conclusion

In conclusion, new multifunctional polymer/gold/magnetic nanohy-

brids were synthesized and characterized by FT-IR, TEM, SEM and

TG analyses. Control over properties of polymeric shell was achieved

by surface-initiated RAFT/MADIX polymerization method. Com-

mercially available and original bifunctional monomers based on

thiosemicarbazide were used to form shells around gold-coated MNPs.

Antibacterial properties of the obtained materials against P. aerugi-

nosa were investigated. Bactericidal activity of free monomers and

their polymer-magnetic nanohybrids were compared and the advan-

tage of the latter ones was clearly proven. It was documented that

tested agents at a low concentration effectively kill and restrict meta-

bolic activity of planktonic P. aeruginosa as well as prevent against

bacteria biofilm formation. Additionally, hemocompatibility tests car-

ried out with the monomers alone and their polymer-magnetic hybrids

revealed that the lysis rates observed with nanohybrids were lower than
for free monomers. Due to the superparamagnetic properties, there is a

possibility to easily separate, purify and recycle these efficient antibac-

terial nanomaterials by application of an external magnetic field.
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