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SUMMARY

TldD and TldE proteins are involved in the biosyn-
thesis of microcin B17 (MccB17), an Escherichia coli
thiazole/oxazole-modified peptide toxin targeting
DNA gyrase. Using a combination of biochemical
and crystallographic methods we show that E. coli
TldD and TldE interact to form a heterodimeric metal-
loprotease. TldD/E cleaves the N-terminal leader
sequence from the modified MccB17 precursor pep-
tide, to yield mature antibiotic, while it has no effect
on theunmodifiedpeptide.Bothproteins areessential
for the activity; however, only the TldD subunit forms a
novel metal-containing active site within the hollow
coreof theheterodimer.Peptide substratesarebound
in a sequence-independent manner through b sheet
interactionswith TldDandare likely cleaved via a ther-
molysin-type mechanism. We suggest that TldD/E
actsasa ‘‘molecularpencil sharpener’’: unfoldedpoly-
peptides are fed through a narrow channel into the
active site and processively truncated through the
cleavage of short peptides from the N-terminal end.

INTRODUCTION

Escherichia coli microcin B17 (MccB17) is a peptide antibiotic

belonging to the linear azole-modified peptide family of natural

products. MccB17 poisons E. coli DNA gyrase, ultimately lead-

ing to the accumulation of double-stranded DNA breaks and

cell death (Heddle et al., 2001). MccB17 production and immu-

nity require the mcbABCDEFG gene cluster (Genilloud et al.,

1989) (Figure 1A). The mcbA gene encodes the 69-amino-acid

long MccB17 precursor peptide, consisting of the leader and

core parts; the latter part is subjected to post-translational modi-

fication by the McbBCD synthetase complex. The 26-amino-
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acid N-terminal leader peptide (McbA 1–26) serves as a recogni-

tion element for the binding of the synthetase complex (Roy

et al., 1998; Sinha Roy et al., 1999). In the course of modification,

all cysteine and most serine residues of the core peptide are

converted to thiazole and oxazole heterocycles, yielding pro-

MccB17 (Li et al., 1996). Most MccB17 molecules produced

by cells harboring the mcbABCDEFG cluster contain eight

(four oxazole and four thiazole) heterocycles and an ester

bond, connecting residues Ser52 and Asp53 (MccB17 D8) (Ghi-

larov et al., 2011). Under the conditions of high expression of

mcbBCD, an over-modified form of MccB17 containing an oxa-

zole cycle at Ser52 (MccB17 D9) is also detected (Ghilarov et al.,

2011; Sinha Roy et al., 1999). The last step inMccB17maturation

is removal of the leader peptide yielding mature MccB17, which

is exported from the producing cell by the products of mcbE

and mcbF genes (Garrido et al., 1988).

A screen for mutants abolishing MccB17 production identi-

fied TldE (PmbA) as a protein required for the cleavage of the

MccB17 leader peptide (Rodriguez-Sainz et al., 1990). Allali

et al. (2002) have presented in vivo data showing that tldD, a pa-

ralog of tldE, is also involved in MccB17 maturation. E. coli tldE

and tldDwere independently identified in several screens for mu-

tants resistant to CcdB (LetD), an F-plasmid encoded toxin of the

ccdAB toxin/antitoxin system (Murayama et al., 1996). CcdB

inhibits DNA gyrase, and its toxicity is prevented by the binding

of the CcdA antitoxin (Bahassi et al., 1999; De Jonge et al., 2009;

Maki et al., 1992; Miki et al., 1984). The CcdA41 polypeptide,

consisting of 41 C-terminal amino acids of CcdA, retains the abil-

ity to interact with CcdB and also prevents its cytotoxic activity

(Bernard and Couturier, 1991). Mutations in tldD or tldE make

cells more resistant to CcdB by affecting the stability of

CcdA41 and, possibly, of CcdA (Allali et al., 2002).

Both tldD and tldE genes are common in prokaryotes, with

60% of bacterial genomes and almost all archaeal genomes en-

coding homologs of these twogenes (Allali et al., 2002). The func-

tion of these highly conserved genes remains elusive. Compara-

tive genomic analysis shows that tld genes are frequently located

near lon, a gene that encodes an ATP-dependent protease,
ber 3, 2017 ª 2017 The Author(s). Published by Elsevier Ltd. 1549
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Figure 1. Tld Proteins Are Required for MccB17 Production In Vivo

(A) An overview of MccB17 biosynthesis. The gene cluster mcbABCDEFG is annotated according to recommended nomenclature (Arnison et al., 2013). The

leader peptide is shown in magenta and the core part in black, with the heterocyclizable residues highlighted in red. Ser52, which forms an ester bond, is

highlighted in blue and marked with blue asterisk.

(B) The accumulation of unprocessed heterocyclized MccB17 in tld- cells and surrounding agar by whole-cell MALDI-MS imaging (top and bottom spectra,

respectively). Equal quantities of cell material and agar were used and all samples were spiked with equal amounts of human insulin (ins) to serve as an internal

reference. Full-size heterocyclized MccB17 precursor (pro-McbA D8-9, m/z = 5,832–5,852, reflecting different numbers of heterocycles formed) and the mature

MccB17 (m/z = 3,094) are shown.

(C) Tld deletion leads to the impaired export of active compound and accumulation of toxic heterocyclized MccB17 precursor inside the cells. Left: zones of

bacterial growth inhibition on a soft agar inoculated with sensitive E. coli cells and used to overlay colonies of MccB17 producing wt and tld- E. coli strains

(BW25113 pBAD-mcbABCDEFG). Right: SOS response visualized inwt and tld- sfiA::lacZ reporter strains, transformed by pBAD-mcbABCDEFG and grown on a

MacConkey agar plate under inducing (1 mM arabinose) and non-inducing conditions. For clarity, only one of two identically inoculated plates is labeled.
which, in E. coli, is involved in CcdA and CcdA41 degradation

(Van Melderen et al., 1994; Van Melderen et al., 1996).

To date, structural information has only been available for

the TldE protein, with four representative structures from Ther-

motoga maritima (PDB: 1VL4; Rife et al., 2005), Pseudomonas

aeruginosa (PDB: 3QTD), Shigella flexneri (PDB: 3TV9), and Bac-

teroides thetaiotaomicron (PDB: 1VPB). All these proteins form

roughly spherical homodimers with a hollow core and none pos-

sesses any recognizable catalytic site or shows biological activ-

ity. Given the relatedness between the sequences of TldD and

TldE proteins, they are expected to share essentially the same

fold, although TldD is distinct in that it contains a conservedmet-

alloprotease-like HExxxH sequence motif that may be involved

in catalysis (Hu et al., 2012).

In this work, we show that E. coli TldD and TldE interact

to form a catalytically active metalloprotease capable of de-

grading unfolded peptides, including modified pro-MccB17

and CcdA41. By contrast, TldD/E is unable to process unmodi-

fied microcin B17 precursor peptide. In tld� cells, large amounts

of modified MccB17 precursor accumulate, indicating that

leader peptide cleavage is necessary for toxin export. We pre-

sent crystal structures of TldD/E protease alone and in complex
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with peptide substrates and inhibitors. These reveal that the het-

erodimer forms a spherical shell around a central cavity, analo-

gous to the TldE homodimers reported previously, and that the

conserved HExxxHmotif in TldD does indeed coordinate ametal

ion via the two His residues, together with an additional

conserved Cys residue located near the C terminus. The sub-

strate peptides are bound in an active site cleft on the inner

surface of the TldD subunit, in a sequence-independent fashion

via b sheet interactions. Based on structural superpositions with

thermolysin we propose a metal-dependent proteolytic mecha-

nism for TldD/E. Substrate access is via a narrow pore through

the protein shell that leads directly into the active site. We hy-

pothesize that the TldD/E substrate specificity is conferred by

the size of the pore opening which restricts access to unfolded

polypeptides only.

RESULTS

Both TldD and TldE Are Required for MccB17 Leader
Peptide Cleavage In Vivo
Previous reports (Allali et al., 2002; Rodriguez-Sainz et al., 1990)

provide only limited data on the fate of MccB17 precursor inside



Figure 2. TldD/E Cleaves Modified Microcin B17 Precursor In Vitro

(A) TldDE activity converts heterocyclized MccB17 precursor to the mature MccB17 molecule. Top: mass spectrum of nine-cycle containing heterocyclized

MccB17 precursor (SGSH-pro-McbA D9); insert: mass spectrum showing introduction of nine heterocycles by MccB17 synthetase activity. Bottom: addition of

TldD and TldE leads to the immediate disappearance ofD9mass peak and accumulation of 3,094 DaMccB17 product. In an insert: further cleavage of two amino

acids (Val-Gly) from the N terminus of 3,094 Da MccB17.

(B) Non-heterocyclized SGSH-pro-MccB17 precursor peptide (6,282 Da, top) is stable after overnight treatment with TldD/E (bottom).
the tld mutant cells. To get a clearer picture, we analyzed

the TldD/E-dependent processing of MccB17 in vivo by

MALDI-MS imaging of colonies of E. coli BW25113 cells trans-

formed by plasmid pBAD-mcbABCDEFG expressingmcb genes

from an inducible araBAD promoter. MALDI-TOF spectra of

induced wild-type BW25113 and DtldE, andDtldDEmutant cells

transformed with pBAD-mcbABCDEFG differed dramatically

(Figure 1B). Wild-type cells accumulated mature MccB17 D8

(m/z = 3,094 Da [M + H]+) and small amounts of MccB17 precur-

sor with eight heterocycles (pro-MccB17 D8, m/z = 5,852 Da

[M + H]+). In all mutant cells, hyper-modified pro-MccB17 D9

(m/z = 5,832 Da [M + H]+) MccB17 precursor was present.

