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ITERATED FUNCTION SYSTEMS AND MULTIFRACTAL 
ANALYSIS OF DNA SEQUENCES

GRZEGORZ HARANCZYK

It is human nature to find patterns in things
- whether in the shape of clouds,

the arrangement of sand, a chain of events, or the digits of tt.

Abstract. The recent progress in experimental techniques of molecular genetics 
has made available a large amount of genome data. The availability induces many 
questions and opens the possibility to establish some global properties of the DNA 
sequences. This leads to a requirement for specialized tools to view and analyze 
the data.

This is a review of a few recent papers, in which a new approach based on 
dynamical systems techniques was proposed. We use an iterated function system 
(IFS) model to simulate the multifractal structure of the DNA sequence.

1. Introduction

DNA (deoxyribonucleic acid) stores genetic information for long term use. It is 
a linear sequence of four bases (adenine, cytosine, thymine, guanine) which provides 
information for protein synthesis as well as information for signals to regulate the 
inner workings of the organism. Since the mid-1970s, molecular biologists have been 
able to obtain the sequences of longer and longer stretches of DNA, culminating in 
1995 with completion of the first complete sequences of entire genomes.

Presently, only the function of a few percent of the DNA is known, the rest has 
been believed to be “junk”. There are a total of approximately 3,000,000,000 bases 
in each human genome and about 97% of it has been designated “junk” (the ratio of 
functional and junk DNA differs widely per species). The most exhaustive knowledge 
is about the genes responsible for the bodily structures, the structural genes, which 
are the simplest part of the system. But the knowledge about the most important 
part of this system, the regulator genes, is incomplete. The genetic code language of 
these genes is only partially known.

In this paper we apply dynamical systems techniques to develop a mathematical 
tool for representing DNA sequences and revealing some underlying structure in those 
sequences.

We use the idea of iterated functions systems to introduce a Chaos Game Represen­
tation Algorithm that produces characteristic patterns for symbolic sequences This
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technique converts a sequence into a two-dimensional representation that preserves 
subsequence structure and provides a visual representation.

Based on this idea, we present an initial analysis of the genetic data, describing 
some of the insights that can be gleaned from the sequence.

The paper is organized as follows. The next section contains some notions, defi­
nitions and basic properties concerning iterated function systems. This leads to the 
definition of Chaos Game Representation. Next, in Section 3, we apply our model to 
DNA sequences.

In Section 4 we introduce the concept of generalized dimensions and multifractal 
formalism. We also show relation between generalized dimensions and multifractal 
spectrum.

Finally, in Section 5, we present some results and practical applications of this 
approach.

2. IFS REPRESENTATION FOR SYMBOLIC SEQUENCES

We begin by recalling the definitions and properties concerned with iterated func­
tion systems that will be needed throughout this paper. An iterated function system 
(IFS) is a special case of regular stochastic dynamical systems, which is specified by 
N maps transforming a metric space into itself and N probabilities which characterize 
the likelihood of choosing a particular map at each step of the evolution of the system.

Under certain conditions using the Banach Contraction Principle one can prove 
the existence of a unique attractive invariant measure for an IFS. The support of this 
measure is called the attractor of the IFS and has fractal structure for a wide class 
of IFS models. The basic properties of iterated function systems can be found in 
various books, for example, Lasota and Mackey [1], Barnsley [2] or Jürgens, Peitgen 
and Saupe [3].

Let X C Rd be a compact set. Assume that the Si : X —> X, are strict contractions, 
i.e., Lipschitz functions with the Lipschitz constants Li < 1 for i = 1,..., N. If, in 
addition, there are given Pi > 0, satisfying ^iLiPi = 1, then the family (5,p) = 
(SupOlLi is called an iterated function system (with constant probabilities).

The IFS under consideration satisfies sufficient conditions for the existence of the 
attractor. Let us denote this attractor by A.

From a computational viewpoint, an attractor can be generated according to two 
techniques: deterministic and stochastic.

Using the deterministic procedure we build the sequence of sets Xn:

'x0 = x

When n is large, Xn is an approximation of the real attractor A.
According to the stochastic principle we choose a point xo e X and then succes­

sively define the sequence {xn} by choosing
%n+l £ { Si (xn),..., Sn (ib)),

for n = 0,1,... in such a way that xn+i = Sfc(xn) with probability p*,.
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Then Uni1"} is an approximation of the real attractor of (S,p).
The initial point xq can be arbitrary chosen in X, because all the maps Si are 

strongly contracting. The following fact is a basic for the computational construction 
of attractors. If the IFS satisfies above conditions, then for every e > 0 there exist no 
and mo such that dist({in,..., xn+m}, A) < e for every n > n0 and m > m0 (here 
dist stands for the Hausdorff distance). The larger n and m are, the more precise the 
approximation is.

