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Metabolic impact of protein feeding prior
to moderate-intensity treadmill exercise in
a fasted state: a pilot study
Bradley T. Gieske1, Richard A. Stecker1, Charles R. Smith2, Kyle E. Witherbee1, Patrick S. Harty1, Robert Wildman3 and
Chad M. Kerksick1*

Abstract

Background: Augmenting fat oxidation is a primary goal of fitness enthusiasts and individuals desiring to improve
their body composition. Performing aerobic exercise while fasted continues to be a popular strategy to achieve this
outcome, yet little research has examined how nutritional manipulations influence energy expenditure and/or fat
oxidation during and after exercise. Initial research has indicated that pre-exercise protein feeding may facilitate fat
oxidation while minimizing protein degradation during exercise, but more research is needed to determine if the
source of protein further influences such outcomes.

Methods: Eleven healthy, college-aged males (23.5 ± 2.1 years, 86.0 ± 15.6 kg, 184 ± 10.3 cm, 19.7 ± 4.4%fat) completed
four testing sessions in a randomized, counter-balanced, crossover fashion after observing an 8–10 h fast. During each
visit, baseline substrate oxidation and resting energy expenditure (REE) were assessed via indirect calorimetry. Participants
ingested isovolumetric, solutions containing 25 g of whey protein isolate (WPI), 25 g of casein protein (CAS),
25 g of maltodextrin (MAL), or non-caloric control (CON). After 30 min, participants performed 30 min of
treadmill exercise at 55–60% heart rate reserve. Substrate oxidation and energy expenditure were re-assessed
during exercise and 15 min after exercise.

Results: Delta scores comparing the change in REE were normalized to body mass and a significant group x
time interaction (p = 0.002) was found. Post-hoc comparisons indicated the within-group changes in REE
following consumption of WPI (3.41 ± 1.63 kcal/kg) and CAS (3.39 ± 0.82 kcal/kg) were significantly greater
(p < 0.05) than following consumption of MAL (1.57 ± 0.99 kcal/kg) and tended to be greater than the non-
caloric control group (2.00 ± 1.91 kcal/kg, p = 0.055 vs. WPI and p = 0.061 vs. CAS). Respiratory exchange ratio
following consumption of WPI and CAS significantly decreased during the post exercise period while no
change was observed for the other groups. Fat oxidation during exercise was calculated and increased in all groups
throughout exercise. CAS was found to oxidize significantly more fat (p < 0.05) than WPI during minutes 10–15
(CAS: 2.28 ± 0.38 g; WPI: 1.7 ± 0.60 g) and 25–30 (CAS: 3.03 ± 0.55 g; WPI: 2.24 ± 0.50 g) of the exercise bout.

Conclusions: Protein consumption before fasted moderate-intensity treadmill exercise significantly increased post-
exercise energy expenditure compared to maltodextrin ingestion and tended to be greater than control. Post-exercise
fat oxidation was improved following protein ingestion. Throughout exercise, fasting (control) did not yield more fat
oxidation versus carbohydrate or protein, while casein protein allowed for more fat oxidation than whey. These results
indicate rates of energy expenditure and fat oxidation can be modulated after CAS protein consumption prior to
moderate-intensity cardiovascular exercise and that fasting did not lead to more fat oxidation during or after exercise.
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Background
Dietary fasting strategies have become increasingly popu-
lar in recent years to improve metabolic health, augment
weight loss, and enhance body composition [1–3]. One
common fasting strategy utilized by individuals seeking to
maximize fat loss involves performing moderate intensity
cardiovascular exercise following an overnight fast. Propo-
nents of fasted cardiovascular exercise assert that the
strategy increases rates of fat oxidation compared to post-
prandial exercise due to decreases in glycogen stores, low
levels of circulating insulin, elevated lipolytic hormones
and increased free fatty acid availability that characterize
the post-absorptive state [4, 5]. Individuals also tend to ex-
trapolate that an acute increase in fat oxidation translates
to reductions in body fat over time when in fact, this
outcome is multifaceted and more contingent upon en-
ergy balance changes over time than acute substrate
utilization changes [6]. However, reports concerning
the efficacy of post-absorptive exercise for facilitating
weight loss and improving various metabolic health
markers have been mixed. Chronic fasted endurance
training has been shown to increase rates of both per-
ipheral and intramyocellular fat oxidation [4, 7], upreg-
ulate maximal rates of oxidative enzyme activity [4],
blunt intra-exercise glycogen breakdown [7], and im-
prove both insulin sensitivity and glucose tolerance
during a hypercaloric, high-fat diet compared to iden-
tical training conducted after feeding [8]. Furthermore,
previous studies have demonstrated via whole-room
indirect calorimetry that morning post-absorptive car-
diovascular exercise resulted in greater accumulated
fat oxidation across 24 h compared to intensity-
matched postprandial exercise in both males [9, 10]
and females during the early follicular phase of the
menstrual cycle [11]. However, two recent training
studies have reported similar rates of fat loss between
females who performed either fasted or postprandial
steady state (50 min at 70% heart rate reserve, 3 days
per week) aerobic exercise [12] and high-intensity
interval training [13] during extended periods of cal-
oric restriction, thus reiterating the notion that caloric
restriction is the primary contributor to fat loss rather
than acute changes in fat oxidation.
One potential downside of post-absorptive cardiovascu-