When the agar around cell colonies was analyzed, a very intense

signal of mature (m/z = 3,094 Da [M +H]+)MccB17was detected

for wild-type, but not tld mutants (Figure 1B, bottom). Consis-

tently, a dramatic decrease in the size of growth inhibition zones

around colonies of tld mutants (compared with the wild-type)

was observed, as previously reported (Figure 1C, left) (Rodri-

guez-Sainz et al., 1990). When a sfiATlacZ reporter strain and

its tld� derivatives (Allali et al., 2002) were transformed with

pBAD-mcbABCDEFG and induced with arabinose, tld� strains

underwent SOS response, caused by the intracellular accumula-

tion of pro-MccB17 D9 (Figure 1C, right) (Allali et al., 2002).

Purified TldD/E Cleaves Modified MccB17 Precursor
and Other Substrates In Vitro
N-Terminally 6xHis-tagged E. coli TldD and TldE proteins were

separately purified by nickel affinity chromatography (see the

STAR Methods). The expressed protein products had expected

sizes on SDS gels (50.5 kDa for His-TldE and 53.5 kDa for His-

TldD, respectively; see Figure S1A). Proteins were tested for

their ability to cleave the likely substrate, SGSH-pro-MccB17 D9

(m/z=6,202 [M+H]+, averagemass). The substratewasobtained

in vitro by overnight treatment of the recombinant SGSH-McbA

peptide with in vitro reconstituted recombinant MccB17 synthe-

tase (Figure 2A, top, insert) (see the STAR Methods for more de-
tails). A 2-hr incubation with either TldD or TldE alone did not alter

the substrate. In contrast, the addition of both proteins together

led to rapid disappearance of the 6,202 Da mass peak and accu-

mulation of a 3,074 Da [M + H]+ product, which corresponds to

mature MccB17 D9 produced by cleavage of the precursor be-

tween residues 26 and 27 (Figure 2A). At longer incubation times,

a 2,918 Da [M + H]+ peak was also observed, corresponding

to the MccB17 D9 variant lacking the first two residues from

the N terminus (Val-Gly) (Figure 2A, bottom, insert). The purified

TldD/E cleavage substrate SGSH-pro-MccB17 D9 is biologically

inactive, presumably because it cannot be transported inside

the susceptible cells, while TldD/E cleavage of SGSH-pro-

MccB17 D9 produced active toxin (data not shown).

A mass peak corresponding to the leader peptide (MccB17

1–26) was absent from mass spectra of TldD/E reactions, prob-

ably due to extensive proteolysis. Indeed, purified MccB17 1–26

peptide (3,143 Da [M + H]+) was rapidly degraded by TldD/E (not

shown). In contrast, when unmodified McbA precursor peptide

was used, no cleavage was observed, either at the leader-core

peptide junction site or within the leader peptide (Figure 2B).

We conclude that TldD and TldE together act as a peptidase

that processes the modified, but not the unmodified, McbA

precursor. The negative result with unmodified precursor sug-

gests that introduction of heterocycles changes the structure

of McbA, unmasking cleavage sites in the leader and at the

leader-core junction.

We also checked the ability of TldD/E to cleave its two other

likely substrates, CcdA and CcdA41. Full-length SGS-CcdA

was stable in the presence of TldD/E in vitro (Figure S2A), but

SGS-CcdA41 was readily degraded to small peptides (Fig-

ure S2B). CcdA41 is an intrinsically disordered C-terminal tail

of CcdA, and previous studies have shown that it is more sus-

ceptible to cleavage by Lon protease compared with the full-

length protein, presumably due to the lack of interactions with

N-terminal folded domain (Burger et al., 2017; Van Melderen

et al., 1996). Hence our results support earlier western blot
Structure 25, 1549–1561, October 3, 2017 1551



Table 1. X-Ray Data Collection and Processing Statistics for TldD/E

Dataseta WT-PO4 WT-DRVY WT-HPF WT-Act E263A-hex H262A-pent

Beamline I04-1 I03 I03 I02 I04-1 I04-1

Wavelength (Å) 0.9200 0.9795 0.9763 0.9795 0.9282 0.9282

Detector Pilatus 2M Pilatus 6M Pilatus 6M Pilatus 6M Pilatus 6M Pilatus 6M

Resolution

range (Å)b
75.29–1.90

(1.95–1.90)

74.77–1.25

(1.28–1.25)

86.76–1.40

(1.44–1.40)

50.87–1.50

(1.54–1.50)

65.29–1.35

(1.39–1.35)

65.16–1.42

(1.46–1.42)

Space group P21 P21 P21 P21 P21 P21

a, b, c (Å) 64.77, 173.99,

83.52

64.63, 173.53,

82.66

64.63, 173.53,

83.06

64.57, 172.88,

82.63

65.29, 175.44,

84.33

65.16, 174.48,

83.65

a, b, g (�) 90.00, 90.00,

90.00

90.00, 90.03,

90.00

90.00, 90.00,

90.00

90.00, 90.02,

90.00

90.00, 90.01,

90.00

90.00, 90.04,

90.00

Total

observationsb
569,651 (21,752) 3,363,286

(229,260)

2,398,303

(173,512)

1,948,868

(141,491)

2,787,364

(198,716)

2,365,696

(164,352)

Unique

reflectionsb
136,171 (7,370) 500,650 (36,869) 349,069 (25,341) 287,508 (21,061) 403,735 (28,973) 346,357 (25,317)

Multiplicityb 4.2 (3.0) 6.7 (6.2) 6.9 (6.8) 6.8 (6.7) 6.9 (6.9) 6.8 (6.5)

Mean I/s(I)b 12.3 (2.0) 8.5 (1.0) 9.6 (1.7) 10.1 (1.4) 17.0 (1.2) 11.9 (1.2)

Completeness (%)b 94.1 (69.1) 99.9 (99.7) 97.7 (95.6) 99.8 (99.2) 97.7 (94.6) 99.0 (98.0)

Rmerge
b,c 0.087 (0.551) 0.134 (1.884) 0.115 (1.125) 0.133 (1.344) 0.067 (1.623) 0.084 (1.543)

Rmeas
b,d 0.100 (0.683) 0.145 (2.057) 0.124 (1.217) 0.144 (1.457) 0.073 (1.755) 0.091 (1.677)

CC½
b,e 0.997 (0.565) 0.998 (0.296) 0.997 (0.470) 0.997 (0.453) 0.999 (0.429) 0.998 (0.440)

Wilson B value (Å2) 18.2 9.1 12.1 10.1 13.6 15.3
aWe have used a two-part dataset naming convention comprising the TldD variant type (WT, wild-type), plus a shorthand for the ligand bound at the

active site, where PO4, phosphate; DRVY and HPF, sequences of angiotensin fragments; Act, actinonin; hex and pent, adventitiously bound hexa- and

pentapeptides. N.B.: details of the H262A-pent structure are found in Figure S7.
bValues for the outer-resolution shell are given in parentheses.
cRmerge =

P
hkl

P
i jIi(hkl) � hI(hkl)ij/ Phkl

P
iIi(hkl).

dRmeas =
P

hkl [N/(N � 1)]1/2 3
P

i jIi(hkl) � hI(hkl)ij/ Phkl

P
iIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, hI(hkl)i is the weighted average

intensity for all observations i of reflection hkl and N is the number of observations of reflection hkl.
eCC½ is the correlation coefficient between symmetry-related intensities taken from random halves of the dataset.
data showing stabilization of Ccd41 in tld mutants (Allali

et al., 2002).

To find additional substrates, we tested TldD/E against a panel

of synthetic peptides that are commonly used as MALDI calibra-

tion standards. The results are represented in Table S1 and Fig-

ure S1B. Most peptides were rapidly degraded; however, some

remained intact even after overnight incubation with TldD/E. As

with pro-MccB17, protease activity was manifested only in the

presence of both TldD and TldE proteins. Analysis of proteolytic

fragments gave no clear evidence for preferred sites of cleavage

by TldD/E. The ability of TldD/E to cleave large proteins was

tested using casein and native, reduced, and alkylated BSA,

but no proteolytic activity was observed.

TldD and TldE Form a Stable Complex
Having observed that E. coli TldD and TldE exhibit proteolytic ac-

tivity in vitro only when present together, we analyzed the ability

of these proteins to form a complex. During non-denaturing

PAGE, TldD and TldE each migrate as sharp bands with distinct

mobilities (Figure S3A). When the two proteins are combined

together, a new lower mobility band appears. The analysis of

the protein content of the native gel bands by SDS-PAGE (Fig-

ure S3A) showed that the shifted band consists of an apparently

equimolar mixture of TldD and TldE, suggesting that the two pro-

teins form a complex. Indeed, TldE was co-purified with TldD
1552 Structure 25, 1549–1561, October 3, 2017
during affinity chromatography of extracts of cells co-overpro-

ducingHis-tagged TldD and untagged TldE (Figure S3B); this pu-

rified complex produced a single peak during gel-filtration chro-

matography (Figure S3C). We used sedimentation equilibrium

analytical ultracentrifugation (AUC) to measure apparent molec-

ular weights of TldD, TldE, or of co-purified complex. In each

case, only sedimenting species corresponding to protein dimers

were detected (observed molecular weights: TldD, 115 kDa;

TldE, 134 kDa; and TldD/E, 124 kDa). We therefore conclude

that TldD and TldE can form both homo- and heterodimers.

