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Abstract: The organic residues on titanium(IV) oxide may be a significant factor that decreases the
efficiency of dye-sensitized solar cells (DSSC). Here, we suggest the UV-ozone cleaning process to
remove impurities from the surface of TiO2 nanoparticles before dye-sensitizing. Data obtained from
scanning electron microscopy, Kelvin probe, Fourier-transform infrared spectroscopy, and Raman
spectroscopy showed that the amounts of organic contamination were successfully reduced. Addi-
tionally, the UV-VIS spectrophotometry, spectrofluorometry, and secondary ion mass spectrometry
proved that after ozonization, the dyeing process was relevantly enhanced. Due to the removal of
organics, the power conversion efficiency (PCE) of the prepared DSSC devices was boosted from
4.59% to 5.89%, which was mostly caused by the increment of short circuit current (Jsc) and slight
improvement of the open circuit voltage (Voc).

Keywords: photovoltaics; solar cells; dye-sensitized solar cells; UV-ozone treatment

1. Introduction

The groundbreaking work of M. Grätzel and B. O’Regan [1] in the early 1980s encour-
aged many scientific groups to undertake research on dye-sensitized solar cells (DSSC) [2].
These photovoltaic devices represent the third generation of solar cells [3], which are not
based on the type-specific p-n junction. DSSC devices have low production costs [4], are
environmentally friendly [5], and have the ability to be mass-produced [6]. Such advan-
tages are driving the interests of many research groups. DSSCs are also susceptible to
modifications. Thus, there are many scientific papers focused on changing the original
materials used by Grätzel (Figure 1a) or modifying them. The mesoporous titanium(IV)
oxide layer used originally as a photoanode was exchanged by zinc oxide [7,8] and nickel(II)
oxide [9] nanoparticles or doped with tungsten [10], sulfur [11] or copper [12]. Platinum
nanoparticles forming the counter electrode were successfully replaced [13] by e.g., car-
bon [14], tungsten disulfide [15], or molybdenum oxide [16]. A great effort was also made
to change the iodine-based electrolyte. As a result, water- [17] or polymer- [18,19] based
DSSC electrolytes were demonstrated.

Another reported possibility to improve the dye-sensitized solar cells’ performance
was to alter the original internal architecture. The additional scattering layer made out
of TiO2 particles larger than 200 nm is a good example [20]. This structure scatters the
electromagnetic waves, thus increasing the optical path of the light in the active layer.
Another way to enhance the power conversion efficiency (PCE) is to attenuate the electron–
electrolyte recombination process which occurs mainly at FTO (fluorine-doped tin oxide,
SnO2:F) and electrolyte interface [21]. To prevent this, electron-blocking layers were
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developed. Thin continuous layers of metal oxides deposited on the mesoporous TiO2
layer [22] or directly on the FTO surface [23] improve DSSC performance. It was proved
that many materials, both semiconductors such as ZnO [24], TiO2 [25], and MgO [26] as
well as insulators such as HfO2 [27] or Al2O3 [27], can effectively attenuate the electron–
electrolyte recombination. Recently, the plasmonic effect in DSSCs was reported [28].
A quantum-sized metal nanoparticle could boost the efficiency of a photovoltaic device by
improving the charge transport [29] or the scattering effect [30] inside the solar cell active
layer. There are also reported approaches to extend the absorption spectrum in solar cells.
When the TiO2 layer was sensitized by two or more dyes absorbing in different spectral
ranges, the light was harvested more efficiently [31,32]. Hence, the DSSCs were able to
generate greater photocurrents and increase their efficiency.
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In this article, we point out another aspect that affects the performance of DSSC
devices and propose an effortless and cheap procedure to improve it. In most cases, the
fabrication of the photoanode is based on screen printing of organic paste with titanium(IV)
oxide nanoparticles [33,34]. For that reason, after the sintering process at high temperatures
(<600 ◦C), there are still some organic contaminations [35] within the porous film of TiO2.
It is difficult to remove them by solvents from the bulk as it could be absorbed deep into the
mesoporous structure by capillary action. Then, a long baking process is normally required.
The easiest way to reduce the amount of impurities is to apply reactive gas which can easily
penetrate any microstructure. Here, we report the results of treating the mesoporous layer
of sintered TiO2 nanoparticles with UV-ozone cleaner (Figure 1b).