The second approach provides a convenient framework for the representation, de­
scription and analysis of symbolic sequences from an alphabet {ai,..., a,v}, since any 
sequence t = ... a,L of length L corresponds to a set

CGR(r) = {xeX:x = Sik(Sik_, (... Sh (x0))), k = l,...,L}.

This method is called Chaos Game Representation (CGR). The main advantage of 
using CGR is that it represents both statistical properties of frequencies of symbols 
as well as sequentiality properties - i.e., which symbols follow others.

We can also use the deterministic method for representing symbolic sequences. 
In such a way the sequence t = aly ... aiL corresponds to a region of the attractor 
SJL(SiL_i (... (Sij (X)))) called an order-A iterator of the attractor [17].

3. Chaos game representation of gene structure

A DNA sequence can be treated as a string composed from four letters A, C, T and 
G, representing the nucleotides adenine, cytosine, thymine and guanine, respectively. 
We use the chaos game representation introduced in previous section to represent the 
DNA sequences.

Figure 1. CGR for the DNA sequence (HUMHBB).

To this aim, we identify the DNA bases A, C, T and G with four maps Sa, Sc, 
St and Sg transforming the unit square X = [0,1] x [0,1] C R2 into itself.
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Let xo = (|, |) and

SA(x,y) =

Sc{x,y)=Qx,1-y+1-y

„ , . /1 11 1\5T(x,2/)=^-x+-,-y + 

5G(x,2/)=(^ + |,ii/).

For a given DNA sequence r, e.g., r = GAATTCTAATCTCC... (x) , we obtain

CGR(r) = {xo, SG(x0), ^(SG(x0)), Sa(Sa(Sg(x0))), St(Sa(Sa(Sg(x0)))), ...}.
The genetic sequence is represented by points within the square X, where the four 

vertices of the square correspond to the four DNA bases. We can label the corners 
by A at (0,0), C at (0,1), T at (1,1) and G at (1,0).

Then roughly speaking, we perform the following steps: First, we pick an arbitrary 
starting point xq, e.g., xo at the center of the square (|, |). Then, each letter in the 
sequence tell us how to move. The first point Xi, representing the first base in the 
DNA sequence, is plotted half way between xq and the corner representing that base. 
The second point X2 is plotted half way between previous point, Xi, and the corner 
representing the second base etc.... This procedure is continued until the sequence is 
completed.

We analyzed a few different DNA sequences (2) and we obtained examples of 
distinctive patterns (see Figure 2.).

The pictures uncover a complex structure, which varies depending on the sequence. 
There are slight differences within the same species - compare patterns for Mus mus- 
culus: AC099415, AC108947, AC131721, AC141647, or for Zebrafish: BX000363, 
BX088654, BX255951, BX890565, or for Human: BX664615, M94081, NT007819.

This approach to representation of gene structure was also proposed by Jeffrey [4].
We propose the model according to which purines (A,G) and pyrimidines (C,T) 

are connected with opposite corners of the square, whereas Jeffrey used the natural 
dictionary ordering of genetic alphabet, i.e., A at (0,0), C at (0,1), G at (1,1) and T 
at (1,0).

The different ordering do not change statistical properties of the obtained patterns, 
but in some cases the features of obtained patterns can be easier explained. We 
can observe that mysterious characteristic “double-scoops” for Jeffrey’s patterns are 
built from “forbidden squares” corresponding to a fact that guanine almost never 
immediately follows cytosine (forbidden word “GG”). But in some cases explanation 
of obtained patterns is not so simply (Escherichia coli - L10328 shown in Figure 2.).

To analyze the chaos game we need a suitable formal set of instruments which 
allows us to specify precisely characteristics which distinguish some patterns from 
others. We propose to use generalized dimensions and multifractal spectrum.

(’) HUMHBB - Human beta globin region on chromosome 11; DNA linear 73308 bp
(2) available in the GenBank database at www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
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£¿099415] AC 108947 AC131721 AC141647

AE001274 AE001362 AY522332 BX000363

8X088654 BX255951 8X664615 BX890565

LI0328 M94081 NC000908 NT007819

Figure 2. A few possible gene-patterns.

lemark. This approach, i.e., using chaos game representation, can be applied 
iresenting a large class of symbolic sequences, not only to the genetic ones.
th random symbolic sequence (equal probabilities for each symbol) the result is 
mt. There is no pattern at all, the CGR.-algorithm produces a square uniformly 
with dots. If the probabilities are not equal, the shape of the attractor is 
.nged, but the shading may be visible.
ran be also applied to the trajectories of a dynamical system. This requires 
lucing a finite coverings of the phase space, the corresponding encoding of tra- 
ies into symbolic sequences, e.g., the symbolic dynamics of the logistic equation 
re 4.).
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Figure 3. CGR for the DNA sequence (HUMHBB) according to 
Jeffrey’s approach (on the left) and origin of ’scoops’.