The Crystal Structure of TldD/E
The structure of the purified TldD/E protein complex was solved

from a 1.9-Å resolution dataset (WT-PO4, Tables 1 and 2) using

molecular replacement with templates based on structures

that were 23% and 99% identical in sequence to TldD and

TldE, respectively, to give two copies of the TldD/E heterodimer

in the asymmetric unit. These are roughly spherical, resembling

the previously crystallized TldE (PmbA) homodimers, with an

average outer diameter of approximately 65 Å and a hollow

core (Figures 3A and 3B). The sequence of E. coli TldE differs

by only two amino acids from that of Shigella flexneri PmbA,

and thus the E. coli TldE monomer superposes well upon a

monomer from the S. flexneri PmbA homodimer (PDB: 3TV9;

root-mean-square deviation [RMSD] = 0.84 Å). As described



Table 2. Refinement Statistics for TldD/E Structures

Dataset WT-PO4 WT-DRVY WT-HPF WT-Act E263A-hex H262A-pent

Resolution

range (Å)a
75.29–1.90

(1.95–1.90)

74.77–1.25

(1.28–1.25)

86.76–1.40

(1.44–1.40)

50.87–1.50

(1.54–1.50)

65.29–1.35

(1.39–1.35)

65.16–1.42

(1.46–1.42)

Reflections:

working/freeb
129,447/6,723 475,619/25,030 331,643/17,425 273,176/14,330 383,738/19,995 328,992/17,364

Final Rwork
a,c 0.139 (0.194) 0.149 (0.239) 0.130 (0.179) 0.130 (0.171) 0.145 (0.231) 0.138 (0.234)

Final Rfree
a,c 0.178 (0.248) 0.182 (0.292) 0.171 (0.292) 0.169 (0.269) 0.183 (0.300) 0.171 (0.293)

Estimated coordinate

error (Å)d
0.026 0.009 0.012 0.014 0.011 0.012

RMSD

Bond (Å) 0.010 0.011 0.009 0.009 0.010 0.010

Angle (�) 1.38 1.52 1.40 1.39 1.38 1.35

No. of protein residues

per chain (residue ranges)e
A: 480 (2–481)

B: 444 (7–450)

C: 479 (3–481)

D: 444 (7–450)

A: 480 (2–481)

B: 443 (8–450)

C: 480 (2–481)

D: 442 (9–450)

A: 480 (2–481)

B: 443 (8–450)

C: 480 (2–481)

D: 444 (7–450)

A: 480 (2–481)

B: 445 (6–450)

C: 479 (3–481)

D: 445 (6–450)

A: 479 (3–481)

B: 443 (8–450)

C: 480 (2–481)

D: 442 (9–450)

A: 476 (2–122;

127-481)

B: 444 (7–450)

C: 480 (2–481)

D: 445 (6–450)

No. of heterogen residues:

Zn/ligand/water/otherf
2/2/1,797/12 2/8/2,060/18 2/6/2,093/18 2/2/2,124/11 2/12/2,086/18 2/10/1,973/24

Mean B factors: protein/

Zn/ligand/water/otherf/

overall (Å2)

22/16/25/30/

32/23

12/8/13/24/

17/14

16/13/17/26/

21/18

13/11/17/26/

21/15

17/19/26/27/

21/18

18/17/24/32/

23/21

Ramachandran plot (%)

Favored/

allowed/disallowed (%)g
97.9/2.1/0.0 98.0/2.0/0.0 98.5/1.5/0.0 98.0/2.0/0.0 98.1/1.8/0.1 98.1/1.7/0.2

PDB accession code 5NJ5 5NJ9 5NJA 5NJB 5NJC 5NJF

WT-DRVY peptide ligand was refined with occupancy of 0.7. H262A-pent peptide ligand was refined with occupancy of 0.5.
aValues for the outer-resolution shell are given in parentheses. RMSD, root-mean-square deviation.
bThe dataset was split into ‘‘working’’ and ‘‘free’’ sets consisting of 95% and 5% of the data, respectively. The free set was not used for refinement.
cThe R factors Rwork and Rfree are calculated as follows: R =

P
(j Fobs� Fcalc j)/

Pj Fobs j, where Fobs and Fcalc are the observed and calculated structure

factor amplitudes, respectively.
dBased on Rfree as calculated by REFMAC5 (Murshudov et al., 1997).
eThe asymmetric contains two copies of the TldD/E heterodimer where chains A and C are TldD subunits, and B and D are TldE subunits.
f‘‘Other’’ includes ethylene glycol, MES buffer, and sodium ions.
gAs calculated using MolProbity (Davis et al., 2007).
for Thermotogamaritima PmbA (PDB: 1VL4; Rife et al., 2005), the

subunit is divided into two domains, each accounting for roughly

half of the primary sequence. The N-terminal domain is pseudo

2-fold symmetric, being comprised of a very long and curved

six-stranded anti-parallel b sheet with a pair of a helices at

each end lying against the convex outer surface of the sheet.

The C-terminal domain is made up largely of b strands, which

are arranged into a five-stranded anti-parallel b barrel and a

six-stranded, mainly anti-parallel, b sheet, which together form

a funnel-shaped structure that wraps around a central a helix,

although one face of the latter is exposed to the inner cavity of

the heterodimer (Figure 3C). Despite only 18% identity between

E. coli TldD and TldE, they share essentially the same fold with an

overall RMSD of 2.53 Å (for 392 aligned residues) (Figure 3D).

However, there are two notable insertions in the C-terminal

domain of TldD giving rise to additional structural elements

(see Figures 3, S4, and S5). One of these, which we term the

‘‘clamp’’ (residues 450–463), lengthens an outer strand of the

six-stranded b sheet observed in TldE and adds an additional

strand, giving a b hairpin that extends the sheet toward the lip
of the b barrel, to leave only a narrow gap between the two mo-

tifs. The clamp is partly stabilized by the second insertion, which

we call the ‘‘brace’’ (residues 351–361), that provides support

against the inner surface of the N-terminal domain. Together,

the clamp and the brace extend the ‘‘b funnel’’ to effectively

enclose the central helix, with the exception of the narrow cleft

that remains between the edge of the b sheet and the lip of the

b barrel. Remarkably, apart from the four deposited TldE

(PmbA) structures, there are no other proteins within the PDB

that share any recognizable structural similarity to E. coli TldD

or TldE.

TldD/E Is a Metalloprotease Requiring Fe or Zn as Co-
factors
Multiple sequence alignments against non-redundant sets of

diverged but homologous sequences of TldD and TldE reveal

(Figure S6, see also Hu et al., 2012) a strictly conserved putative

zinc binding motif (HExxxH) in the TldD sequence. An identical

motif is found in dipeptidylpeptidase III (DPP) (Baral et al.,

2008) and a similar motif (HExxH) is present in thermolysin
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Figure 3. Overall Structure of the TldD/E

Heterodimer

(A and B) Orthogonal views of the TldD/E hetero-

dimer shown in cartoon representation with TldD in

slate blue and TldE in maroon; the non-crystallo-

graphic 2-fold axis is vertical in (A) and perpendic-

ular to the plane of the image in (B). The catalytic

zinc associated with TldD is represented by the

cyan sphere and a bound peptide by the b strand in

magenta. The putative substrate entrance channel

is marked by an asterisk in (A); access through this

channel may be mediated by the insert marked in

yellow, which we describe as the ‘‘plug.’’

(C and D) Corresponding views of TldE and TldD

subunits alone, as seen from the interior of the

heterodimer, highlighting their similarities and dif-

ferences. For each, the N-terminal domain is shown

in green and the C-terminal domain in yellow.

Within the latter, the central helical region (which

includes the HExxxH motif in TldD) is highlighted in

red. The black spheres in TldE indicate the

approximate positions at which insertions arise to

give the clamp and brace motifs shown in TldD;

again the zinc is represented by the cyan sphere

and a bound peptide by the magenta b strand.

