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The fractal velocity pattern in symmetric kink-antikink collisions in ϕ4 theory is shown to emerge from a
dynamical model with two effective moduli: the kink-antikink separation and the internal shape mode
amplitude. The shape mode usefully approximates Lorentz contractions of the kink and antikink, and the
previously problematic null vector in the shape mode amplitude at zero separation is regularized.
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Introduction.—Despite the frequent occurrence of topo-
logical solitons in nature and their theoretical importance,
the collision and scattering of solitons in nonintegrable
field theories is far from fully understood. Even in the
prototypical case of kink-antikink (KAK) collisions in ϕ4

theory in 1þ 1 dimensions, there is little understanding of
the intriguing fractal pattern of final velocities, alternating
with regions of KAK annihilation, as the initial velocities
vary [1–3]. Although the role of resonant energy transfer
between the translational and vibrational degrees of free-
dom (d.o.f.) of the solitons has been emphasized, no
detailed effective model with finitely many d.o.f. has been
derived from the field theory Lagrangian despite four
decades of investigation [4]. Sugiyama’s original attempt
[1], studied by many others [5], appears after the correction
of a typographical error by Takyi and Weigel [6] to lead to
wrong predictions. However, building on our recent work
[7], we will show that the problems are technical and can be
overcome.
An effective model truncates the ϕ4 field theory
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to a Lagrangian dynamics of collective coordinates or
“moduli”: X ¼ fXi; i ¼ 1;…; Ng. Field configuration
space is judiciously reduced to a finite-dimensional sub-
space, the “moduli space” M½X� ¼ fϕ̃ðx;XÞg, which
represents, for example, KAK superpositions with the
separation as modulus.

Implementation requires the configurations ϕ̃½x;XðtÞ� to
be inserted into Eq. (1), and the integral over x performed.
The result is a (nonrelativistic) effective Lagrangian on
moduli space

L ¼ T − V ¼ 1

2
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where the metric gij inherited from the kinetic terms in
Eq. (1) is
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and generally curved, and the potential V is
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The field equations are then approximated by the Euler-
Lagrange equations derived from Eq. (2):

gijðXÞ½Ẍj þ Γj
klðXÞ _Xk _Xl� þ ∂V

∂Xi ¼ 0; ð5Þ

where Γj
kl is the Levi-Civita connection of the metric. This

is a system of ordinary differential equations.
In contrast to the Bogomol’nyi-Prasad-Sommerfield

situation, where the reduced dynamics is accurately
described by geodesic flow on the “canonical moduli
space” of minimal-energy soliton solutions [8–10], there
is no unique moduli space of KAK configurations.
However, it is agreed that the collective coordinates should
be related to the lowest-frequency excitations of static
kinks.
In ϕ4 theory, there are two such excitations solving the

linearized field equation around the kink ϕKðxÞ ¼ tanhðxÞ:
the zero (frequency) mode ϕ0

KðxÞ ¼ 1= cosh2ðxÞ arising
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from translational invariance, and the normalizable shape
mode

ηðxÞ ¼ sinhðxÞ
cosh2ðxÞ ð6Þ

with frequency ω ¼ ffiffiffi
3

p
, just below the continuum starting

at ω ¼ 2. Therefore, useful single-kink configurations have
a kink at location a, excited by its shape mode with
amplitude A. The moduli space dynamics of a and A
models kink dynamics well but not exactly because A is
finite rather than infinitesimal, and nonlinear effects,
including radiation from the vibrating shape mode, are
neglected. The single-kink sector provides the initial data
for KAK collisions.
The antikink ϕAKðxÞ ¼ − tanhðxÞ has the same two

modes, and KAK dynamics can be modeled by superposing
kink and antikink fields, as described below. The effective
model for reflection-symmetric KAK collisions is a non-
integrable Lagrangian system with two d.o.f., like a double
pendulum, and is found to agree in many details with the
full field theory dynamics. This resolves the long-standing
problem connected with the KAK system and confirms that
resonant energy transfer between the relative translational
motion and shape vibrations is responsible for the observed
fractal structure. From a wider perspective, we see that
collective coordinate dynamics can be a very useful tool for
nonintegrable solitons.
Vibrating kink.—There is a canonical moduli space of

static kinks ϕ̃ðx; aÞ ¼ tanhðx − aÞ having energy (mass)
4=3 and solving the Bogomolny equation ϕ0 ¼ 1 − ϕ2,
with the kink location a as modulus. This extends to a
2-dimensional moduli space of kinks deformed by the
shape mode

