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a b s t r a c t 

Recently, ferroic materials with giant caloric responses emerged as a possible environmental-friendly al- 

ternative for the currently used cooling devices. In our work, we have performed the Born-Oppenheimer 

molecular dynamics calculations for both para- and ferroelectric phases of multicaloric (NH 4 ) 2 SO 4 . The 

simulations were performed in the NVT ensemble with several conditions applied for three different su- 

percell sizes. Time and space correlations between the ion motions were analyzed using various strategies 

to study the interaction changes along the obtained trajectories. The investigation of thermally induced 

evolution of complicated H-bond system in ammonium sulfate structure was performed using calculated 

power spectra. The results of simulations collated with the obtained X-ray diffraction data enabled us 

to describe the mechanism of (NH 4 ) 2 SO 4 phase transition as the one of a mixed displacive and order- 

disorder nature. According to the origin of such structural transformation, the giant inverse barocaloric 

effect in ammonium sulfate is caused by the reverse H-bond system reorganization induced by hydro- 

static pressure in the vicinity of the critical temperature. The spontaneous polarization observed in the 

ferroelectric phase is a secondary effect of symmetry change and it partially results from the disorder re- 

laxation of both distorted NH 4 
+ cations in low temperatures. The proposed investigation scheme should 

be useful in the studies of other ferrocaloric materials and H-bonded ferroelectrics. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In the last few years, the giant caloric effects within ferroic 

aterials were a subject of intense study in material science as 

he possible new environmental-friendly and efficient cooling de- 

ices [1-3] . Such refrigerators would give a possibility to replace 

he old ones, based on the vapor-compression method, which oper- 

tes using fluids containing greenhouse gases. Additionally, the use 

f caloric effects enables the minimization of cooling devices [1] . 

o this day, the scientific effort s made to study caloric materials 

ave resulted in several promising prototypes, mainly benefiting of 

agnetocaloric and electrocaloric effects [4-6] . Nevertheless, the 

pplicability of magnetocaloric materials is limited by their high 

rice and the necessity to generate strong magnetic fields (several 

eslas) [ 1 , 3 ]. The electrocaloric materials, despite the newest solu- 

ions leading to their much higher efficiency [7] , are limited by the 

ccurrence of the electrical breakdown. In contrast, the underlined 

roblems in a great majority do not apply to barocaloric materials. 
∗ Corresponding authors. 
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Recently, Lloveras et al. [8] found that relatively small changes 

n hydrostatic pressure (0.1 GPa at 219 K) induce a giant in- 

erse barocaloric (BC) effect in the powdered ferroelectric am- 

onium sulfate (AS). The values of adiabatic temperature change 

T| = 8 ± 1 K, isothermal entropy change | �S| = 60 ± 5 

 �K 

−1 �kg −1 , and | �T|/| �p| = 80 K �GPa −1 obtained for AS, are one

f the largest ever known for BC materials. According to the addi- 

ionally discovered electrocaloric (EC) effect in single-crystal plates 

9] , AS can be considered as not only ferrocaloric but also a mul- 

icaloric material. AS is an inexpensive, non-toxic compound com- 

only used as a fertilizer and a protein precipitant. It is a well- 

nown H-bonded ferroelectric [10] , crystallizing as big and durable 

rystals. The structural transformation of AS at T c = 223 K re- 

ults in the space group symmetry change from Pnam to polar 

na2 1 [ 11,12 ]. In both, high-temperature paraelectric (PE) and low- 

emperature ferroelectric (FE) phases ( Fig. 1 ), the unit cell contains 

our formula units, with one SO 4 
2 − and two symmetrically non- 

quivalent NH 4 
+ (I) and NH 4 

+ (II). As indicated in neutron diffrac- 

ion studies, each of the ions in the PE phase has site symmetry 

 , which is lost during the phase transition (PT) [12] . 

Since the discovery of AS ferroelectricity in 1956, it has been 

tudied using numerous experimental techniques to explain the 
rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. AS unit cell in the FE (ferroelectric) and PE (paraelectric) phases. The 

strongest H-bonds in both phases are depicted by black dashed lines. Mirror planes 

and inversion centers, lost during the phase transition, are depicted by green sur- 

faces and orange spheres, respectively. 
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echanism of its PT. However, multiple spectroscopic investiga- 

ions [13-25] , X-ray and neutron scattering, and diffraction studies 

 12 , 26-30 ], as well as spontaneous polarization (P s ) measurements 

31-33] , did not result in one consistent theory of the PT. Instead, 

 few contradictory hypotheses describing the PT mechanism and 

hermodynamics were formulated [ 12 , 34-38 ]. Recently, we have 

oined the discussion of the structural PT in AS [39] . The obtained 

esults enabled us to ascribe the origin of structural transformation 

o the thermally induced disruption of the lattice mode between 

O 4 
2 − ions. The occurrence of P s and its atypical T-dependence 

ould be then the side effect of the H-bond system reorganiza- 

ion to the polar structure. However, the study of recently discov- 

red caloric effects made us realize that further AS investigation is 

astly needed. The nature of EC and inverse BC effects was ascribed 

o the order-disorder phase transition type [ 8 , 9 ]. This explanation, 

n contrast to the X-ray and neutron diffraction studies [ 12 , 27 , 39 ],

ssumes the disorder of all ions in the PE phase. Such an approach 

erfectly fits in the long-lasting dissonance between the descrip- 

ions of AS structure and PT based on the structural and spectro- 

copic data. 