(E and F) Equivalent views to (C and D), but with the

protein shown as a molecular surface and the

bound peptide in stick representation withmagenta

carbon atoms; again the putative substrate

entrance channel is marked by an asterisk.
and matrix metalloproteases (MMPs) (Cerda-Costa and Gomis-

Ruth, 2014; Holden and Matthews, 1988). We have measured

the metal content of purified His-tagged TldD and TldE by

inductively coupled plasma atomic emission spectroscopy

(ICP-AES). In this technique, diluted protein solutions are vapor-

ized and injected in a stream of plasma to produce radiation sig-

natures specific for different elements. While TldE contained no

metal ions, recombinant TldD contained roughly equal amounts

of iron and zinc; the total metal content was approximately one

mole of metal permole of TldDmonomer. To determine which of

the two metal ions was required for enzymatic activity, we have

grown TldD-overproducing cells on M9 minimal medium sup-

plemented with 50 mM of zinc or iron salts. TldD purified from
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these cells contained, correspondingly,

>95% zinc or >80% iron as measured

by the ICP-AES. When the activity of

these enzymes was measured, no differ-

ence was observed. We have checked

the ability of EDTA, O-phenanthroline

(OP), and several readily available metal-

loprotease inhibitors to block TldD/E

action, using angiotensin II (Asp-Arg-

Val-Tyr-Ile-His-Pro-Phe) as a test sub-

strate (Table S3). OP and natural product

actinonin (deformylase inhibitor) effi-

ciently prevented angiotensin II hydroly-

sis by TldD/E. Interestingly, EDTA was

ineffective at preventing hydrolysis even

at high (100 mM) concentration; as were

phosphoramidon and bestatin. Actinonin
was therefore used to produce a co-complex structure with

TldD/E (see below). The observed difference in reactivity be-

tween two metal chelators, EDTA and OP, is not unusual and

can be explained by fast formation of an inhibitory ternary OP-

metal-protein complex (Kleemann et al., 1986; Massaoud

et al., 2011; Mayaux et al., 1982; Vallee and Hoch, 1957). In

contrast, EDTA, a bulky ligand, primarily acts as metal ion scav-

enger (by chelating free metal ions in solution and thus slowly

shifting the equilibrium toward apoenzyme); therefore, an

enzyme with a sufficiently low metal dissociation constant is

not inactivated. Indeed, we have found that removal of metal

from TldD occurs very slowly and requires several rounds of

dialysis against 10 mM OP to be complete. The enzymatic



Figure 4. Comparison of the TldD Active

Site with Thermolysin and Proposed Cata-

lytic Mechanism

(A) Close-up of the TldD active site showing key

residues and a bound phosphate oxyanion su-

perposed on a 1.9-Å resolution omit electron

density map for the latter (contoured at �5s).

(B) Corresponding key residues taken from a

representative thermolysin structure in the equiv-

alent orientation to TldD shown in (A). Note the

distortion of the helix in TldD resulting from the

additional residue in the zinc binding motif.

(C) Proposed promoted-water mechanism for

TldD. (1) Situation prior to substrate binding with

catalytic water bound to zinc and hydrogen

bonded to the acid-base catalyst Glu263. The ex-

pected position of the water would overlap one of

the phosphate oxygens shown in (A) (labeled with

an asterisk). (2) The substrate is bound in the active

site with the carbonyl oxygen of the scissile bond

forming a fifth zinc ligand. Glu263 deprotonates

the water molecule and the resultant hydroxide

ion performs a nucleophilic attack on the carbonyl

carbon. (3) The tetrahedral intermediate (mimicked

by the phosphate complex) (A) breaks down as a

result of protonation of the amide of the leaving

group. (4) Situation post-reaction prior to dissoci-

ation of the products. For clarity, an interaction

between Gly455 and the catalytic water is not

shown in this scheme.
activity of the resultant apoenzyme can then be reconstituted by

adding metal.

In the TldD/E structure, the TldD HExxxH motif, spanning

residues 262–267, is located on the central helix that resides

within the b funnel, and with the two histidine residues,

His262 and His267, coordinating a metal ion, which we

modeled as Zn (because Zn was added to the growth medium)

(Figures 4A and S8); a third ligand is provided by Cys454 from

the clamp domain. None of these residues are conserved in

TldE, consistent with it being catalytically inactive. We have

constructed His262 and His267 alanine substitution mutants,

of which His267Ala was not folded correctly and His262Ala

was catalytically inactive but, surprisingly, had wild-type

Zn/Fe content as determined by ICP-AES. To rationalize this

observation, we solved the structure of the mutant TldDH262A/E

complex (Figure S7 and description), which revealed that the

carboxylate group of the neighboring Glu263 replaces the

missing imidazole moiety of residue 262 as the third TldD Zn

ligand.
Struc
With the exception of the zinc binding

motif, TldD and thermolysin share no

obvious sequence or structural similarity

(Matthews et al., 1972). However, it is

possible to manually superpose the

active site of TldD onto that of thermoly-

sin such that the zinc ion and its liganding

residues overlap closely; the only signifi-

cant difference being that Cys454 of

TldD serves as ligand in place of Glu166

in thermolysin (Figures 4A and 4B). In
terms of the metal coordinating residues, TldD is even more

akin to peptide deformylase, which also has a Cys as the third

ligand (Chan et al., 1997). Despite their dissimilar folds, the zinc

binding motifs of thermolysin and TldD, both lie in helical re-

gions of their respective proteins, and these become aligned

as a result of the above superposition. TldD accommodates

the extra residue of its HExxxH motif (compared with HExxH

of thermolysin) within a single helical turn between the two

His residues, leading to a distortion of the helical geometry,

similar to one observed in DPP; however, the observed distor-

tion is even more pronounced in the case of TldD. By contrast,

this distortion is not seen in the equivalent region of TldE.

Importantly, our superposition also aligns Glu263 of TldD with

Glu143 of thermolysin, which acts as an acid-base catalyst in

the latter. In our first determined structure of TldD/E, a phos-

phate anion (derived from the crystallization solution, hence

WT-PO4) serves as a fourth ligand to the zinc, which is also

held by a bidentate interaction with Glu263. An oxygen atom

of this bound phosphate corresponds to the position of the
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‘‘catalytic’’ water molecule in thermolysin (Figures 4A and 4B).

Taken together, these structural correlations allow us to pro-

pose a promoted-water mechanism (Xu and Guo, 2009) for

TldD based on the wealth of data available for thermolysin

and MMPs (Bertini et al., 2006; Cerda-Costa and Gomis-

Ruth, 2014; Inouye et al., 2007) (Figure 4C). In the absence of

adventitiously bound ligands, we expect the fourth zinc coordi-

nation site of TldD to be occupied by a water molecule. The

carbonyl oxygen of an incoming substrate becomes a fifth

zinc ligand, and the carbonyl carbon is then subject to nucleo-

philic attack by a hydroxide ion generated through Glu263-

mediated deprotonation of the water molecule. The resultant

negatively charged tetrahedral intermediate is stabilized

through interactions with the zinc; this stage of the reaction is

mimicked by the phosphate-bound TldD/E structure. The sub-

sequent decomposition of the tetrahedral intermediate is initi-

ated by Glu263-mediated protonation of the amide leaving

group using the proton previously abstracted from the nucleo-

philic water (Figure 4C). Additional functional roles could be

ascribed to the main-chain nitrogen of Gly455 (which overlaps

with Nε2 of His231 in thermolysin) in binding the catalytic water

and in stabilizing the tetrahedral intermediate, and to the

carbonyl group of Gly394 (which overlaps with the carbonyl of

Ala113 in thermolysin) in substrate binding and partial charge

stabilization through hydrogen bonding to the amide nitrogen

of the scissile bond (Figures 4A and 4B).

The Substrate Binding Cleft of TldD/E Does Not Impose
Specificity Constraints
To explore the substrate binding site of the TldD/E heterodimer,

wild-type or mutant (Glu263Ala) TldD/E was co-crystallized with

a variety of peptides and peptide mimics, leading to four distinct

ligand-bound complexes. Wild-type TldD/E crystals were grown

in the presence of the peptide angiotensin II (Table S1), and

customized angiotensin II variant where the central (Tyr-Ile) pep-

tide bond is replaced with a non-cleavable methylene bond, to

yield two co-crystal structures with clear density for peptides

where the carboxyl group of the C-terminal residue acts as a

ligand to the catalytic zinc ion. In the case of angiotensin II, the

density was consistent with Asp-Arg-Val-Tyr (hence WT-DRVY;

Tables 1 and 2; Figure 5A), indicative of cleavage at the central

peptide bond of angiotensin. However, the methylene bond

variant gave density for a His-Pro-Phe peptide, i.e., the C-termi-

nal portion of the added compound (hence WT-HPF; Tables 1

and 2; Figure 5B); it was not clear whether the lack of clear den-

sity N-terminal to the His residue was due to a cleavage event, or

simply that this region of the peptide was disordered. Using the

standard nomenclature for protease active sites (Schechter and

Berger, 1967), these two ligands spanned subsites S4-S1 and

S3-S1, respectively, occupying roughly half of the active site

cleft. By contrast, a wild-type crystal grown in the presence of

the antibacterial agent actinonin (WT-Act; Tables 1 and 2) gave

unambiguous density for the ligand in the other half of the active

site cleft, chelating the zinc via its hydroxamate group, with the

rest of the ligand mimicking a tripeptide spanning subsites

S10-S30 (Figure 5C).

Attempts were made to trap uncleaved peptides in the active

site of TldD through the use of a catalytically inactive Glu263Ala

mutant. Surprisingly, the resultant density was essentially the
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same in every case, irrespective of the added ligand. We there-

fore focused on the highest resolution dataset, which had been

collected to 1.45-Å resolution after co-crystallization with the en-

gineered angiotensin variant described above. Clear density was

present for the backbone of a hexapeptide spanning subsites

S3-S3’ (hence E263A-hex; Tables 1 and 2) and, for four of the

residues, probable identities could be assigned based on side-

chain density to give an x-Leu-x-Asp-Arg-Ile sequence (Figures

5D and 5E). This bore no resemblance to any of the added

ligands, but curiously gave a match with residues 49–54 of

TldD itself (see Figure S3). A possible explanation for this could

be that proteolytic fragments of the overexpressed TldD protein

are comparatively abundant in the expression host, and this

particular fragment binds with high affinity, principally due to

the Asp residue in subsite S10, the side chain of which does

not occupy the pocket used by the n-pentyl chain of actinonin,

but rather chelates the catalytic zinc.