ϕ̃ðx; a; AÞ ¼ tanhðx − aÞ þ A
sinhðx − aÞ
cosh2ðx − aÞ : ð7Þ

Treating a and A as time dependent and substituting into
Eq. (1) gives an effective Lagrangian for a moving,
vibrating kink of the form

LK½a; A� ¼
1

2
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2 − VðAÞ: ð8Þ

The kinetic terms define a diagonal, wormhole metric on
the moduli space, with components

gaaðAÞ ¼
4

3
þ π

2
Aþ 14

15
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3
; ð9Þ

and the potential is

VðAÞ ¼ 4

3
þ A2 þ π

8
A3 þ 2

35
A4: ð10Þ

A 2-dimensional wormhole is a pair of planes smoothly
connected by a curved throat; here, the throat is located at

A ≈ −0.84, where gaa is minimal and the curvature is
maximal. a would normally be an angular variable, but a
has infinite range here, so the moduli space is the universal
cover of the wormhole. Note that VðAÞ is not symmetric
with respect to the throat location.
The vibrationally excited kink motion is modeled by the

ordinary differential equation dynamics
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which can be integrated using the conserved momentum
and energy
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A key observation is that there is a stationary solution
where the kink moves with constant velocity _a ¼ v and a
constant shape mode amplitude,

A ¼ π

8
v2 þ π

8
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v4 þOðv6Þ; ð15Þ

obtained by solving Eq. (12) with Ä ¼ 0. The nonzero
amplitude represents an approximate Lorentz contraction
of the kink. Indeed, the exact moving kink solution
ϕðx; tÞ ¼ tanh½ðx − vtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
� has this expansion for

small v:

ϕðx; tÞ ¼ tanhðx − vtÞ þ v2

2

x − vt
cosh2ðx − vtÞ : ð16Þ

The function in the second term is the “Derrick mode”
arising from infinitesimal rescaling of the kink. The
normalized shape mode and Derrick mode, respectively,

ηðxÞ¼
ffiffiffi
3

2

r
sinhðxÞ
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3ffiffiffiffiffiffiffiffiffiffiffiffi
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have the inner product ðη; ηDÞ ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=½8ðπ2 − 6Þ�

p
≈ 0.98

and so are very similar. At Oðv2Þ, the coefficients of these
normalized modes for the stationary, moving kink have
the ratio
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similarly close to 1. So the shape mode Lorentz contracts
the kink to a good approximation. This can be exploited in
the initial KAK collision data. Further oscillations of the
shape mode describe a vibrating kink in motion, approxi-
mating a Lorentz-boosted, vibrating kink at rest.
Kink-antikink moduli space.—Following Sugiyama [1],

we model KAK configurations as simple kink-antikink
superpositions, with a constant field shift by 1 to satisfy the
boundary conditions. We focus on configurations with a
reflection symmetry of about x ¼ 0 and so assume the kink
and antikink are located at ∓a and have equal shape mode
amplitudes A. These configurations are

ϕ̃ðx; a; AÞ ¼ tanhðxþ aÞ − tanhðx − aÞ − 1

þ A

�
sinhðxþ aÞ
cosh2ðxþ aÞ −

sinhðx − aÞ
cosh2ðx − aÞ

�
; ð19Þ

and they define a 2-dimensional moduli space. The shape
modes are not deformed by the presence of the partner, so
we say they are frozen, even though their amplitudes are
not. The main disadvantage of Eq. (19) is the null-vector
problem [6]. Because ∂ϕ̃=∂Aja¼0 ¼ 0, the components gAA
and gaA of the moduli space metric vanish at a ¼ 0, so A is

not globally a good coordinate. This leads to apparent
singularities in the moduli space dynamics.
This problem is resolved by redefining the coordinate A

as B= tanhðaÞ [7]. Then
ϕ̃ðx;a;BÞ¼ tanhðxþaÞ− tanhðx−aÞ−1

þ B
tanhðaÞ

�
sinhðxþaÞ
cosh2ðxþaÞ−

sinhðx−aÞ
cosh2ðx−aÞ

�
ð20Þ

is a moduli space of field configurations with coordinates
ða; BÞ ∈ R2 having a globally well defined metric and
potential. In particular, for a close to 0,

ϕ̃ðx;a;BÞ≈ 2a
cosh2ðxÞþ2B

�
2

cosh3ðxÞ−
1

coshðxÞ
�
−1; ð21Þ

a linear expression in both coordinates. The derivatives of ϕ̃
w.r.t. a and B are nonvanishing functions, which solves the
null-vector problem.
The effective model has the form of Eq. (2) with