There are at least a few studies showing that high-power UV-ozone is able to change
the surface properties of mesoporous TiO2. Reported by Dawo et al. [36] and Saekow
et al. [37], results proved that O3 molecules led to enhanced adsorption of dye molecules,
and thus higher photocurrents in DSSC devices. The authors analyzed a few properties of
the modified layers—e.g., stoichiometry, wettability, and roughness. As suggested there,
the reduction of Ti4+ to Ti3+ produced more electrons which could improve the charge
transport and reduce the electron–hole recombination process. Enhanced wettability (lower
contact angle) may help the dye solution to penetrate deeper within the layer. The authors
have also indicated that UV-ozone treatment decreased the roughness (proved by atomic
force microscope measurements), which could potentially lead to more efficient harvesting
of incident light and better dye adsorption. Furthermore, they have implied that more
experiments should be performed to explore the effect of UV-ozone treatment of TiO2
layers used in DSSC devices.

Data obtained by us showed the additional effect—removing of organic residuals—led
to enhanced adsorption of dye molecules and improved electrical properties of DSSCs.
The cleaning effect was directly examined by spectroscopic methods, such as Raman and
Fourier-transform infrared (FTIR) spectroscopies, where we received characteristic signals
for organic molecules before the UV-ozone treatment. We have also used indirect methods—
e.g., scanning electron microscopy (SEM) and Kelvin probe techniques—to prove that
the organic residuals were no more present in the TiO2 layer. Consequently, more dye
molecules were able to bond to the titanium(IV) dioxide particles, which was proved by
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absorbance and photoluminescence measurements. The UV-ozone treatment resulted in
higher photocurrent, and thus greater PCE of prepared dye-sensitized solar cells.

2. Materials and Methods
2.1. Materials

Chemicals, substrates, and components were bought from commercial sources. The FTO
(SnO2:F) glass (NSG TECTM A7, 6–8 Ω/�) substrates were purchased from Pilkington
(Sandomierz, Poland). Titania pastes (18NR-T and 18NR-AO), platinum paste (PT1), di-
tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′dicarboxylato)ruthenium
(II) (N719 dye), and iodine-based electrolyte (EL-HPE) were purchased from GreatCell
Solar (Elanora, Australia). The electrolyte was composed of acetonitrile, valeronitrile,
1-butyl-3-methylimidazolium iodine, 4-tert-butylpyridine, guanidium, thiocyanate, and
iodine. Lamination foil was purchased from DuPont Surlyn® (Wilmington, DE, USA). The
99.8% ethanol was bought from Honeywell (Charlotte, NC, USA).