It is especially apparent in this complex that the ligand binds

in an extended conformation along the length of the active site

cleft. Remarkably, hydrogen bonding is restricted to backbone

atoms only, such that the peptide acts as an additional b strand

that effectively fuses the b sheet and the b barrel motifs in the

C-terminal domain of TldD through anti-parallel interactions

with both supersecondary structural elements that extend from

subsite S2 to S20 inclusive (Figures 5D, 5F, and 3D). Furthermore,

binding of the hexapeptide does not result in any significant

conformational changes. When compared against the phos-

phate-bound structure, the RMSD after superposing TldD Ca

atoms was only 0.33 Å (averaged across both copies of the sub-

unit in the asymmetric unit). While it is not unusual for peptides

to bind to proteins in extended conformations through b sheet in-

teractions, being especially prevalent in the active sites of prote-

ases (Malito et al., 2008; Tyndall et al., 2005), we are not aware of

any other examples where the peptide unites two b-structural

motifs by slotting into a pre-existing gap. The integrity of this cleft

is maintained in part by the aforementioned brace that stabilizes

the clamp against the inner surface of the N-terminal domain.

Furthermore, a number of highly conserved residues play impor-

tant roles. Among these are residues that help to tether the

clamp, such as Cys454 and Lys456, both of which link b23 to

the central helical region, the former via the active site zinc to

His262 and His267 (in the HExxxH motif), and the latter via

salt bridges to Glu270 and Asp272 that are also highly conserved

(Figures S4 and S6). Indeed, alanine substitutions of Glu270 and

Asp272 severely reduced expression of soluble protein (data not

shown), consistent with an important structural role for these

residues. Similarly, Arg362 in the brace provides further stabili-

zation to the clamp via hydrogen bonds to backbone carbonyls

in both b23 and b24.

As a consequence of this mode of binding, TldD has very

relaxed substrate specificity. When all the ligand-bound struc-

tures are superposed, it is apparent that at most subsites, the

peptide side chains either lie across the protein surface or are

pointing away from it. Only the residues at subsites S2 and S10

have their side chains directed toward the bottom of the active

site cleft (Figure 5F). Subsite S2 is a shallow depression delin-

eated by the side chains of Phe273, Val396, Ile398, Lys456,

and His267, and would appear to be well suited to binding small

or medium-sized aliphatic or neutral side chains. Indeed, our



Figure 5. Ligand Complexes of TldD/E

(A–D) Final coordinates of bound ligands shown in the same relative orientation (viewed from the side of the active site cleft) with associated omit electron density

(resolutions and contour levels shown in red) and the active site zinc in cyan for (A) the N-terminal half of the cleaved angiotensin II peptide, (B) the C-terminal end

of the angiotensin variant (the Phe side chain has been modeled in two alternative conformations), (C) the antibacterial agent actinonin (pseudo-residues labeled

in quotes), and (D) the hexapeptide bound to the TldD-E263A mutant.

(E) Detail of the hexapeptide (with omit electron density) in the context of the active site as viewed from above, showing the anti-parallel b sheet interactions that

bind the peptide in the cleft that is highlighted by the semi-transparent molecular surface. The asterisk marks the putative substrate entrance channel.

(F) Overlay of ligands shown in panels (A–D), colored and oriented as indicated in the small insets for these panels. In addition, the phosphate from the original

1.9-Å resolution structure is shown in magenta. The locations of the various subsites are labeled in blue; the blue hatched area indicates where there is scope for

an expanded S2 subsite. The side chains of residues that delineate the subsites S2 and S10 are shown; for clarity, Cys454 (the sulfur would eclipse the Zn in the

current view) and Lys456 (which would be in the foreground providing one face of the P2 subsite) are not shown. The molecular surface is finely sliced to illustrate

the contours of the substrate binding pocket without obscuring detail.
structural data indicate that it can accommodate all of Leu, Val,

and Pro (Figure 5F); Leu and Val would also bind here when the

twopossible cleavages aremade in theMccB17precursor. How-

ever, fromMALDI-MS data, it seems that this site is considerably

more promiscuous, with Glu and Trp being accepted among

others. It is possible that these bulkier side chains could be

accommodated in a larger S2 subsite that extends beyond the

lip of this shallow depression. Subsite S10 is more enclosed and

deeper, being bounded by the side chains of His262, Trp256,

Val259, Val463, and Val465 (Figure 5F). Again this would appear

to be well suited to binding small or medium-sized aliphatic or

neutral side chains. In the actinonin structure, the n-pentyl chain

of the ligand projects into the pocket, this being a mimic of a Met
side chain. Moreover, for the two observed cleavage sites in the

microcin precursor, Val and Ile would need to bind here. MALDI

data indicate that Lys, Trp, and Glu are also accepted. Perhaps

in this case, the subsite is able to remodel itself to accommodate

these various side chains, e.g., a flipped Trp256 side chain would

provide a significantly greater S10 capacity.

TldD/E Substrate Binding Specificity Is Governed by
Compartmentalization of the Active Site
The active site cleft of TldD/E is open at both ends and, because

of relaxed substrate preferences, any exposed protein terminus

could be a potential substrate. Thus, TldD has the capacity

to wreak proteolytic havoc within the cell, and it is presumably
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Figure 6. Substrate Access to the Active Site in TldD/E
A modeled peptide (green carbons) stretching from the active site through the

substrate access channel to the outside surface of the molecule suggests that

an unfolded N-terminal region of at least 15 residues would be necessary in

order observe proteolysis of an otherwise folded protein (assuming that the

first six residues engage with subsites S3-S30 and that a tripeptide is released).

The site of proteolytic cleavage adjacent to the zinc (cyan sphere) is indicated

by the dashed horizontal line. An insertion in the N-terminal domain of TldD

relative to TldE gives rise to the short surface loop highlighted in yellow. The

presence of three acidic residues in this loop and three basic residues

arranged around the mouth of the channel (all labeled) suggests that under

certain conditions the loop may ‘‘plug’’ the channel through the formation of

salt bridges, thereby blocking access to the active site.
for this reason that the active site is sequestered within a

protein shell, so that the availability of substrates is significantly

restricted. We do not expect substrates to reach the active site

through transient dissociation of the complex, since TldD/E het-

erodimer is stable during gel filtration and can withstand exten-

sive high-salt washing (see the STAR Methods section). Instead,

we propose that substrate peptides access the active site cleft

by feeding through one of the handful of narrow channels perfo-

rating the outer shell of the heterodimer. The widest of these

passes between the two domains of TldD and leads directly

into the active site cleft, and is therefore the most likely access

route. Given the orientation of the cleft relative to this channel,

substrates entering the N terminus first would be correctly ori-

ented to bind directly into the active site cleft. Thus, the unfolded

N termini would be more likely to serve as substrates than

C termini. It is difficult to envisage a situation where exposed sur-

face loops could engagewith the catalytic site at all. Bymodeling

an extended peptide through the channel to the active site, we

estimate that an unfolded N-terminal region of at least 15 resi-

dues would be necessary to achieve proteolysis of an other-

wise intact globular protein (assuming that the first six residues

engage with subsites S3-S30 and that a tripeptide is released;

Figure 6). Extensive degradation of the N-terminal McbA leader

peptide after TldD/E treatment of modifiedMcbA precursor pep-
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tide thus implies that the leader peptide is threaded through the

channel and serially truncated until the heterocyclized region is

sterically constrained by the entry channel.

While having an active site that is only accessible via a nar-

row channel would certainly restrict the range of potential sub-

strates for TldD, there may be a further mechanism whereby

substrate entry is controlled. In addition to the two inserts in

the TldD sequence relative to TldE mentioned above, there is

a third insertion that resides within the N-terminal domain.

This forms a short loop in TldD that projects from the outer sur-

face of the heterodimer adjacent to the putative substrate ac-

cess channel. The loop contains three acidic residues

(Asp216, Asp218, and Glu220), and there are three basic resi-

dues arranged around the mouth of the channel (Arg232,

Arg305, and Lys446), prompting us to speculate that, under

certain conditions, the loop may act as a ‘‘plug’’ to block the

channel by the formation of up to three salt bridges with the

channel mouth. Nevertheless, the main-chain temperature

factors of the plug are not significantly elevated relative to the

core of the molecule, suggesting that, at least in the crystalline

state, this loop is not especially mobile.

DISCUSSION

With the exception of the four previously determined TldE struc-

tures and each other, E. coli TldD and TldE are not structurally

similar to other known proteins. We show that they assemble

to form a new class of heterodimeric metalloprotease, where

the catalytic metal, which can be zinc or iron, is coordinated by

residues of TldD only, via two His residues from a HExxxH motif

and a remote Cys (residue 454). The proteolytic activity is only

observed when both TldD and TldE are present. This is at odds

with a recent observation that a Sulfolobus solfataricus TldD

homodimer is catalytically active, and with the proposal that

the equivalent of Cys454 is not a metal ligand, but instead forms

a disulfide bridge in the TldD homodimer (Hu et al., 2012). From

sequence comparisons it seems that in some cases Asp can

substitute for Cys as the third metal ligand (e.g., in Gemmatimo-

nas sp.), whichwould not be then capable to form any disulfide at

all. Moreover, this substitution would give a more thermolysin-

like active site, where the third ligand is Glu (Figure 4B).