In this work, we will try to clarify this issue with a com- 

utational method – the Born-Oppenheimer Molecular Dynamics 

BOMD) – that can produce data comparable with both structural 

nd spectroscopic studies [40] . Ab initio BOMD simulations provide 

he ’on the flight’ evaluation of electronic structure changes as well 

s atomic forces evolution via first-principles DFT computations at 

very time step. It is a perfect tool to characterize the dynam- 

cs of solid-state phases, including the temperature effects. BOMD 

eatures enable the studies of dynamical structural changes in the 

ystem as well as modeling of all kinds of the disorder [40-43] . 

he performed investigation is aimed to confront the structural X- 

ay diffraction data with the spectroscopic predictions of the dis- 

rdered high-temperature AS phase. We used BOMD simulations 

f differently defined systems for a careful analysis of dynamics in 

oth AS phases. Our studies will cast new light on the source of P s 
nd inverse barocaloric effect in AS. 

. Computational details 

All BOMD calculations performed for AS were carried out us- 

ng CP2K software [ 44 , 45 ]. Supercell approximation with periodic 

oundary conditions was considered in computations of both the 

E and FE phases. The system size effect was discussed in SI, sec- 

ions: S2 and S3. The first supercell type was obtained through the 

ouble replication of the unit cell along [100], [010], and [001] di- 

ections ( 2 ×2 ×2 , 8 unit cells, 480 atoms). The second supercell
2 
ype was prepared in the same manner but through the triple 

eplication of the AS unit cell ( 3 ×3 ×3 , 27 unit cells, 1620 atoms).

he supercell examples were shown in Figs. S1-S2. The geometri- 

al features of AS crystals were taken from our already reported 

tructural data [39] and two additionally performed X-ray mea- 

urements at 298 and 148 K (see details in SI, Table S1). Thus, 

n our simulations the structural data at four temperatures were 

sed, two close to T c : 233 and 213 K, and two far from PT: 298 and

48 K. Supercell dimensions for all twelve systems used in calcu- 

ations were listed in Table S2. Computations were performed for 

re-optimized (MDaOPT) as well as for not optimized (MD) sys- 

ems, giving a total of 24 different types of simulations. In each 

ase, the symmetry P1 was applied. 

The GGA density functional BLYP (the Becke correlation func- 

ional [46] and the Lee, Yang, Parr electron exchange functional 

47] ) was used for the electron structure calculations. The D3-DFT 

rimme correction for vdW forces was included [48] . The hybrid 

aussian and plane waves method was applied [49] . Mixed ba- 

is set with DZVP (for H, N, O atoms) and TZV2P (for S atoms) 

nd plane waves was used. Cutoff kinetic energy was set to 250 

y. For the core states description, Goedecker norm-conserving 

seudo-potentials were used [50] . Further description considering 

he basis set choice was enclosed in SI (section S2). All simulations 

ere performed in the canonical ensemble (NVT). The temperature 

ontrol for the ionic degrees of freedom has been provided using 

osé-Hoover thermostat [ 51 , 52 ] with three chains and a 10 0 0 fs

ime constant. Time step equal to 1 fs was used in all simulations. 

or each supercell 220,0 0 0 simulation steps were performed, giv- 

ng the overall time of 220 ps, being adequate to simulate even the 

ibrational motions of heavy SO 4 
2 − ions. According to investigated 

(t) dependencies, the last 200 ps of simulations were used in the 

urther analysis. The trajectory was analyzed with the use of VMD 

oftware [53] . Power spectra were analyzed with the use of Fourier 

oftware [54] . 

. Results and discussion 

In the first step of the analysis, the potential energy and the 

erformance of the thermostat were studied for all simulated sys- 

ems (detailed description in section S3 in SI). As a result, the fol- 

owing interaction analysis was performed only for the simulations 

f 2 ×2 ×2 and 3 ×3 ×3 supercells. The 2 ×2 ×2 systems were justi-

ed by the analysis of potential energy and the temperature con- 

ervation along the trajectory. However, the insufficient replication 

f the studied system could be reflected by the improper character- 

zation of interactions between neighboring molecules [ 42 ]. There- 

ore, further studies were performed also for 3 ×3 ×3 supercells for 

he inspection of the hydrogen bond network dynamics along the 

onsidered simulations. 

.1. Geometrical parameters in the simulated structures 

To analyze the dynamics of AS in both phases, the quality of 

ach structure replication was investigated. The study of geomet- 

ical parameters was based on the examination of distinct H-bond 

HB) systems observed for each of four considered AS structures 

at 148, 213, 233, and 298 K). The HB parameters are perfect in- 

icators of ion relative positions and orientations. They also in- 

lude information on the structure symmetry preservation. Hy- 

rogen ���acceptor distances (HA), donor −hydrogen ���acceptor an- 

les (DHA), and donor ���acceptor distances (DA) were studied us- 

ng several geometrical criteria. The parameters were calculated for 

ach time step of the entire trajectory for all contacts of N −H ���O 

ype, which in the experimental crystal structure have HA ≤ 5.0 
˚ . Such threshold was chosen as it takes into account H ���O dis- 

ances for all H atoms of ammonium cation, which form HBs with 
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Fig. 2. Time dependence of replicated contact number in 3 × 3 × 3 systems at 148 K for Criterion I (up) and Criterion II (down). Red line – experimental value; yellow line 

– mean value for MDaOPT, magenta line – mean value for MD. 
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elected SO 4 
2 − anion. In this manner, not only all experimentally 

bserved HBs were considered, but also those which could appear 

uring the simulation as a result of the disorder. 

The detailed description of the geometrical parameter analy- 

is can be found in section S4 in SI. Regardless of the supercell 

ize, MD simulations were found to fail in representing the ex- 

erimental AS structure even at 148 K. In contrast, the MDaOPT 

omputations replicated well almost all of HB parameters as well 

s the number of HBs at the lowest studied temperature. The ob- 

ained data indicate that in line with NMR [ 20 , 21 ] and IINS exper-

ments [28-30] , at higher temperatures (including 213 K in the FE 

hase), significant reorientations of both NH 4 
+ cations are present 

n the AS structure. These movements remained invisible for neu- 

ron and X-ray diffraction experiments [ 12 , 26 , 27 , 39 ]. As a result,

he performed analysis has shown that the study concerning only 

he time-averaged values of HB geometrical parameters is not suf- 

cient to reproduce the full picture of intermolecular interaction 

ynamics in the AS phases. Therefore, in the next stage, methods 

oncerning ‘time step by time step’ system evolution were used. 