ðX1; X2Þ ¼ ða; BÞ. The nondiagonal metric gij can be
determined analytically from Eq. (3) and the potential V
from Eq. (4):

gaa ¼
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V ¼ 8
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þ 19915e12a − 19915e16a þ 7980e18a − 14119e20a þ 2688e22a − 987e24a þ 28e26a þ e28a�: ð23Þ

PHYSICAL REVIEW LETTERS 127, 071601 (2021)

071601-3



Despite the denominator factors, these expressions are
regular at a ¼ 0. We show the Ricci scalar curvature in
Fig. 1. The curvature for large jaj matches that of the
wormhole associated with a single kink and is maximal at
A ≈ −0.84 (B ≈�0.84). Because there is a kink and
antikink, the metric is doubled and the curvature
halved. The potential is shown in Fig. 2; it is asymmetric
in a and B.
Effective model dynamics.—Before discussing KAK

collisions in the effective model, let us recall that, in the
field theory, the main feature is a fractal structure as a
function of the initial velocity vin distinguishing annihila-
tion to the vacuum and reflection channels; see Fig. 3. The
figure shows the time evolution of the field ϕ at x ¼ 0 and
the final velocity vout of the outgoing kink, both as
functions of the incoming kink velocity vin. If the kink
and antikink annihilate, vout is shown as zero. During
annihilation, the incoming kink and antikink form a long-
lived, quasiperiodic bound state, a “bion,” that slowly
decays by emission of radiation. In the reflection channel,
the kink and antikink perform a small number of “boun-
ces,” then reemerge and separate. The pattern of channels
and of particular n-bounce windows is fractal. For example,
the first 2-bounce window occurs for 0.1920 < vin <
0.2029 and repeats infinitely often as vin increases.

These windows are surrounded by 3-bounce windows,
and this picture is replicated for higher-bounce windows.
Bion formation occurs in the intermediate velocity inter-
vals, which appear in the figure as “bion chimneys.”
Overall, the fractal structure occurs in the approximate

range vin ¼ 0.18–0.26. For smaller initial velocities, there
is always bion formation (a wide bion chimney) leading to
annihilation, while for larger velocities there is just one
bounce before the kink and antikink reflect back to infinity.
We now turn to the effective model [Eq. (2)], defined on

the moduli space with coordinates ða; BÞ. The dynamical
ordinary differential equations require appropriate initial
conditions. We assume the incoming kink and antikink
approach symmetrically and are not vibrating and so
impose the relation Eq. (15) between the initial shape
mode amplitude and velocity. The field configuration at
each instant is given by Eq. (20).
In the effective model, there is similar field evolution and

fractal behavior of velocities as in the field theory, includ-
ing multibounce windows; see Fig. 4. Fractal behavior now
occurs over a wider range of velocities, up to vin ≃ 0.282.
Because there is no radiation mechanism, the outgoing

FIG. 2. The potential Vða; BÞ with equipotential contours
V ¼ 2.5, 2.6, 2.667.

FIG. 3. KAK scattering in ϕ4 field theory.

FIG. 1. Tanh of the Ricci scalar curvature.

FIG. 4. KAK scattering in the effective model.
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velocities tend to be larger than in the field theory. Despite
this, the velocity patterns match surprisingly well apart
from a small shift δvin ≃ 0.02. The bion oscillations also
match well.
It must be stressed that the fractal velocity structure has

not previously been reproduced in any effective model
derived from the ϕ4 theory [4]. Phenomenological models
revealing a chaotic behavior of the positions of the bounce
windows, and bion chimneys had little to do with the
original theory and required arbitrary calibration of
couplings.
Summary.—We have investigated an effective, collective

coordinate model of symmetric kink-antikink dynamics in
ϕ4 theory: a Lagrangian dynamics on a curved 2-dimen-
sional moduli space with a potential, where the coordinates
are the KAK separation and the (equal) amplitudes of the
KAK shape modes. Two crucial features are (i) initial
conditions, including excitation of the kink shape modes,
modeling Lorentz contractions; (ii) regularization of the
moduli space metric through use of an improved set of
coordinates. There appears to be no problem using a fixed
(frozen) shape mode, even though such a mode can
disappear into the continuum spectrum as the KAK
separation decreases [11].
The model gives good results for the fractal velocity

pattern of KAK scattering, with its multibounce windows,
and also for the field evolution of bions, where the kink and
antikink are captured. It would be desirable to add a
dissipation mechanism, modeling the coupling to radiation,
to have an upper bound on the number of bounces and for
the bion to decay to the vacuum.
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