We demonstrate that E. coli TldD/E cleaves off the N-terminal

leader peptide of pro-MccB17, as well as a number of other pep-

tide substrates. Crystal structures of TldD/E in complex with

different peptide ligands demonstrate a unique binding mode

in which the incoming substrate fits perfectly into a pre-existing

gap between b strands, with hydrogen bonding restricted only to

main-chain atoms. To counterbalance this relaxed specificity,

the active center is enclosed within a spherical shell formed

by the two partner proteins. Only completely unfolded peptides

are allowed entry through a narrow channel leading directly to

the active center cleft, an arrangement that would only support

cleavage at the N terminus of the substrate. Since removal of

the leader sequence is required before MccB17 can be ex-

ported, the inability of TldD/E to digest unmodified MccB17 pre-

cursor peptide ensures that only fully mature toxin is released.

Intriguingly, the idea that MccB17 precursor has some degree

of secondary structure in solution is indirectly supported by the

observed N-C directionality of MccB17 biosynthesis (Kelleher



Figure 7. Dimer Interface in TldD/E

Comparison of (A) E. coli TldD/E heterodimer and

(B) Shigella flexneri TldE/E homodimer interfaces.

In both cases the left hand panel shows amolecular

surface for a TldE monomer viewed from the inte-

rior (oriented and colored as shown in Figures 3E

and 3F). In the right-hand panels the same molec-

ular surface is shown, but colored gray except for

regions buried at the interface with the opposing

subunit, where it is colored dark blue. Displayed

in semi-transparent cartoon representation are

the opposing subunits for each of the assemblies

(colored as shown in Figures 3C and 3D) and, for

TldD, the active site zinc (cyan sphere) and a

bound peptide (magenta arrow) are also shown.

The diagonal dashed lines indicate the approxi-

mate position of the 2-fold axes relating one

subunit to the other. It is clear that the heterodimer

(A) has a significantly more extensive interface than

the homodimer (B), in particular where the b barrels

of the C-terminal domains come together (bottom

right patch; see also PISA analysis in Table S2).
et al., 1999; Roy et al., 1999), which can be explained by the

progressive ‘‘unwinding’’ of the precursor peptide along with

the incorporation of heterocycles. It is known that MccB17

biosynthesis (Kelleher et al., 1999) is distributive, meaning that

McbBCD does not hold the substrate all the time. This should

allow TldD/E to start processing as soon as MccB17 precursor

with few heterocycles becomes available, exposing the leader

sequence. This leads to the observed (Ghilarov et al., 2011;

Sinha Roy et al., 1999) in vivo distribution of incompletely

cyclized products exported from the cell.

We assume that one copy of TldD lost its catalytic center and

evolved separately as theTldEprotein. Lacking acatalytic center,

TldE does not form a substrate access channel but instead pro-

vides extra space to accommodate the N termini of peptides,

which potentially contributes to the processivity of the TldD/E

heterodimer that functions as a ‘‘molecular pencil sharpener.’’

One can hypothesize that the two proteins co-evolved to offer

higher stability of the outer shell and tighter regulation of other-

wise promiscuous peptidase. Indeed, as both TldD and TldE

(as judged by AUC) are able to form homodimers, preferential as-

sembly of a heterodimer in the presence of both subunits must

be a consequence of its higher stability. Indeed, analysis of the

TldD/E heterodimer interface with the PISA server (Krissinel,

2015) gives a buried surface area of approximately 2,600 Å2,

compared with 1,900 Å2 calculated for the Shigella flexneri TldE

homodimer (Figure 7; Table S2). The TldD homodimer is not sta-

ble enough to be detected on a non-denaturing gel or to be puri-

fied as a dimer from bacterial cells. Such preferential association
Struc
of heterologous subunits allows for a hy-

pothetical activity control mechanism in

which, given a steady-high level of expres-

sion of TldE, even transient expression of

TldDwill lead to formationof activeproteo-

lytic complex. We speculate that TldD is

intrinsically susceptible to cellular prote-

ases in its monomeric form and is rapidly

degraded; this would minimize the poten-
tially harmful effects of exposing the promiscuous active site to

multiple possible substrates. Indeed, this might explain the origin

of the hexapeptide we see bound to the Glu263Ala TldD mutant.

The widespread presence of tld genes suggests that they

have an important function in bacterial physiology which might

include, but not be limited to, a role in protein quality control

and in the activation and degradation of different natural prod-

ucts (MccB17), peptide-derived co-factors (Pqq), or toxin-anti-

toxin modules (CcdA). We speculate that the unusual properties

of this novel class of protease, which can be stably expressed

in high yield, could be exploited for future applications in the

protein engineering and synthetic biology fields.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E.coli MG1655 DSMZ DSM-18039

E.coli XL1-Blue Agilent 200249

E. coli DH5a NEB C2987

E. coli BL21 (DE3) Gold Agilent 230132

E.coli CSH600 sfiA::lacZ

E.coli CSH600 sfiA::lacZ tldD-

E.coli CSH600 sfiA::lacZ tldE-

E.coli CSH600 sfi::lacZ tldDE

Prof. Van Melderen,

Universite Libre de

Bruxelles

(Allali et al., 2002).

E. coli BW25113 Dr. Kirill A. Datsenko,

Purdue University

(Datsenko and Wanner, 2000)

E. coli BW25113 tldD-

E. coli BW25113 tldE-

E. coli BW25113 tldDE-

This work

Chemicals, Peptides, and Recombinant Proteins

Angiotensin II analogue (DRVY-CH2-IHPF) Cambridge Research

Biochemicals

Angiotensin II Sigma Sigma #A9525

Actinonin Sigma Sigma #A6671; CAS: 13434-13-4

Bruker Peptide Calibration Standard II Bruker Bruker Part number #222570

1M MMT buffer pH 4 and pH 9 Molecular Dimensions MD2-62

50% v/w PEG 1500 Molecular Dimensions MD2-250-6

Deposited Data

Phosphate bound TldD/E structure This work 5NJ5

TldD/E in complex with DRVY angiotensin II fragment This work 5NJ9

TldD/E in complex with a non-cleavable angiotensin II analogue This work 5NJA

TldD/E in complex with actinonin This work 5NJB

TldD/E E263A This work 5NJC

TldD/E H262A This work 5NJF

Oligonucleotides

Oligonucleotides for TldD cloning in PET28:

TldD NdeI f 5’-ATAAATCATAGATGAGTCTTAACCTGGTAAGT G-3’

TldD XhoI rev 5’-ATA AATCTCGACTTCGAGTACCGCCAAC AG-3’

Oligonucleotides for TldE cloning in PET28:

TldE NdeI for 5’-ATAAATCATATGATGGCACTTGCAATG AAAGTAATC-3’

TldE XhoI rev 5’-ATAAATCTCGACTTACTGTCCGGCGAT TTTCATC-3’

Additional TldD oligonucleotides for pColA cloning:

TldD BamHI f

5’-ATAAATGGATCCATGAGTCTTAACCTGGTA AGTG-3’

TldD Hind III rev

5’- TAAGCTTTCAGCTACCCGTACCACCTA-3’

This work

Oligonucleotides for TldD mutagenesis:

H262A for 5’ -CCGGGCGTGCTGTTGGCTGAAGCGGTTGGTCAC -3’

H262A rev

5’-GTG ACCAACCGCTTCAGCCAACAGCACGCCCGG-3’

E263A for

5’-GGCGTGCTGTTGCATGCTGCG GTTGGTCACGGT-3’

E263A rev

5’-ACCGTGACCAACCGCAGCATGCAACAGCACGCC-3’

This work

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CcdA cloning:

CcdA BamHI f 5’-TAATATGGATCCATGAAGCAGCGTATTACA GTGA-3’

CcdA Not I rev

5’-TAATATGCGGCCGCTCACCAGTCCCTGTTCTCGT-3’

CcdA41 fragment cloning:

CcdA41 BamHI f

5’-TAATAAGGATCCATGCAGAATGAAGCC CGTC-3’

This work

TldD and TldE deletions

TldD del f 5’-GGCAGCCGTAAAAAATCCTCTACTGCAGTAACT AACG

AGTAGCAAAAACGGTGTAGGCTGGAGCTGCTTC-3’

TldD del r 5’- CGTTCGTGCACGTAGAAA GATTAATTATCCTTCTGA

AAATAGTGA AATTAATGG GAATTAGCCATGGTCC -3’

TldE del f 5’-GCGCACTGAAAAACGGTTCTCTGTTAGACTTCAGAG

AAACTCTCTACATTGTGTAGGCTGGAGCTGCTTC-3’

TldE del r 5’-GATTTTGTGTAATTTTTTAGTTTATAGCGCGGCAGGT

CGCGCCAGTTTTTATGGGAATTAGCCATGGTCC-3’