lar exercise is the potential for breakfast to be delayed
significantly or even skipped completely by exercising in-
dividuals. The consumption of high-protein morning
meals has been shown to increase feelings of satiety dur-
ing the day [14], reduce subsequent snacking behaviors
[15], improve body composition [16], and potentiate
weight loss in conjunction with a hypocaloric diet [17]. In
addition, dietary protein exerts an anti-catabolic stimulus
when ingested before or during exercise, providing a prac-
tical rationale for exercising individuals who may wish to

minimize protein degradation during endurance exer-
cise modalities [18]. Furthermore, preliminary evidence
suggests that the acute ingestion of a high-protein
meal immediately before exercise may have beneficial
effects on post-exercise energy expenditure compared
to pre-exercise carbohydrate ingestion [19, 20] or
fasted conditions [5]. Indeed, research by Wingfield
and investigators [20] used a crossover study design to
examine the acute impact of protein or carbohydrate
feedings prior to moderate aerobic exercise, high-in-
tensity interval training, or resistance exercise sessions.
When a single dose of whey protein was consumed be-
fore exercise, significantly greater increases in energy
expenditure and fat oxidation were found to occur
during the hour after exercise. Hackney and colleagues
[19] noted that this effect of pre-exercise whey protein
feeding on resting metabolism appears to last for at
least 24 h after resistance exercise, though rates of fat
oxidation were not different between carbohydrate or
protein treatments. Likewise, Paoli et al. [5] reported
that consuming a protein-rich meal prior to
moderate-intensity cardiovascular exercise resulted in
significant increases in resting metabolism for 24 h
after exercise. While the meal induced acute elevations
in RER relative to a control (fasted) condition, rates of
fat oxidation were significantly lower at 12 and 24 h
post-exercise in those who consumed a pre-exercise
meal.
Clearly, targeted research must be conducted to fur-