.2. Time and space correlations in simulated systems 

To analyze transformations appearing in the HB system at every 

ime step, new geometrical criteria were introduced. These crite- 

ia, instead of the average values, concern only the temporary HA 

engths and DHA angles. Criterion I assigns as an HB each N −H ���O 

ontact which, at a given moment of simulation, has HA length ≤
.9 Å and DHA ≥ 100 °. Similarly to Criterion 1 in the mean value

nalysis (SI, section S4), Criterion I should enable the separation of 

ll contact types which were proved to be intermolecular interac- 

ions at least in one of the AS phases [39] . A more restrictive Cri-

erion II presupposes the HB geometrical criteria: HA length ≤ 2.5 
˚
 and DHA ≥ 120 ° [55] . Using Criterion II, only the ‘step by step’

eproduction of interactions studied in section S4 was considered. 

.2.1. AS transient H-bond systems 

The numbers of N −H ���O contacts fulfilling either Criterion I or 

I were retrieved after every time step for each analyzed simula- 

ion. Each simulation of the low-temperature FE phase systemati- 

ally indicates a lower number of contacts than expected from the 

rystal structures for both criteria (red lines in Fig. 2 ). The average 

umber of replicated HBs is slightly higher for MDaOPT simula- 
3 
ions (compare yellow and magenta lines in Fig. 2 , Table S4). The 

ame observations were made for minimal and maximal numbers 

f contacts (Tables S5-S7). Switching to the calculations of the PE 

hase, no changes were found for the above mentioned correla- 

ions, except for the larger differences between obtained and ex- 

ected contact numbers for both criteria (Fig. S24). The analysis 

f the mean percent of replicated HBs as a function of simula- 

ion temperature gives similar values for both used criteria (Figs. 

25-S26). For the FE phase, ca. 95% of the expected interactions 

ere reproduced during the performed simulations, while for the 

E phase, this value decreases to ca. 87%. The differences observed 

etween the simulated phases as well as between obtained and 

xpected contact numbers are mainly the results of Criteria defini- 

ions. N −H ���O contacts with geometrical parameters close to the 

imiting values are almost entirely missed when the thermal vi- 

rations are introduced. An example of such a phenomenon was 

ecognized for 233 K simulations, where 116 (2 ×2 ×2) and 360 

3 ×3 ×3) contacts are very close to the limits of Criterion II (Fig. 

26). Reduction of limiting HA length to ≤ 2.45 Å (Criterion II’), 

utomatically gives the replication of the experimental system as 

ood as for 298 K. It should be emphasized that approximately the 

ame number of contacts fulfill Criterion I and II in both AS phases 

Figs. 2 and S22, Table S4). The differences between simulated tem- 

eratures influence only the amplitudes of replicated contact num- 

ers, which oscillate around the well-defined averages. 

All so far obtained data, allow us to state that both 2 ×2 ×2 and

 ×3 ×3 MDaOPT simulations replicate AS crystal structures and can 

e used to describe their properties and dynamics in both phases. 

he 3 ×3 ×3 simulations provide better statistics and a slightly bet- 

er structure replication, therefore they were used in further anal- 

sis. It has to be emphasized that the MD computations do not 

eplicate the experimental structures. In the thermostating process, 

he ions in MD supercells are significantly displaced or reoriented, 

ausing the formation of H-bond systems different from those ob- 

erved experimentally. A comparison of MD and MDaOPT calcula- 

ions shows that the different systems of intermolecular interac- 

ions can be described with the same energy (Fig. S5). 

.2.2. Cation and anion dynamics 

With the confidence of good AS structure replication, further 

tudies concerned the ion dynamics. From the geometrical param- 

ter analysis, it was found that both NH 

+ cations significantly re- 
4 
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Fig. 3. Temperature dependence of contributions of specific H atoms of NH 4 
+ (I) to the strongest HBs in AS, according to Criterion I. NB (black color) represents a lack of 

H-bond formed between specified acceptor and NH 4 
+ (I). 
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rient in the PE phase. To study the influence of temperature on 

he changes in the relative orientations of cations and anions, one 

B formed by each type of NH 4 
+ cation was selected for each of 

he acceptors (2 HBs per acceptor). These eight X-ray determined 

B types were chosen from the interactions that survive the PT 

nd are possibly the strongest ones in both phases. Expecting some 

ation reorientations, the contributions of all H atoms to the se- 

ected HB types were analyzed. The contacts contributing to the 

pecified HB type were verified along the entire trajectory accord- 

ng to Criterion I (HA length ≤ 2.9 Å and DHA ≥ 100 °). If at a

iven moment, none of the H atoms fulfilled the above geometri- 

al requirements, the contact was treated as “no bond” (NB). The 

btained contributions were averaged over all H-bonds of a given 

ype. 

In Fig. 3 the results of such analysis for different simulation 

emperatures were compared for four selected HBs of NH 4 
+ (I). At 

48 K, no reorientations of NH 4 
+ (I) ions were indicated in the 

tudied time period. In line with the X-ray diffraction data, only 

ne hydrogen is involved in each of the selected HB types. Moving 

loser to T c , at 213 K, other H atoms of NH 4 
+ (I) than those deter-

ined by the structural analysis contribute to the studied H-bonds 

 Fig. 3 ). Their participation in the specific HB formation varies be- 

ween 15 to 30%, being lower for stronger HBs and vice versa. The 

omparison of the DHA angles time evolution for one particular 

1 −H13 ���O4 indicated great similarities between motions of the 

H 4 
+ (I) in both FE phase simulations (Figs. S27-S28). The ampli- 

udes of DHA angles are larger at 213 K, however, no direct cation 

eorientation was observed. Here, it has to be recalled that the pie 

harts in Fig. 3 represent supercell averaged data. Therefore, in the 

ase of N1 −H13 ���O4 at 213 K, most of NH 4 
+ (I) ions bind to O4

nly through H13 atom, while some of them experience at least 

ne reorientation. The orientation change has to follow the rotation 

round one of the tetrahedron axes resulting in H atoms directly 
4 
nterchanging their positions. In this fashion, hydrogen atoms re- 

lace themselves at positions in crystal structure, which are well- 

efined by anion orientations. As a result, the persistence of inter- 

ctions via HBs is provided ( Fig. 3 ). 