Figure 4. CGR for the symbolic dynamics generated by the logistic 
map (on the left) and for a random sequence.

We can consider as an example some financial data as well, e.g., closing prices of 
some stocks.

Not all the data can be represented as a string over an alphabet of four symbols, but 
we can convert it into such an alphabet using for example coarse-graining procedure.

4. Tools

When we consider the presence of complex self-similar geometrical structure of the 
CGR-gene patterns, the technique that immediately comes to mind is fractal analysis 
- analysis of self-similar sets.

The term self-similarity hardly needs an explanation. Self-similarity means that 
each piece of a set (however small) is identical to the whole after some rescaling. Self­
similar structures appear in a variety of natural phenomena, but the most natural 
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objects do not display this precise form. The range of magnification within which 
we see similar forms in nature is finite and a magnified view of one part is not pre­
cisely reproduce the whole object, but do not have the same qualitative appearance. 
Therefore, fractals can only be used as models for natural shapes.

When we think about fractals we usually perceive them as static objects. But 
this point of view tells us little about the evolution or origin of a given structure, 
because there are many phenomena in nature which can not be illustrated by sets. 
In other words, to talk about fractals while ignoring the dynamic processes which 
created them would be inadequate. The fractal box-counting dimension is the basic 
notion for describing structures that have a scaling symmetry, but it does not consider 
the distribution of points on the attractor (see Figure 5.). It was the main reason to 
extend the idea of self-similarity from sets to measures.

Figure 5. The fractal dimension is not sensitive enough to distin­
guish between the uniform and non-uniform Sierpiński triangle.

The concept of multifractals, self-similar measures, was introduced and described 
for the first time in 1970s by Mandelbrot in the context of fully developed turbu­
lence [5]-[6]. Systems with multifractal structure are very important as mathematical 
models and highly diverse. For example, in dynamical systems we are interested not 
only in the shape of attractors but also how often a given region of the attractor is 
visited. Self-similar measures have been used to describe the turbulent flow of fluids, 
percolations, diffusion-limited aggregation systems (DLA systems), finance, and cos­
mic string theory. It is worth to emphasize that the multifractals are strongly related 
to thermodynamics and theory of probability. In this paper we show application of 
this theory to the analysis of DNA sequences.

In this section we define generalized dimensions and establish its principal proper­
ties. We introduce also multifractal formalism, following Evertsz and Mandelbrot [7]. 
In particular, in Subsection 4.2 we give a formula for multifractal spectrum.

4.1. Generalized dimensions Dq. Let X be a subset of R<; which is divided into 
d-dimensional cubes Xi of size I, i = We assume that p. is probabilistic
measure on X, i.e., ¡i(X) = 1. Let C be a non-empty bounded subset of X. For
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i = 1,..., N we define C, = C D Xi, and we denote //(C1,) by Let Ni be the 
minimal number of boxes with length I that are required to cover C.

The generalized dimension Dg of C for the parameter q (q e K) is defined as

Dg ------ lim 
q - 1 ¡->0

In/(<?,/)
In/ (1)

where
Nl

i=l
<1 / 1-

Additionally, applying ¡’Hospital’s rule, we define £>i = limQ_i Dq.
There are two main reasons for the importance of the generalized dimensions. 

Firstly, Dq is designed to reflect not only the fractal geometry of the underlying ob­
jects, but also the dynamics which takes place in them. Secondly, using this definition 
we can readily find the well-known fractal dimensions for integer q as special cases, 
i.e.,

• Do the box-counting dimension (fractal, capacity dimension), Z(0,/) = TV),
• £>i the information dimension,
• T>2 the correlation dimension.

Let us present a few of the main properties of the generalized dimensions: The 
generalized dimension Dg is defined for all real q and is a monotone decreasing function 
of q. As q in (1) varies, different subsets, which are associated with different scaling 
indices, become dominant.

What do the Dg tell us?
q can be treated as a “filter”, namely:

• q > 0 highlights dense portions of the pattern,
• q < 0 highlights sparse portions of the set,
• when q —> oo, Dg shows strongest clustering regions,
• when q —> — oo, Dq shows least dense regions.

For uniform measure /z (¿z. = 7^, i = 1,..., Ni), Dq does not depend on q, and 
simply equals box-counting dimension, as ln(7(g,/)) = (1 — g)ln/V).