ther investigate the interaction between nutritional
and exercise strategies which are purported to
maximize fat loss. Given the demonstrated benefits of
pre-exercise protein ingestion, performing cardiovas-
cular exercise following a protein feeding may prove to
be a more effective fat loss strategy than fasted exer-
cise of similar intensity. Protein ingestion may improve
short-term metabolic outcomes, as subtle elevations in
RER due to protein intake may be offset by subsequent
elevations in resting energy expenditure (REE) to in-
crease the total quantity of fat oxidized during and
after lower intensity, otherwise fasted exercise. How-
ever, as no investigation has evaluated the effect of dif-
ferent types of protein on metabolic outcomes during
and after moderate-intensity aerobic exercise, it is rele-
vant to examine whether different sources of protein
differ in their effect on postprandial metabolism due to
differing absorption kinetics and amino acid profiles
[21]. Upon ingestion, whey protein passes quickly
through the stomach and rapidly increases plasma
amino acid levels, while casein gels and condenses in
the stomach, resulting in delayed gastric emptying and
a prolonged reduction in whole-body protein catabol-
ism [22, 23]. Furthermore, whey and casein protein
have been shown to differ greatly in their effect on
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postprandial metabolism, as the thermic effect of food
(TEF) of a meal containing whey protein was found to
be significantly greater than a similar meal containing
casein [24]. Thus, the purpose of the current study was
to quantify the effects of isocaloric and isonitrogenous
pre-exercise feedings of whey protein isolate (WPI)
and casein protein (CAS) on fat oxidation and energy
expenditure during and after a bout of moderate-inten-
sity treadmill exercise compared to isocaloric carbohy-
drate and control (fasted) conditions. It was
hypothesized that pre-exercise protein ingestion would in-
crease post-exercise energy expenditure and fat oxidation
compared to both carbohydrate and fasting conditions. It
was further hypothesized there would be no difference in
energy expenditure and fat oxidation between the two
sources of protein examined in this study.

Methods
Overview
This study was completed as a randomized, double-
blind, placebo-controlled, crossover study design. All
study participants completed four identical testing ses-
sions. Participants completed all testing between 6:00–
9:00 A.M. and all testing sessions for each participant were
scheduled to begin at identical times. The order upon
which all four conditions were completed was randomized
using random allocation software. Prior to participation,
all participants completed a familiarization session that
consisted of providing their informed consent, determin-
ation of demographic information, submaximal exercise
testing to determine heart rate prescription, and further
orientation to the study protocol. Prior to each testing ses-
sion, participants abstained from exercise for 24 h and ob-
served a ten hour fast with only water ingestion being
permitted during the fasting period. Prior to the first test-
ing session, study participants completed a four-day diet-
ary record that was copied and provided to all participants
for them to replicate during the four days preceding each
subsequent study visit. Participants were instructed to
consume identical meals the evening before arriving for
testing. Upon arrival, participants were weighed and com-
pleted a resting metabolic rate assessment over a 25-min
time period using indirect calorimetry for determination
of baseline rates of substrate oxidation and energy ex-
penditure. Resting heart rate was determined upon com-
pletion of each initial resting metabolic rate assessment.
Prior to exercise, participants were then randomized to in-
gest in a double-blind fashion one of four similarly colored
and flavored isovolumetric (12 fluid ounces of cold water)
solutions consisting of approximately 25 g of a whey pro-
tein isolate, 25 g of casein protein, 25 g of maltodextrin, or
a non-caloric control. Participants then sat quietly for 30
min before completing a standardized warm-up protocol
consisting of whole-body dynamic movements that lasted

approximately ten minutes. Participants then completed
30min of treadmill exercise at 55% heart rate reserve. Ex-
ercise heart rate was calculated by first predicting maximal
heart rate (Max HR = 220 – age) and then adopting the
methods of Karvonen et al. [25] to determine exercise
heart rates. Determination of maximal aerobic capacity
was not completed in this study as the intensity completed
throughout the exercise bout was recorded minute by mi-
nute throughout the first testing visit and replicated for all
subsequent testing sessions. Throughout each exercise
bout, indirect calorimetry was continuously assessed while
heart rates and ratings of perceived exertion (RPE) were
assessed every minute. Upon completion of the exercise
bout, each participant was provided with 12 fluid ounces
of cold water and rested quietly. Approximately 15min
after completing the exercise bout, study participants then
completed a second resting metabolic rate assessment
using identical procedures. All metabolic rate assessments,
supplement ingestion, warm-up, and treadmill exercise
were directly supervised by a study investigator.