2.2. Methods

The thickness of TiO2 mesoporous layers was determined by a stylus profilometer
(Bruker DektakXT, Billerica, MA, USA). The scanning electron microscopy images were
obtained by Regulus 8230 (Hitachi, Tokyo, Japan) with a secondary electron (SE) detector.
The accelerating voltage and the beam current were set to 10 keV and 4.7 µA, respectively.
Nicolet iS50 (Thermo Scientific, Waltham, MA, USA) spectrometer equipped with an
additional accessory for specular reflection measurements—VeeMAX III (Pike Technologies,
Madison, WI, USA)—was used to obtain infrared absorption spectra. Raman spectra were
collected by the LabRAM HR Evolution system (Horiba Scientific, Kyoto, Japan) with the
He-Ne laser (λ = 633 nm) and an objective of ×100 magnification. The work function (WF)
of the TiO2 was measured by Kelvin probe (Instytut Fotonowy, Cracow, Poland) with a
gold reference electrode. The spectrophotometric measurements were conducted on a
V-670 UV-Vis-NIR apparatus (Jasco, Pfungstadt, Germany) with deuterium and halogen
lamps. Absorbance spectra were acquired with incident angle of 0◦ and integrating sphere.
The photoluminescence spectra were recorded by spectrofluorometer FS5 (Edinburgh
Instruments, Livingston, UK). The depth profiles were obtained by secondary ion mass
spectrometry with a time-of-flight mass analyzer (Iontof, Münster, Germany) in dual
beam mode. A cesium ion beam (1 keV, Cs+, 75 nA) was used to sputter the TiO2 surface
simultaneously, while a pulsed bismuth cluster beam (Bi3+, 30 keV, 0.4 pA) was used to
analyze the composition of the central part of the milled crater. To avoid the so-called
edge-effect edges, the sputter area was set to 500 × 500 µm2 and the analyzed area to
250 × 250 µm2. Prepared DSSC devices were electrically characterized by CLASS-01
(PV Test Solutions, Wrocław, Poland) under AM1.5 illumination with a light intensity of
100 mW/cm2. Solar cells were also analyzed by intensity-modulated photovoltage (IMVS)
and intensity-modulated photocurrent (IMPS) spectroscopies. Devices were illuminated
with a light of sinusoidal modulated intensity (5–50 Hz), and a source a 530 nm LED
(ThorLabs, Newton, NJ, USA) was used.

2.3. Dye-Sensitized Solar Cells Preparation

The FTO was used as a substrate for the photoanode. Glasses were cleaned and
degreased by ultrasonification in acetone, DI water, and isopropanol for 5, 10, and 15 min,
respectively. The rectangular shape (3 × 5 mm2) titanium paste layers were deposited by
a screen-printing method. The first layer was printed by 18NR-T paste with an average
nanoparticle size of 25 nm and the second layer by 18NR-AO with nanoparticles <450 nm
as a scattering layer. Then, the samples were annealed at 565 ◦C (heating ramp 200 ◦C/h,
hold for 15 min at maximal temperature) to remove the organic compounds. The thickness
of TiO2 mesoporous layers, obtained by a stylus profilometer, was approximately 7 µm.
Subsequently, one part of the samples was transferred to the UV-ozone cleaner, ZoneSem
II (Sanyu Co., Ltd., Tokyo, Japan), and cleaned for 20 min. Due to the presence of UV
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radiation and oxygen molecules, the UV-induced ozone reacts with organic impurities and
adsorbed contaminants, then changes them into a carbon oxide gas which is continuously
extracted from the reaction chamber by a vacuum pump. In the next step, both reference
and UV-ozone-treated samples were immersed in 10−4 M ethanolic solution of ruthenium
dye (N719) for 24 h at room temperature. After that, to remove any un-adhered molecules,
the substrates were rinsed with ethanol and dried with nitrogen steam. To prepare the
counter electrodes, the cleaned FTO glass was screen-printed with platinum paste and
annealed at high temperature to receive a thin film of Pt nanoparticles. Both electrodes
were then sealed by a lamination foil (60 µm) as a spacer. Finally, the DSSC devices were
filled with an iodine-based redox electrolyte.

3. Results and Discussion
3.1. Contamination Effect in Uncleaned TiO2 Layer

Selected samples were transferred to the vacuum chamber of the scanning electron
microscope system immediately after annealing at 565 ◦C and the cleaning processes.
Obtained images present a typical structure of sintered TiO2 nanoparticles [38]. There
was no difference in the nanoscale structure of the reference (Figure 2a) and the UV-ozone
treated (Figure 2b) samples. To show the presence of contaminants, the surfaces were
exposed to the electron beam for two minutes (areas marked by white symbols). Adsorbed
on the TiO2 surface, organic residuals and atmospheric adsorbates began to aggregate
and polymerize when interfered with the electron beam [39]. Irradiated zones became
darker and blurred in SEM images. In contrast to Figure 2a, the irradiated area is hardly
visible in Figure 2b, which indicates a significant reduction in organic contaminants for the
ozonized sample.
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3.2. Determination of Organic Residuals Presence on TiO2