A measure for which the Dq dimension varies with q is called multifractal measure. 
Only in the case of the well-known simple fractals, monofractals, a single dimension 
suffices, Dq = ccmst for all q.

4.2. Multifractal spectrum. The symbol oc indicates an asymptotic relation (scal­
ing law):

In 7

The proportionality constant c(rj) (7 = c{rj)^) can be weakly dependent on /3:

/3—>o ln/3 = 0.
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In the notation of Subsection 4.1, we define the coarse Holder exponent by the 
formula:

_ In
a InZ

Note that for a multifractal a will be restricted to an interval amin < a < amax while 
for a fractal there will be an unique a (because for all i = 1,..., Ni, gi = const and 
Ni <x rD°). To obtain the frequency distribution /(a), one has to evaluate for each 
value a the number Ni(a) of boxes of size I having a coarse Holder exponent equal 
to a.

Let
lnM(a)

InZ '
As I —» 0, then /¡(a) tends to well-defined limit /(a). This definition means that, 
for each a, the number of boxes increases for decreasing I as Ni(a) <x l~^a\ So 
multifractals are objects whose structure cannot be described by a single scaling 
behavior but we need all the spectrum of values. The exponent /(a), called the 
multifractal or singularity spectrum, is a continuous function of a. In the simplest 
cases, the graph of /(a) is an upsidedown bell shaped curve, which values could be 
interpreted as a fractal dimension of the subsets of boxes of size I having coarse Holder 
exponent a in the limit I —» 0.

The function f(a) was firstly defined in 1986 by a group of physicists in their 
seminal paper [8].

Figure 6. The typical shape of the graph of Dg and f(a).

4.3. The relation between Dg and f(a). We assume, that f(a) is differentiable. 
For a given value of q, let a(q) be such that
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< 0.

and, as a consequence

Introducing

a=a(q)

r(ç) = qa(q) - f(a(q)),

from (1) we obtain

Dq T(q)
9-1'

Thus we may derive an explicit formula for the relation between Dq and f(a):

/(a) = g(a) - [g(a) - 1]P?(q)

Scaling function r(q) is called correlation exponent or mass exponent of the qth 
order. So for the purpose of multifractal description we may use either (/(a(g)), a(g)) 
or (r(q), q).

This means that /(a) can be computed from r(g) and vice versa. The relation 
between /(a) and r(q) is called a negative Legendre transform.

Thanks to its sensitivity for distributions of points on the attractor the multifractal 
analysis can be successfully applied in image analysis and object classification. There 
is a lot of algorithms and computer programs for the calculation of the /(a)-spectrum 
of multifractal structures (e.g., [9]).

5. Practical application

Chaos Game Representation of DNA sequence provides a visual representation for 
initial analysis. The next step of research in this area is to study the differences and 
similarities between genomes using more sophisticated analysis of genetic data. Mul­
tifractal analysis presented above helps us to compare precisely different sequences. 
Hence it can be used for their classification.

The study of inter-species sequence comparisons is important for identifying ele­
ments in the genome because determining the sequence differences between species 
can provide insight into the distinct features of different organisms, help to define the 
generic basis for speciation and facilitate the characterization of mutational processes.

Many interesting results were obtained using similar methods, but in the case of 
a one dimensional model. It was applied to the problem of recognition of an organism 
based on fragments of their DNA sequences [10].

Based on this idea Yu et al. [11] developed a fast algorithm for deriving species 
phylogeny based on the measure representation of DNA and protein sequences. It 
helps to determine relationships, and reconstructing changes that must have occurred 
to create biologically relevant differences.
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6. Conclusions

In recent years, more and more mathematicians have started working on the anal­
ysis and developing of various mathematical models for representing and describing 
DNA sequences. A variety of statistical modeling, numerical simulations and theo­
retical approaches were used, e.g.:

• data-driven pseudo-random walk in two- or four-dimensional space [12],
• entropic profiles [13],
• statistical analysis of time series (Levy statistics) [14],
• statistical long-range correlation analysis [15]-[16],
• Hao’s frame representation [17],
• linguistic analysis [18]-[20],
• symbolic dynamics and dynamical entropies [21]-[22].

In this paper we presented another approach. This is an interesting starting point 
of investigation, complementing more traditional approaches in analysis of DNA se­
quences. One of the next steps in this research is to examine the usefulness of these 
techniques for investigating DNA sequence structure.

There is no doubt that DNA has a significant role in organizing the development 
of an organism. The more we learn about genes, the more evident becomes the need 
for a good understanding of dynamic effects in biology - in growth, in development, 
in regulation of genetic networks, in ecosystems, and in the evolution.
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