This work

Recombinant DNA

Pet-28b (+) Novagen 69865

pColA Duet-1 Novagen 71406

pKD4, pKD46, pCP20 Dr. Kirill A. Datsenko,

Purdue University

(Datsenko and Wanner, 2000)

pBAD Ec-McB (pBAD mcbABCDEFG) Dr. Mikhail Metelev, Skoltech (Metelev et al., 2013)

pET28-MBP mcbA, B, C, D Dr. Andrew Markley, UCSD (Lee et al., 2008)

Software and Algorithms

XDS http://www.ccp4.ac.uk/ (Kabsch, 2010)

AIMLESS http://www.ccp4.ac.uk/ (Evans and Murshudov, 2013)

XIA2 http://www.ccp4.ac.uk/ (Winter, 2010)

BUCCANEER http://www.ccp4.ac.uk/ (Cowtan, 2006)

PHASER http://www.ccp4.ac.uk/ (Mccoy et al., 2007)

CHAINSAW http://www.ccp4.ac.uk/ (Stein, 2008)

REFMAC5 http://www.ccp4.ac.uk/ (Murshudov et al., 1997)

COOT http://www.ccp4.ac.uk/ (Emsley and Cowtan, 2004)

PARROT http://www.ccp4.ac.uk/ (Cowtan, 2010)

CCP4MG http://www.ccp4.ac.uk/ (McNicholas et al., 2011)

Other

LithoLoops 0.02 mm Molecular Dimensions MD7-130

SeedBead Kit PTFE Hampton Research HR2-320

96 well MRC crystallization plates Molecular Dimensions MD11-00-100

Amicon concentrators 30 kDa cutoff Millipore UFC903024

C18 Zip-Tips Milllipore ZTC18S096
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ghilarov

Dmitry (dmitry.ghilarov@uj.edu.pl)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli DH5a (NEB) was used for all cloning purposes; BL21 (DE3) Gold (Agilent) was used for protein expression. CSH600 sfiA::lacZ

reporter strain and its tld- derivatives were described elsewhere (Allali et al., 2002) and are a gift of Dr. Van Melderen (Laboratoire de

Génétique et Physiologie Bactérienne, Université Libre de Bruxelles, Gosselies, Belgium). BW25113 strain was a gift of Dr. Kirill A.

Datsenko (Department of Biological Sciences, Purdue University, West Lafayette, USA).
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METHOD DETAILS

Gene Disruptions
BW25113 DtldD and DtldE strains were produced by gene disruptions according to the published protocol (Datsenko and Wanner,

2000) using plasmids pKD4 and pKD46 (gift of Dr. Datsenko) and cleaned from the kan resistance cassettes by using the published

FLP recombination protocol and corresponding plasmid pCP20 (Datsenko and Wanner, 2000) (gift of Dr. Datsenko). tldDE double

deletion strain was obtained by the replacement of tldE gene in the cleaned tldD strain by the kan resistance cassette and its

subsequent elimination.

Cloning and Purification of MBP-tagged Proteins
CcdA andCcdA41 sequences were amplified from the F-plasmid containing XL1-BlueE. coli strain (Agilent) and cloned to the pET28-

MBP plasmid by usingBamHI andNot I restriction sites. A DNA fragment encoding for MccB17 leader peptide (McbA 1-26) was PCR

amplified from pBAD-mcbABCDEFG plasmid and cloned into PET28-MBP by using Bam HI and Not I restriction sites. A full-length

McbA peptide was cloned similarly. For purification of MBP-tagged proteins, 400 ml of BL21 (DE3) Gold, transformed with the

relevant plasmid, were grown in 2YT medium to OD600 = 0.6, then induced with 0.5 mM IPTG and allowed to grow for 3 h at 37�C
(for MBP-McbA, MBP-CcdA, MBP-CcdA41 and MBP-McbA 1-26) or overnight at 22�C (for MBP-McbB, C and D). Cells were

harvested by centrifugation at 4000 g, resuspended in MBP lysis buffer (50 mM Tris$HCl pH 7.5, 500 mM NaCl, 2.5% (w/v) glycerol

and 0.1% Triton X-100, 2 mg/ml lysozyme) supplemented with protease inhibitors (Roche) and lysed by sonication. Cleared filtered

lysates were applied to 5 ml MBPTrap column (GE Healthcare) and washed by 20 column volumes (CV) of washing buffer (50 mM

Tris$HCl 7.5, 400 mM NaCl, 2.5% glycerol, 2 mM DTT). Proteins were eluted from the column with elution buffer (50 mM Tris$HCl

pH 7.5, 150 mM NaCl, 5% glycerol, 2 mM DTT, 10 mM maltose), fractions containing the highest concentrations of protein were

aliquoted and frozen in liquid nitrogen.

Cloning, Mutagenesis and Purification of TldD and TldE Proteins
The TldD and TldE gene sequences were amplified from E. coli MG1655 genomic DNA by using Thermo Phusion DNA polymerase

and cloned into pET28 b (Novagen) protein expression vectors by using Nde I and Xho I restriction sites. For the purification, 400 ml

2YT cultures were grown at 37 C to OD600 = 0.5 and induced with 0.5 mM IPTG for 4 h. Cells were subsequently harvested by

centrifugation and resuspended in lysis buffer (20 mM Tris$HCl pH 8, 400 mM NaCl, 10 mM imidazole, 2 mg/ml lysozyme, 1 mM

PMSF, 0.1 % Triton X-100) and lysed by sonication. Proteins were loaded on columns containing 0.5 ml of pre-equilibrated

Ni-NTA resin (Qiagen). Resin was washed with 20 CV of lysis buffer containing 20 mM imidazole (20 mM Tris$HCl pH 8, 400mM

NaCl, 20 mM imidazole) and proteins were eluted with 250 mM imidazole. Purified proteins were dialysed against storage buffer

(20 mM Tris$HCl pH 8.0, 200 mM NaCl, 50% glycerol) and stored at -20�C. TldD active site mutants were constructed by

overlapping extension PCR, cloned and produced as described above.

To obtain different combinations of tagged and untagged TldD and TldE proteins for the co-purification experiments, TldD and TldE

genes were cloned into pColA-Duet (Novagen) co-expression plasmid. Cloning to MCS I by using BamHI and HindIII restriction sites

led to the expression of tagged protein, whilst cloning into the second MCS by NdeI and XhoI led to the production of an untagged

protein. For TldD/E pull-down trials, cells were grown, lysed and loaded on a column as described above and washed with �20 CV

of wash buffer [20 mMTris-Cl pH 8, 5% glycerol , 0.1% Triton X-100. 1 M NaCl and 50 mM imidazole] before eluting with 250 mM

imidazole..

In Vitro McbBCD Synthetase and TldD/E Reactions
Reactions with MBP-tagged McbA and McbB, C and D proteins were performed as described before (Lee et al., 2008). Briefly, MBP

tags were removed by 2 h treatment with TEV protease at 30�C; this lead to the extra SGS or SGSH sequence on N-termini of

recombinant peptides. The heterocyclized MccB17 precursor was obtained by overnight treatment of 10 mM SGSH-McbA with

an equimolar mixture of BCD proteins (2 mM each) in the reaction buffer (50 mM Tris$HCl pH 7.5, 125 mM NaCl, 20 mM MgCl2,

2 mM ATP, 10 mM DTT). TldD/E was added at 0.3 mM. Reactions were incubated at 37�C for 120 mins or overnight. Aliquots

were taken every 30 mins for MALDI analysis and desalted using Zip-Tips C18 (Millipore).

MALDI-MS and MS/MS Analysis
1-ml aliquots of desalted in vitro reaction mixture or�0.2 ml of cells growing onM9minimal mediumwere diluted in 10 ml of 0.5% TFA.

1 ml of the diluted sample was mixed with 0.5 ml of 2,5-dihydroxybenzoic acid solution (20 mg/ml in 30% acetonitrile, 0.5% TFA)

and left to dry on the stainless-steel target plate at room temperature. For the measurement of MccB17 in agar around producing

colonies, a small piece of M9 agar was cut and extracted by three volumes of 0.5% TFA for 1 hour then a 1-ml aliquot was used

for measurement. MALDI-TOFMS analysis was performed on UltrafleXtremeMALDI-TOF-TOFmass spectrometer (Bruker Daltonik,

Germany) equipped with Nd laser. The MH+ molecular ions were measured in reflector mode; the accuracy of monoisotopic mass

peak measurement was within 30 ppm. Spectra were acquired by averaging of a minimum 1000 laser shots from ‘‘sweet spots’’ of

matrix crystals. Spectra of fragmentation were obtained in LIFT mode, the accuracy of daughter ions measurement was within 1 Da

range. Mass-spectra were processed with the use of FlexAnalysis 3.2 software (Bruker Daltonik, Germany) and analyzed manually.
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Metal Content Measurements (ICP-AES)
Purified proteins (0.1 – 0.5 mg/ml) were dialyzed three times against 10 mM Tris$HCl pH 8.0 in deionized (mQ) water in the presence

of 0.5% Chelex-100 (Bio-Rad) to remove trace metal ions from the buffer. An axial ICP-AES 720-ES spectrometer (Agilent Technol-

ogies, USA) was used formeasurements with a low flow axial quartz torch with 2.4mm inner diameter injector tube (Glass Expansion,

Australia), a double-pass glass cyclonic spray chamber (Agilent Technologies), a OneNeb nebulizer (Agilent Technologies, USA), and

a Trident Internal Standard Kit (Glass Expansion). Samples were introduced manually to reduce washing volume, without preliminary

digestion or dilution. A Sc solution (20 ppm) internal standard was added to increase the accuracy of measurements. Results were

collected and processed by ICP Expert software 2.0.5 (Agilent Technologies). An ICP-AM-6 standard solution, 1000 ppm (High Purity

Standards) was used for calibration in the range 10–200 ppb.