The Raman and infrared (IR) spectroscopies give subsurface information about the
chemical composition of the measured sample, but they differ in the probing depth. The
probing depth for the Raman spectroscopy is <1 mm, while the IR is able to characterize
material up to <1 cm underneath the surface [40]. Here, we apply both spectroscopies
to study the residuals of titania paste after the sintering process and after the additional
UV-ozone treatment.

Figure 3 presents FTIR spectra obtained for pure titania paste, annealed paste (sintered
mesoporous layer of TiO2 nanoparticles), and a mesoporous layer after the UV-ozone treat-
ment. The titania paste was composed of terpineol and titanium(IV) oxide nanoparticles
with the addition of other organic components such as solvents, etc. Thus, the received
spectrum contained strong peaks for C-H (~2900 cm−1), O-H (~1600 cm−1) bands, and
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multipeak region from 800 to 1500 cm−1 for C-O, C=C, C-H bending, and stretching bands.
After the annealing process, the Ti-O stretching(~900 cm−1), O-H stretching (~1600 cm−1),
and bending (~3500 cm−1) bands [41] become visible. Detailed analysis of the range from
2800 to 3000 cm−1 wavenumber (right panel of Figure 3) reveals a weak multipeak signal
coming from the remaining organic compounds, which is associated with C-H stretching
bands [42]. These peaks disappear as an effect of the UV-ozone cleaning.
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Raman spectra recorded for titania paste and mesoporous TiO2 layer before and after
UV-ozone cleaning are presented in Figure 4. The spectrum corresponding to titania paste
is a superposition of signal characteristics for anatase TiO2 bands located at 144 cm−1 (Eg),
197 cm−1 (Eg), 399 cm−1 (B1g), 519 cm−1 (A1g), and 639 cm−1 (Eg) [43]. Additional peaks
typical for organic compounds are located at 237 cm−1, 448 cm−1, and 609 cm−1, which
may correspond to δ(CC) and υ(CC) vibrations in aliphatic chains. Detailed analysis of
the spectra demonstrated additional weak signals corresponding to vibrations at 969 cm−1

and 1033 cm−1. We associate them with υ(CC) vibrations in alicyclic/aliphatic chains or
aromatic rings. These two signals merged into one in the annealed sample (1002 cm−1),
which may be caused by the conformation change of organic compounds during high
temperature (565 ◦C) treatment. After the UV-ozone cleaning, all signals in this range
disappeared. Both IR and Raman spectroscopy showed that the organic impurities were
successfully removed from the subsurface of the TiO2 mesoporous layer.
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3.3. The Influence of Ozone Treatment on TiO2

Before the dye sensitizing, the bare TiO2 layers were characterized by UV-VIS spec-
troscopy to obtain an optical energy bandgap. Received absorbance data were recalculated
to Tauc plot–(αhυ)1/2 versus hυ, where α is an absorption coefficient and hυ is a photon
energy [44]. The value of the bandgap was determined by extrapolation of the linear
region shown in Figure 5a. Calculated energy bandgaps for the sintered and UV-ozone
cleaned samples are the same, Eg = 3.22± 0.02 eV, and equal to the typical value for anatase
titanium(IV) oxide crystals [45]. This proves that the UV-ozone treatment did not affect
the TiO2 structure and its bulk properties because any changes in crystal structure or bulk
stoichiometry would be seen in different Eg values.
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The cleaning effect is also visible in Kelvin probe measurements. The work function
(WF) of titanium(IV) oxide varies with many parameters [46]—preparation method, an-
nealing temperature, annealing atmosphere, crystal structure, etc. The typically reported
value of work function for stoichiometric and annealed TiO2 crystals is equal ~5.0 eV [47].
Measured WF for the sintered TiO2 mesoporous layer was equal to 5.56 ± 0.03 eV. After
the UV-ozone cleaning, the WF value turned to 5.06 ± 0.02 eV. This effect could not be
explained by slight oxidization of the material surface because, according to other re-
search [47], in the case of TiO2, an oxidation process results in higher WF. Here, taking
into consideration the presented data received from Raman and FTIR spectroscopies, we
assume that lower WF is caused by the removal of the organic residuals. Organic molecules
presented on the sample surface created an additional layer on the TiO2 nanoparticles,
which increased the barrier for the ejection of electrons from the sample. The higher barrier,
the greater voltage is needed to eject the electric charge from the material. Furthermore,
the oxidation effect (slight change of surface stoichiometry) is more relevant when the
titanium(IV) oxide is treated by oxygen plasma [48] rather than a low-power UV-ozone.