Just above T c , in the PE phase at 233 K, the dynamics of NH 4 
+ (I)

ignificantly changes. For each HB analyzed in Fig. 3 , the contribu- 

ions of H atoms evolve, heading towards equal distribution of all 

omponents. The largest contributions (ca. 30%) belong to H atoms 

hich predominantly interact with selected acceptors in the low- 

emperature phase. Larger NB fragments, observed for all HBs ex- 

ept N1 −H11 ���O1, are the result of weakening of these interac- 

ions in the PE phase [ 12 , 39 ]. The changes in the HB system be-

ween AS phases are caused by the difference in the dominating 

elative orientation of NH 4 
+ (I) and SO 4 

2 − (compare Figs. S28 and 

29). At 233 K, the 35-40 ° librations of NH 4 
+ (I) out of the ab mir-

or plane were found. The hindered rotations cause the temporary 

hange of NH 4 
+ (I) orientation to the one known from the FE phase. 

or the N1 −H13 ���O4 example, such movements were observed at 

a. 72nd and 183rd ps of the simulation (Fig. S29). The residence 

ime [30] of the NH 4 
+ (I) in the FE orientation is very short, and did

ot exceed 2 ps in the studied case. The hindered rotations them- 

elves occur in tens of femtoseconds. Similar randomization time 

30] is characteristic for another type of movement recognized for 

H 4 
+ (I) at 233 K, i.e. the tetrahedral reorientation described above 

or the 213 K simulation. The main difference observed for the PE 

hase is that the interchanging between H atom positions occurs 

or all NH 4 
+ (I) cations in the supercell. Such effect is caused by 

he significant reduction of the cation residence time in one ori- 

ntation. For the N1 −H13 ���O4 example, such time is equal to ca. 

03 ps (between 7th and 110th ps in Fig. S29), however, for the 

recise estimation of NH 4 
+ (I) residence time at 233 K, a longer tra- 

ectory would be needed. Each tetrahedral reorientation indicated 

n Fig. S29 was caused by a different type of transformation. The 
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Fig. 4. Temperature dependence of the contributions of specific H atoms of NH 4 
+ (II) to the strongest HBs in AS according to Criterion I. NB (black color) represents a lack 

of H-bond formed between specified acceptor and NH 4 
+ (II). 
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f

rst one, at 7th ps, would be generated as the reflection across 

he mirror plane bisecting H13 −N1 −H12 valence angle. As such 

ransformation is physically impossible, it was in fact a combina- 

ion of two rotations. First, NH 4 
+ (I) rotates about a 4 rotoinversion 

xis placed along the bisector of the H13 −N1 −H12 angle. Subse- 

uently, it rotates about a 2-fold axis placed along the bisector of 

he H13 −N1 −H14 angle. The latter reorientation, at 110th ps, was 

erformed through a rotation of NH 4 
+ (I) about a 3-fold axis placed 

long the N1 −H13 bond. 

At 298 K, the picture of NH 4 
+ (I) dynamics further complicates 

ecause of a frequent simultaneous occurrence of tetrahedral reori- 

ntations and the hindered rotations out of the ab plane (Fig. S30). 

uch interference is induced by a striking reduction of residence 

ime for the tetrahedral interchange of H atoms. For the studied 

1 −H13 ���O4, the residence time did not exceed 20 ps. As a result, 

he almost equal distribution of all H atoms between the analyzed 

-bonds was indicated ( Fig. 3 ). At 298 K, the change in the occur-

ence frequency of NH 4 
+ (I) hindered rotations was also observed. 

he librations between the two orientations are separated with in- 

ervals not longer than 10 ps. The PE orientation, observed mainly 

t 233 K, is characterized by average DHA angles 120 °, 100 °, 40 °,
nd 40 °. It is dynamically replaced by the FE orientation with 170 °, 
0 °, 60 °, and 50 ° average DHA angles (Fig. S30). In contrast to 233

 simulation, at 298 K, the NH 4 
+ (I) preserves the FE orientation 

or periods lasting up to ca. 10 ps. As a consequence, the NH 4 
+ (I)

istribution between FE and PE orientations is approximately equal 

t 298 K. The same degree of stabilization observed for both ori- 

ntations is caused by larger librations of SO 4 
2 − anions in the PE 

hase. 

The space averaged picture of NH 4 
+ (II) dynamics at 298 K 

 Fig. 4 ) is almost identical to the one observed for the NH 4 
+ (I).

ach H-atom of the NH 4 
+ (II) is equally involved in all four stud- 

ed HBs. However, the direct analysis of DHA angles time evolu- 
5 
ion for one exemplary N2 −H24 ���O4 has indicated significant dif- 

erences between both NH 4 
+ reorientations (Fig. S31). As for the 

H 4 
+ (I), for the NH 4 

+ (II), two main motion types were character- 

zed: the hindered rotations between FE and PE orientations and 

he tetrahedral reorientations. The main differences observed for 

he NH 4 
+ (II) cations are the lower residence time of both above 

entioned movements. The hindered rotations were split with 

ntervals shorter than 4 ps, while the reorientations were sepa- 

ated with periods not longer than 14 ps. The short residence time 

f both motions caused their frequent simultaneous occurrence, 

hich did not allow us to describe the individual transformations 

etween different NH 4 
+ (II) orientations (Fig. S31). 