Non-denaturing Electrophoresis & AUC
Purified TldD and TldE (see above) at�2mg/ml were loaded onto native Tris-Glycine acrylamide gels (0.75mm, 7%) and run at 150 V.

To assess complex formation, TldD and TldE proteins were mixed in sample buffer (pH 6.8) and incubated at 37 �C for 10 minutes.

Gels were stained with InstantBlue (Expedion). The bands of the complex were excised from the gel and loaded to the wells of a

SDS-containing denaturing gel (10%).

For AUC experiments proteins (TldD, TldE or TldDE) at 0.2 mg/ml were dialyzed into 50 mM Tris$HCl pH 7.5, 100 mM NaCl.

Sedimentation equilibrium experiments were performed using a Beckman XLA-I analytical ultracentrifuge equipped with a Ti50 rotor

and absorbance optics. Samples were centrifuged at 10000 rpm at 20�C and the absorbance was measured at 275 nm. Data were

fitted to a single species model using Ultrascan (Demeler, 2005).

Crystallization of TldDE
The pColA TldD-His/E co-expression plasmid was used for the large-scale production of TldD-His/E complex. Proteins were

expressed in minimal medium supplemented by Zn in order to have a >90% Zn occupancy. Briefly, BL21(DE3) Gold cells were

transformed with the pColA-TldD/E expression plasmid and 10 ml of an overnight culture in LB was used to inoculate 2 L of M9

(supplemented with 0.5% glycerol as a carbon source, 1 mg/L thiamine, 50 mM ZnCl2 and 50 mg/mL kanamycin). Cells were grown

at 37 �C with shaking to OD600 = 0.8, then IPTG was added to a concentration of 0.1 mM and cultures were moved to 20 �C for

overnight expression. After 20 h, cells were harvested by centrifugation at 4000 g and resuspended in lysis buffer (20 mM Tris$HCl

pH 8.0, 200 mM NaCl, 10 mM imidazole, 5% glycerol). Cells were lysed using a high-pressure cell disruptor (Constant systems Ltd)

and the lysate cleared by centrifugation (28 000 g, 45 min) and filtration (0.45 mm). An AKTA Pure FPLC was used for the subsequent

purification. Cleared lysate was loaded onto HiTrap Chelating HP 5 ml column charged with Ni2+ and washed by �20 CVs of lysis

buffer containing 20 mM imidazole before elution with 250 mM imidazole; eluted protein was immediately loaded onto a Sephacryl

S-200 HR 16/60 gel-filtration column operating in the final storage buffer (10 mM Tris$HCl pH 8, 50 mM NaCl). Peak fractions were

pooled. Protein concentration was measured with a DirectDetect IR-spectrometer (Millipore).

Crystallization experiments were performed at a protein concentration of approximately 7 mg/ml and at a temperature of 20�C.
Screening was conducted by sitting-drop vapour diffusion in MRC 96-well crystallization plates (Molecular Dimensions) with a

mixture of 0.3 ml precipitant (from both commercial and in-house screens) and 0.3 ml protein solution, using either an OryxNano or

an Oryx8 crystallisation robot (Douglas Instruments). Promising conditions were optimised with the latter robot using the same crys-

tallisation format. Two conditions yielded crystals that were subsequently used for the data collections described herein. Condition 1

comprised 20 mM sodium potassium phosphate, 20% (w/v) PEG 3350, whilst condition 2 comprised 20% (w/v) PEG 1500 in 0.1 M

MMT buffer (malate-MES-Tris; Molecular Dimensions) pH 8.0; crystals from both conditions were cryoprotected in precipitant

supplemented with 20% (v/v) ethylene glycol. Once condition 2 had been established, the reproducibility of crystallisations under

these conditions was improved by microseeding. A seed stock was prepared using crystals from several drops, which were broken

up by repeated pipetting action, then pooled and transferred to an Eppendorf tube containing�300 ml of the precipitant. The sample

was vortexed with a Seed Bead (Hampton Research) to break the crystals up further. Then crystallisations were set up using the

Oryx8 robot with drops comprised of 0.4 ml precipitant, 0.15 ml protein and 0.05 ml of this seed stock. This was crucial for obtaining

diffracting crystals of the TldDH262A/E and TldDE263A/E mutant protein complexes (using a wild-type seed stock).

All the ligand complexes were produced by co-crystallisation using condition 2. The ligands were prepared in 100%DMSO at con-

centrations of either 50 mM or 100 mM (for actinonin) and added to the protein to a final concentration of 2.5 mM. Thus, the final

concentration of DMSOwas either 2.5% (v/v) or 5% (v/v) depending on the ligand. Crystallisations were then set up using the seeding

procedure described above. The resultant crystals were cryoprotected in precipitant supplemented with both ethylene glycol and the

appropriate ligand.

Crystals were harvested and flash-cooled in liquid nitrogen using LithoLoops (Molecular Dimensions). The mounted crystals were

stored in Unipuck cassettes (MiTeGen) prior to transport to the Diamond Light Source (Oxfordshire, UK), where they were transferred

robotically to the goniostat on either beamline I02, I03 or I04-1 and maintained at -173 �C with a Cryojet cryocooler (Oxford

Instruments). X-ray diffraction data were recorded using either a Pilatus 2M or 6M hybrid photon counting detector (Dectris), then

integrated using XDS (Kabsch, 2010) and scaled and merged using AIMLESS (Evans and Murshudov, 2013) via the XIA2 expert

system (Winter, 2010); the resultant data collection statistics are summarized in Table 1.
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Structure Solution and Refinement
The TldD/E structure was solved by molecular replacement using a dataset collected to 1.9-Å resolution from a crystal grown in the

phosphate buffer conditions. Initially, the data were processed in the orthorhombic space group P212121. However, it subsequently

became apparent that the data were pseudo-merohedrally twinned (with operator h, -k, -l) and the true space group was in fact P21
with b�90�. As a result, all refinement was performed with REFMAC5 (Murshudov et al., 1997) using the ‘‘amplitude based twin

refinement’’ setting and, in order to avoid bias resulting from the twinning, the R-free set of reflections was generated in the apparent

orthorhombic space group before expanding to the true monoclinic space group; this R-free set was used throughout refinement for

all datasets, which were isomorphous and similarly twinned. Molecular replacement templates were generated for TldE from Shigella

flexneri PmbA (PDB code 3TV9; 99% sequence identity), and for TldD from Thermotoga maritima PmbA (PDB code 1VL4; 23%

sequence identity) using CHAINSAW (Stein, 2008) where conserved side-chains were retained and all others were truncated to

Cb. PHASER (Mccoy et al., 2007) was able to locate two copies of the TldD/E heterodimer in the asymmetric unit (ASU), giving an

approximate solvent content of 48%. After restrained refinement in REFMAC5, removal of badly fitting regions in COOT (Emsley

and Cowtan, 2004) and further refinement, the Rwork/Rfree values were 0.386/0.420 at 1.9-Å resolution. The model phases were

then improved with PARROT (Cowtan, 2010) and used as input to completely rebuilding the model with BUCCANEER (Cowtan,

2006) which was able to fit 98.5% of the expected sequence for two copies each of TldD and TldE in the ASU, and gave much

improved Rwork/Rfree values of 0.260/0.312. The model was completed through several further iterations of model building in

COOT and restrained refinement using isotropic thermal parameters with TLS group definitions obtained from the TLSMD server

(Painter and Merritt, 2006). This model was used as the starting point for building and refinement of all the remaining structures.

Each of these had been determined to resolutions of at least 1.5 Å and thus were refined in REFMAC5 using anisotropic thermal

restraints. After rebuilding and refining the various structures, it became apparent that a point mutation had been introduced into

TldD at position 401 such that the expected Gly had additional density consistent with the presence of a side-chain. The identity

of the mutated residue was subsequently confirmed to be Asp by sequencing, which was then introduced into all the models. In

all structures, there was residual density that could be attributed to ligands derived from crystallisation or cryoprotectant solutions,

including phosphate, MES buffer, ethylene glycol and sodium ions. Several of these were modelled into the density, although those

that did not refine satisfactorily were omitted from the final models. Final statistics for all models are reported in Table 2. OmitmFobs-

dFcalc difference electron density maps were generated for bound ligands using phases from the final models without these ligands

after the application of small random shifts to the atomic coordinates, re-setting temperature factors, and re-refining to convergence.

All structural figures were generated using CCP4mg (McNicholas et al., 2011)

DATA AND SOFTWARE AVAILABILITY

Coordinates and structure factors were deposited in the RCSB Protein Data Bank with accession codes 5NJ5 for the phosphate

bound TldD/E, 5NJ9 for the TldD/E in complex with angiotensin DRVY fragment, 5NJA for the structure with a non-cleavable

angiotensin analogue (angiotensin-HPF), 5NJB for the TldD/E in complex with actinonin, 5NJC and 5NJF for the mutant

TldDE263A/E and TldDH262A/E complexes, respectively. All the used software is readily available.
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