3.4. Improving the Dye-Sensitizing Efficiency

The TiO2 layers sensitized by N719 molecules were characterized by spectrophotometric
measurements. Spectra presented in Figure 6a show higher absorption for the UV-ozone treated
samples. Similarly, the photoluminescence (PL) spectra show a higher signal under excitation at
λex = 530 nm for the samples UV-ozone cleaned prior to sensibilization (Figure 6b).

To demonstrate that N719 molecules also had higher adsorption effects in a subsurface
layer, the secondary ion mass spectrometry with the time-of-flight analyzer (ToF-SIMS) was
used. Obtained depth profiles are presented in Figure 7. The NCS− ions were chosen as a
fingerprint of the N719 molecule and their intensity was analyzed as a function of sputter
time. Received data showed that more dye molecules were able to adsorb deeper within
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the structure after the UV-ozone treatment, which was related to the higher signal intensity
in the time range from 50 to 600 s. After that time, both signals reached the plateau.
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3.5. Performance of DSSC Devices

Prepared as described above, dye-sensitized solar cells were characterized by current–
voltage measurements under a solar simulator. The results were averaged for five samples
for both the reference and solar cells based on a UV-ozone treated TiO2 layer. As shown
in Figure 8, the UV-ozone treated DSSCs had higher short-circuit currents (Jsc). The
ozonization led to a slight increase in the open circuit voltage (Voc) and the fill factor
(FF). As the consequence, the PCE was enhanced from 4.59 ± 0.45% to 5.89 ± 0.38% (see
Table 1). The value of FF is strictly related with the series (Rs) and shunt resistance (Rsh)
parameters. We make an assumption that decreased Rs (from 58.1 ± 4.3 Ω to 49.1 ± 3.9 Ω)
and increased Rsh (from 22.0 ± 5.3 Ω to 39.0 ± 4.8 Ω) were a consequence of reduced
recombination processes in solar cells. Hence, it was easier for photogenerated charge
carriers to reach the appropriate electrodes before they recombined shortly after excitation
when the TiO2 and N719 interface was cleansed of organic residuals. In the case of Jsc, the
augmented photocurrent should be related with greater adsorption of dye molecules. After
the UV-ozone treatment, more molecules were able to bond chemically to the TiO2 structure
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so the incident light (photon flux) could be harvested more effectively to produce more
photocarriers. As shown on depth profiles from SIMS measurements, the dye molecules
were also adsorbed deeper into the structure. The increased amount of N719 near the TiO2
and electrolyte interface may also be due to decreasing in the Rs parameter because greater
amounts of generated carriers had a shorter way to the counter electrode.
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Table 1. The DSSCs parameters obtained by current–voltage characteristics.