At 233 K, some sort of stabilization was indicated in NH 4 
+ (II) 

ynamics. Although the supercell averaged description of the 

H 4 
+ (II) tends to be constant in the PE phase ( Fig. 4 ), notable

hanges were found through the analysis of individual HBs. At 233 

, the observed residence time between tetrahedral reorientations 

longated even up to 37 ps (Fig. S32). Such value remains much 

horter than the one found for the NH 4 
+ (I) at the same temper- 

ture (ca. 100 ps). In the N2 −H24 ���O4 example, the tetrahedral 

eorientations were accomplished in two ways. Either by the rota- 

ion about a 3-fold axis placed along one of the N2 −H bonds or 

hrough the rotation about a 2-fold axis placed along the bisector 

f one of the H −N2 −H valence angle. In contrast to NH 4 
+ (I), at

33 K, NH 4 
+ (II) frequently twists between the FE and PE orienta- 

ions. The overall residence time of the NH 4 
+ (II) in the FE orien- 

ation significantly decreased in comparison to the one observed 

t 298 K. However, while approaching the T c from the above (in a 

ooling manner), the NH 4 
+ (II) remains much more thermally dis- 

upted than the NH 4 
+ (I) (compare Figs. S32 and S29). 

Such observation is valid also for the cation dynamics compari- 

on in the 213 K simulation. The analysis of H atom contributions 

or the NH 4 
+ (II) just below T c has indicated the persistence of the 
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Fig. 5. Temperature dependence of spatial distributions of atoms in the AS asymmetric unit from 3 ×3 ×3 MDaOPT simulations (NH 4 
+ (I) - left, NH 4 

+ (II) - right). Each dot 

represents an atom position during simulation. 
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etrahedral reorientations observed in the PE phase ( Fig. 4 ). Each 

ydrogen was found to contribute to the formation of all studied 

Bs. The residence time between the reorientations significantly 

ncreased with respect to the one observed at 233 K (Figs. S32 and 

33). Various independent reorientations of cations in the super- 

ell resulted in the averaged picture resembling those indicated at 

igher temperatures ( Fig. 4 ). In contrast to the PE phase, at 213

, the contributions are not evenly distributed and vary depending 

n the HB type. The H atoms which predominantly interact with 

elected acceptors are the ones detected in the structural studies 

f the FE phase. It is especially pronounced for the strongest HB 

ormed by the NH 4 
+ (II), i.e. N2 −H24 ���O4. The major contribution 

f H24 to this HB, together with its smaller impact on the other 

Bs, indicate the emergence of the main rotation axis along the 

2 −H24 bond. It should be noted that, at 213 K, the NH 4 
+ (II) ori-

ntation was additionally disrupted by the hindered rotations be- 
6 
ween the FE and PE orientations. Such twists were not observed 

or the NH 4 
+ (I) in the FE phase. Switching between the orienta- 

ions was irregular and occurred multiple times during the en- 

ire trajectory (Fig. S33). Inferring from the big differences between 

esidence time in both orientations, it is clear that the PE orienta- 

ion is much less stable at 213 K than above T c . 

Moving to 148 K simulation, further stabilization of the 

H 4 
+ (II) in the FE orientation was indicated (Fig. S34). The hin- 

ered rotations nearly disappear, however, the observed DHA an- 

le amplitudes remain higher than those found for the NH 4 
+ (I). 

ven at such low temperatures, the interchange between H atom 

ositions was detected for the NH 4 
+ (II). In contrast to 213 K simu- 

ation, the tetrahedral reorientations are realized only through the 

otation about a 3-fold axis along N2 −H24. Thus the strongest HB 

n the FE phase is stable, while multiple H atoms are contribut- 

ng to weaker HBs ( Fig. 4 ). The residence time between the re- 
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Fig. 6. Comparison of high-frequency region of AS power spectra for all used sim- 

ulation temperatures (top). Decomposition of full power spectra into the separate 

contributions of NH 4 
+ (I) and NH 4 

+ (II) (middle and bottom respectively). 
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rientations significantly increases comparing with those in the 

imulations at higher temperatures. Therefore, along the studied 

rajectory, the tetrahedral reorientations occurred only for several 

H 4 
+ (II) in the entire supercell. 

To clarify and sum up the ion dynamics description, the spa- 

ial distribution of atoms from the AS asymmetric unit were com- 

ared for the simulations at all studied temperatures ( Fig. 5 ). The 

ata were visualized for asymmetric units placed in the closest 

icinity of the geometrical center of 3 ×3 ×3 systems. In line with 

he preceding structural analysis, SO 4 
2 − ions are not disordered in 

he high-temperature phase. The larger ellipsoidal-shaped distribu- 

ions of O atoms result from the greater SO 4 
2 − librations in the PE 

hase. As expected, this effect diminishes in lower temperatures, 

espite the persistence of NH 4 
+ (I) and NH 4 

+ (II) tetrahedral reori- 

ntations. 

At 298 K, H atom distributions of both cations have a form of 

ery elongated ellipsoids, which consist of two maxima connected 

o the PE and FE orientations, respectively ( Fig. 5 ). Blurred regions 

etween the ellipsoids result from the tetrahedral reorientations 

etween H atom positions. The observed distributions enable us 

o classify cation motions in the high-temperature phase as a dy- 

amic disorder [56] . At 233 K, the PE orientation dominates for 

oth cations but seems to be not stable with further temperature 

ecrease. Below T c , NH 4 
+ (I) cations immediately stabilize in the FE 

rientation. The residence time between tetrahedral reorientations 

apidly elongates, and at 213 K, surpasses the simulation length. In 

ontrast, the NH 4 
+ (II) reorientations were clearly indicated in both 

imulations of the FE phase. Although the PE orientation is signifi- 

antly less stable below T c , the NH 4 
+ (II) hindered rotations do not 

reeze in the FE phase (Fig. 5). Therefore, for one cation type, the 

o-called “ferroelectric mode” [20,21] remains active even below 

he T c . 