Sample Voc (mV) Jsc (mA/cm2) FF PCE (%) Rs (Ω) Rsh (kΩ)

Reference 667 ± 10 10.3 ± 1.0 0.67 ± 0.01 4.59 ± 0.45 58.1 ± 4.3 22.0 ± 5.3
UV-ozone 679 ± 10 12.3 ± 0.7 0.70 ± 0.01 5.89 ± 0.38 49.1 ± 3.9 39.0 ± 4.8

The photovoltaics devices were also characterized by intensity-modulated photovolt-
age (IMVS) and intensity modulated photocurrent (IMPS) spectroscopies. Both methods
were used to investigate the charge–recombination time (τrec) and transport time (τtr)
under open circuit and short-circuit conditions, respectively [49]. The transfer function H
was calculated from relations:

HIMPS( f ) =
∆I

∆Φ
eiφ( f ), (1)

HIMVS( f ) =
∆V

∆Φ
eiφ( f ), (2)

where f is the frequency, ∆I—generated photocurrent, ∆V—generated photovoltage, ∆Φ—
intensity of incident light, and ϕ—phase shift that represents the delay time of the response.
The IMVS and IMPS plots were presented in the complex plane (Figure 9) according to
equations:

HIMPS( f ) =
∆I

∆Φ
(cos(φ( f )) + i sin(φ( f )) = HIMPS

′( f ) + i HIMPS
′′ ( f ) (3)

HIMVS( f ) =
∆V

∆Φ
(cos(φ( f )) + i sin(φ( f )) = HIMVS

′( f ) + i HIMVS
′′ ( f ) (4)
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The recombination time was obtained from the frequency of the point that corresponds
to the minimum value of the HIMVS ′′ (fIMVS) and the charge–transport time from the
frequency of the point that corresponds to the maximum of the HIMPS ′′ (fIMPS):

τrec =
1

2π f IMVS
(5)

τtr =
1

2π f IMPS
(6)

Summarized in Table 2, the parameters showed that the localization of extrema for
IMVS and IMPS plots are different for reference and solar cells based on ozone-cleaned
TiO2 layers. The calculated values of recombination time were lower for UV-ozone-treated
samples (7.3 ± 0.3 ms) than for the reference (16.6 ± 0.8 ms), while the transport time
decreased from 12.0 ± 0.9 ms to 8.6 ± 0.3 ms. These findings are in accord with the change
in Rs that decreased for ozonized samples. Based on those parameters, we can assume that
the cleaning of organic residues from the TiO2 mesoporous layer improves the current flow
through the DSSC by decreasing the barriers on the titanium(IV) oxide/electrolyte interface.

Table 2. Parameters obtained by intensity-modulated photovoltage (IMVS) and intensity-modulated
photocurrent (IMPS) spectroscopies for reference and UV-ozone treated DSSCs.

Sample fIMVS (Hz) τrec (ms) fIMPS (Hz) τtr (ms)

Reference 9.6 ± 0.5 16.6 ± 0.8 13.3 ± 0.2 12.0 ± 0.9
UV-ozone 21.9 ± 0.3 7.3 ± 0.3 18.5 ± 0.7 8.6 ± 0.3

4. Conclusions

UV-ozone cleaning was studied as an efficient method to remove organic residuals
and adsorbates from the TiO2 structure in dye-sensitized solar cells. A short, 20 min
long process of low-power ozonization led to a significant reduction in the amount of
contaminants. The cleaning effect was proved by surface and subsurface sensitive methods.
The signals corresponding to C-H and C-C vibrations in FTIR and Raman spectroscopy were
completely diminished. The additional effect of UV-ozone treatment was the improvement
of the dye-sensitizing process. Based on spectroscopic and spectrometric measurements, we
showed that the amount of adsorbed N719 dye molecules was relatively augmented. Solar
cell devices were characterized by current–voltage measurements and intensity-modulated
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photovoltage and photocurrent spectroscopies. Obtained data showed that the main factor
increasing the DSSCs PCE was a boost in the Jsc, a slight improvement of Voc, and FF.
Finally, the efficiency of the prepared solar cells was enhanced from 4.59% to 5.89% with
the application of UV-ozone treatment of the TiO2 layer.
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