.3. Power spectra 

Performed BOMD simulations allowed us to calculate the power 

pectra for AS crystal at the four simulated temperatures using 

he Fourier transform of atom position autocorrelation functions 

Fig. S35). Such an approach enables the analysis of all active 

odes in one spectrum [57] . Each calculated spectrum contains 

ands expected for internal modes of the distorted tetrahedral ions 

58] . The modes were assigned using multiple experimental data 

 13 , 14 , 59 ]. Broad band between 2750-3750 cm 

−1 emerges as the

uperposition of symmetric (v 1 ) and asymmetric (v 3 ) stretching 

odes of two NH 4 
+ types ( Fig. 6 ). At 298 K, the broad asymmetric

and has one maximum at ca. 3350 cm 

−1 . At lower temperatures, 

hree maxima at 3427 cm 

−1 , 3323 cm 

−1 , 3151 cm 

−1 gain on in-

ensity with temperature (T) decrease. The red-shift expected for 

igh-temperature spectra was observed for 1630-1750 cm 

−1 band 

f NH 4 
+ scissoring modes (v 2 , Fig. S36). Another two close-placed 

ands between 800-1180 cm 

−1 result from v 1 and v 3 modes of 

O 4 
2 − anion (Fig. S37). The v 2 and v 4 modes of SO 4 

2 − were as- 

igned to bands with peaks at 583 cm 

−1 and 434 cm 

−1 , respec- 

ively. 

To further analyze the generated spectra, each band was de- 

omposed into the increments of individual ion types (NH 4 
+ (I), 

H 4 
+ (II), SO 4 

2 −). For the N −H stretching region, such a procedure 

orroborated significant differences in H-bonding and dynamics of 

H 4 
+ (I) and NH 4 

+ (II) ( Fig. 6 ). At 298 K, the components of both

H 4 
+ have maxima shifted towards higher wavenumbers with 

road shoulders at ca. 3200 cm 

−1 . In line with the ion dynamic 

nalysis, NH 4 
+ (I) is exposed to more pronounced changes with the 

emperature decrease. Two equally intense maxima are well sepa- 

ated already at 233 K, i.e. before the PT. In the FE phase, the peak

t lower frequency intensifies with T decrease, while the second 

aximum gets narrower and shifts towards lower wavenumbers. 
7 
ithin two simulations in the vicinity of PT, the high-frequency 

ands of the NH 4 
+ (II) are almost identical (Fig. 6, bottom). The nar- 

ow peak at 3425 cm 

−1 intensifies and shifts towards higher fre- 

uencies with the T decrease. The broad peak at ca. 3200 cm 

−1 re- 

ains complex at 148 K, however, some irregular intensity in- 

rease was observed at lower wavenumbers. Further decomposi- 

ion of the spectra into the contributions of individual N −H bonds 

as shown that such an effect is a result of the stabilization of 
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Fig. 7. Low-frequency region of AS power spectra for all used simulation temperatures (top left). Decomposition of full power spectra into the separate contributions of 

SO 4 
2 − , NH 4 

+ (I), and NH 4 
+ (II) (top right, bottom left, and bottom right, respectively). 
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he H24 atom position via strong HBs (Fig. S36). It has to be em- 

hasized that the method used for spectra generation cannot fully 

eparate the individual N −H bond oscillations from the other vi- 

rations of the same type. The impacts of other N −H stretching 

odes are transferred through the N atom to each component. 

herefore, even at 148 K, two peaks are observed at each spec- 

rum: the main one and the secondary one with lower intensity 

Fig. S36). At higher temperatures, those additional peaks inten- 

ify as a result of interchange between H atom positions within 

he tetrahedral reorientations. The existence of H atom interchange 

n the PE phase is also indicated by the identical band compo- 

ents observed for all the N −H bonds of the selected cation type 

Figs. S39-S40). This effect is still noticeable for the NH 4 
+ (II) in the 

E phase at 213 K. In the case of the NH 4 
+ (I), the reorientations

ecome rare after the PT, and as a consequence, the band com- 

onents of symmetrically nonequivalent N −H bonds differ from 

ach other. The position less stabilized by HBs becomes mainly oc- 

upied by the H11 atom. The partial stabilization of H atoms of 

H 4 
+ (II) at positions known from the structural analysis was indi- 

ated only for 148 K simulation (Figs. S38 and S40). The hydrogen 

osition in a very weak N2 −H ���O2 becomes mainly occupied by 

he H22 atom. The main peak of the N2 −H24 component is sig- 

ificantly shifted towards lower frequencies, while the secondary 

ne at 3427 cm 

-1 becomes less intensive when compared to other 

ond contributions. These observations are in line with the emer- 

ence of NH 4 
+ (II) main rotation axis along N2 −H24, postulated in 

he ion dynamic analysis. 

To complete the AS power spectra analysis, the anion and lat- 

ice modes were carefully studied. Moving through the transition 

oint, no distinctive changes were indicated for individual contri- 

utions of S −O bonds. In contrast, 10 K above the PT, the S −O

e

8 
tretching region substantially changes for the S1 −O1 component 

Figs. S41-S42). In comparison to the same band at 298 K, the in- 

ense maximum occurs at ca. 1060 cm 

−1 . With further T decrease, 

he peak in the S1 −O1 component shifts towards higher frequen- 

ies. From previous studies, it is known that the O1 atom is the 

ess H-bond stabilized acceptor in both AS phases [39] . 

In agreement with the experimental studies [ 13 , 14 , 25 ], no mode

oftening was observed in the 10 0–40 0 0 cm 

−1 spectral range 

 Fig. 7 ). From the calculated low-frequency bands, only the peak at 

a. 115 cm 

−1 is a result of one ion type vibrations i.e. SO 4 
2 − trans-

ations [59] . Bands observed between 150-350 cm 

−1 arise from lat- 

ice modes involving both cation translations and anion librations 

Fig. S43). Moreover, with temperature decrease, the coupling be- 

ween v 2 SO 4 
2 − and NH 4 

+ (I) lattice modes was indicated. The ad- 

itional band for the NH 4 
+ (I) starts to emerge at 233 K. With fur- 

her cooling, the band gains on intensity and shifts towards higher 

requencies till 498 cm 

-1 at 148 K. The engagement of the SO 4 
2 −

nto this new mode is signalized in the FE phase. All symmetrically 

onequivalent S −O oscillators seem to be involved in the vibration 

haracterized by broader signals for S1 −O2 and S1 −O4 bonds and 

arrower peaks for S1 −O1 and S1 −O3 (Fig. S44). Much more in- 

ense maxima for N1 −H13 and N1 −H14, obtained after NH 4 
+ (I) 

and decomposition, suggest the librational nature of the lattice 

ode (Fig. S45). NH 4 
+ (II) is not involved in this type of vibration 

 Fig. 7 , Fig. S43). The only changes in its lattice modes were indi-

ated at the lowest simulated temperature. 

.4. Phase transition mechanism and the origin of AS properties 

Recent works on the electrocaloric and inverse barocaloric (BC) 

ffects considered the AS phase transition as the ordering of the 
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ntire asymmetric unit in the process of two-step structural trans- 

ormation [ 8 , 9 ]. Such an approach has originated from the multi- 

le experimental investigations [ 14 , 17 , 20-26 , 29-33 ]. Despite simi-

ar observations, various interpretations were formulated classify- 

ng AS either as a pseudo-proper ferroelectric or as a ferrielectric 

aterial [ 17 , 34 , 36 , 38 ]. Most of the discrepancies between these hy-

otheses can be verified by our investigation. 

Above the PT, in the PE phase, the AS unit cell volume is contin- 

ously reduced with decreasing T [ 8 , 39 ]. Simultaneously with the 

nit cell contraction, crucial changes develop in the ion dynam- 

cs. With crystal cooling from RT to the vicinity of T c , the SO 4 
2 −

ibrations are significantly suppressed, despite the persistence of 

H 4 
+ (I) and NH 4 

+ (II) tetrahedral reorientations and hindered ro- 

ations. For both cations, the residence time for both motions in- 

rease. However, the striking elongation of these time is observed 

nly for NH 4 
+ (I) motions. The critical slowing down of the NH 4 

+ (I) 
indered rotations (“ferroelectric mode”) is induced by the SO 4 

2 −

rientation change signalized in the SO 4 
2 − asymmetric stretching 

and. The O1 atom is displaced into the less HB stabilized posi- 

ion and the HB chain co-created by bifurcated interactions in the 

c plane is disrupted (Fig. S46). The indicated anion reorientation 

as earlier described as the precession about an axis placed close 

o the S1 −O2 direction, which breaks the PE symmetry [39] . The 

1 main peak in the v 3 band significantly shifts towards higher 

requencies and a small frequency increase is observed for the O3 

nd O4 components of the same band (Figs. S41-S42). As a result of 

nion precession, the coupling between NH 4 
+ (I) librational modes 

nd SO 4 
2 − v 2 scissoring modes arises ( Fig. 7 , Fig. S43) and the re-

axation of NH 4 
+ (I) hindered rotations proceeds. In line with the 

bserved picosecond-long residence time, such softening was indi- 

ated in the submillimeter spectral region [25] . The energy trans- 

er between the modes of coupled ions occurs mainly through 

1 −H13 ���O4 and N1 −H14 ���O2 interactions (Figs. S44-S45). The 

ew HB system formation induces greater NH 4 
+ (I) distortion re- 

ulting from the larger diversity in the H-bond stabilization of the 

patial positions of individual H-atoms (Figs. S38-S39). Below T c , 

t 213 K, the NH 4 
+ (II) hindered rotations are still not totally sup- 

ressed. The long residence time, observed for that motion, suggest 

 quite immediate completion of its relaxation process with further 

ooling. In agreement with the experimental results [ 20 , 21 , 29 , 30 ],

he tetrahedral reorientations of both cations do not fade away 

uring the PT. In the case of the NH 4 
+ (II), the relaxation process 

f this motion exceeds the studied temperature range. 

The anion orientation change occurring in the first step of the 

T significantly influences the unit cell volume dimensions. The 

-bond system reorganization, enforced by the SO 4 
2 − precession, 

s accompanied by a step-like contraction of b and c lattice vec- 

ors [ 39 , 60 ]. While the parameters in the bc plane decrease, the

teep increase in length is observed for a . Such expansion is caused 

y the alignment of the S1 −O1 bond along [001] accompanied by 

he formation of a new moderate N1 −H12 ���O3. These structural 

hanges are further stabilized after PE symmetry breakdown at T c . 

he above analysis indicates that the inverse BC effect originates 

n simultaneous compression of the lengths of the lattice vectors, 

hich enforces the inverse anion reorientation and therefore re- 

erses the H-bond reorganization. The heat has to be transferred 

nto the crystal to stabilize the HB system in the PE phase struc- 

ure arrangement by the appropriate librations and NH 4 
+ hindered 

otations. 

Finally, the source of the spontaneous polarization, inseparably 

onnected to the PT, should be discussed. The atypical T depen- 

ence of P s in AS crystals [ 31 , 32 ] was ascribed to the competing

ontributions of all distorted ions [ 15 , 16 ] or exclusively to cations

24] . Subsequent theories considered also the impact of the so- 

alled ‘lattice polarization’, which would arise from the shifts of 

oth cations out of the ab plane in the FE phase [17] . However,
9 
ccording to our results, the crucial information seems to be hid- 

en in the P s study of the mixed (NH 4 ) 2 SO 4 -K 2 SO 4 crystals [32] .

n the study, the P s value for pure AS reaches its maximum (0.6 

C/cm 

2 ) at ca. 2 K below T c and continuously decreases until the 

ign change at ca. 85 K. It should be emphasized that 4 % K- 

ubstitution reduces the maximal P s value of ca. 25 %. The K 

+ ion 

s known to preferentially substitute the NH 4 
+ (II) [17] . When the 

-atom percentage equals 57 % the P s emerge at ca. 140 K to reach

he plateau of 0.23 μC/cm 

2 at lower temperatures [32] . Our earlier 

tudies [39] have shown that the distortion of the SO 4 
2 − from ideal 

etrahedron is much lower than the one indicated by the neutron 

iffraction study [12] . Therefore, the P s remaining after the total 

H 4 
+ (II) substitution can be ascribed solely to the contribution of 

he distorted NH 4 
+ (I). According to the observed P s vs T depen- 

ence the NH 4 
+ (II) contribution should be of the opposite sign to 

hat of the NH 4 
+ (I) [32] . Such an assumption is in line with our

bservation that the main rotation axis of the NH 4 
+ (II) emerges 

long the N2 −H24 bond and points towards [00 ̄1 ]. Moreover, the 

ppearance of P s maximum just after the PT could be induced by 

he unsuppressed hindered rotations of the NH 4 
+ (II), which would 

emporarily cancel the negative contribution to P s . However, the 

resented model is incomplete, because the dipole moment val- 

es, estimated for distorted cations, are too small to fit the ex- 

erimental predictions [ 15 , 20 ]. The ‘lattice polarization’ based on 

he relative shifts of ions seems to be an improper explanation of 

he missing contribution. Considering the polar axis, both cations 

re displaced in opposite directions. Both shifts out of the ab plane 

re small and almost T-independent [39] . Ultimately, such a simple 

odel of the ‘lattice polarization’ does not explain the substantial 

eduction of P s caused by a small substitution of the NH 4 
+ with 

he K 

+ ion of a similar size and the same charge. The recently dis- 

overed dynamic charge relocation between AS ions [61] seems to 

etter describe the P s thermal evolution. The charge relocation oc- 

urs during the coherent lattice motion, in which main contribu- 

ions are connected with SO 4 
2 − and NH 4 

+ (II) (labeled as NH 4 
+ (1) 

n [61] ). Such charge relocation should be highly temperature- 

ependent as well as particularly vulnerable to the destabilization 

f multipole interactions caused by the cation substitution. Further 

alculations based on the Modern theory of polarization [62] would 

e essential for the verification of the proposed hypothesis of the 

 s origin. 

. Conclusions 

The considered phase transition mechanism in AS is of a mixed 

isplacive − order-disorder nature, where the anion precession dis- 

upts the balance between two minima in the double-well poten- 

ial corresponding to the PE and FE orientations of the NH 4 
+ (I). Ac- 

ording to the PT description, it should be classified as the one of 

he pseudo-proper type. The obtained BOMD results indicate that 

n the coupled oscillator-relaxator model of PT [14] , the role of the 

oscillator’ should not be ascribed to NH 4 
+ (I)-SO 4 

2 − translations. 

nstead, the relaxation of NH 4 
+ (I) hindered rotations is connected 

ith the coupling between NH 4 
+ (I) librations and SO 4 

2 − v 2 modes, 

hich is induced by the anion precession (see sections 3.3 and 

.4 ). In such structural transformation, the T c would not be af- 

ected by the deuteration of cations as was found experimentally 

y Hoshino et al [60] . The inverse barocaloric effect reported for 

S [8] is caused by the endothermic stabilization process of the 

everse H-bond system reorganization induced by the applied hy- 

rostatic pressure in the vicinity of T c . The spontaneous polariza- 

ion in AS is the secondary effect caused by the structural trans- 

ormation to the polar symmetry. The substantial part of the P s is 

robably connected to the charge relocation observed in the ultra- 

ast X-ray diffraction experiment [ 61 ]. However, the contribution of 

oth distorted NH 

+ cations cannot be neglected in the P s analysis. 
4 
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The results of our ion dynamics analysis have indicated that 

he description of the PE phase, which assumed the disorder of 

ll types of ions [ 8 , 25 , 38 ], is false. In agreement with the struc-

ural analysis, our calculations have shown that SO 4 
2 − ions are not 

isordered up to 298 K (i.e. 75 K above the T c ). Our BOMD simu-

ations for the first time enabled the comprehensive description of 

H 4 
+ (I) and NH 4 

+ (II) motions which should be classified as the 

ynamic disorder. The tetrahedral reorientations, can be consid- 

red as the Markovian process [63] and do not freeze during the 

T. The residence time for both cations are similar at RT (10 −11 s) 

nd start to differ from each other with temperature decrease. Be- 

ause of the detected very short randomization time (10 −13 -10 −14 

), the reorientations as well as the hindered rotations, cannot be 

ecognized by neutron and X-ray diffraction experiments even at 

ow temperatures. The pre-optimized simulations (MDaOPT) of su- 

ercell systems in the P1 symmetry allowed us to reproduce ge- 

metrical features of experimental AS crystal structures in both 

hases. The systems containing only one unit cell as well as the 

alculations without preceding optimization (MD) do not replicate 

he experimentally observed H-bond system of AS at any studied 

emperature. 

The presented computational approach provides the description 

f complicated ion dynamics in the AS crystals with a complex H- 

ond system. Our investigation scheme should be useful for the 

tudies of PT mechanisms in other H-bonded ferroelectrics and 

arocaloric materials, e.g. such as plastic crystals [64] . 
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