Subjects
Eleven healthy, college-aged males (23.5 ± 2.1 years,
86.0 ± 15.6 kg, 184 ± 10.3 cm, 19.7 ± 4.4% fat) com-
pleted all four testing conditions. Participants were re-
quired to ingest no more than 300 mg of caffeine per
day and abstained from any form of nutritional supple-
mentation other than protein and multi-vitamins for
30 days prior to beginning the study protocol. All par-
ticipants were recreationally active on most days of the
week involving both endurance and resistance-based
activities. None of the study participants were com-
petitive athletes. All participants completed medical
histories prior to participation and were excluded if
they were currently diagnosed or being treated for any
metabolic, renal, hepatic, cardiac, respiratory, musculo-
skeletal, or psychiatric disease. The study was approved by
the Lindenwood University IRB (protocol # 861656–2,
approval date: 3/4/2016), and all participants provided
their written consent on an IRB-approved consent form
prior to any data collection. Participants were recruited
using flyers, social media, and word of mouth.

Testing procedures
Demographics
Prior to their first study visit, participants had their
standing height determined with their shoes removed
while standing erect. Prior to each subsequent testing
session, participants had their body mass determined
on a Tanita model BWB-627A Class III digital scale
(Arlington Heights, IL). Resting heart rate values were
then assessed for later calculation of exercise intensity.
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Body composition
Body composition assessments were determined via
dual-energy x-ray absorptiometry (DEXA) (Hologic QDR
Discovery A, Bedford, MA). All participants underwent
body composition assessment after observing at least an
eight hour fast from all calorie-containing nutritional
agents. In addition, participants refrained from physical
activity for at least 24 h prior to the DEXA scan [26].
The machine was calibrated each day before any body
composition testing and all scans were analyzed with the
manufacturer-included software package (Hologic APEX
Software, Version 4.5.3) using normative data derived
from the 2008 National Health and Nutrition Examin-
ation Survey (NHANES) [27].

Dietary records
Dietary intake was assessed by having study partici-
pants complete a four-day food log that consisted of
recording all food and fluid consumed over three
weekdays and one weekend day prior to arriving for
their first study visit. Each participant was instructed
by a study team member on how to accurately
complete a food record along with being provided
multiple visual comparisons of certain foods to help
with portion size estimation. All food records were
analyzed by the same research team member using
Vitabot online nutritional analysis software (Vitabot,
Riverdale, MD). All study participants returned a
completed food record. The four-day food log was
copied and provided to all participants for them to
replicate during the four days preceding each subse-
quent study visit.

Supplementation protocol
In a randomized, double-blind, and crossover fashion
participants were assigned to ingest one of four supple-
mentation conditions: 25 g of a whey protein isolate
(ISO100, Dymatize, Dallas, TX), 25 g of casein protein
(ELITE Casein, Dymatize, Dallas, TX), 25 g of malto-
dextrin, or a non-caloric control. The maltodextrin and
protein conditions were blinded by the manufacturer
and the blinding codes were not revealed to research
team members until completion of data collection. All
drink solutions were similarly colored and flavored.
Likewise, all test solutions were isovolumetric (12 fluid
ounces of cold water), with the protein and carbohy-
drate beverages being isocaloric. Participants were
given three minutes to consume their assigned supple-
ment and upon ingestion were required to remain in a
quiet room with low levels of stimulation for 30 min.
During the last five minutes of the low-stimulation
period, a standardized, dynamic warm-up consisting of
whole-body dynamic movements was completed prior
to beginning the treadmill exercise bout.

Resting measurements
All resting and exercising metabolic measures were
completed using a ParvoMedics TrueOne 2400 meta-
bolic measurement system (ParvoMedics, Sandy, UT).
Each morning the indirect calorimetry system was cali-
brated by a research team member to ensure variations
in measured oxygen and carbon dioxide and air flow
rates were less than 2%. All subsequent tests were com-
pleted in an isolated, thermoneutral room with the
lights illuminated. A blanket was provided and a clear
plastic hood and drape was placed over each partici-
pant’s head and shoulders. The flow rate on the dilution
pump was set to maintain approximately 0.8–1.2%
carbon dioxide. Once an appropriate flow rate was
established, study participants remained awake and
motionless in a supine position for 20–25 min. The re-
corded data was visually inspected and a five-minute
window where VO2 (in L/min) changed less than 5%
was identified. From this group of data, resting energy
expenditure values (in kcals/day) were calculated, and
the average of all data points was computed.

Treadmill exercise protocols
All testing conditions were completed on a Woodway
Desmo-Evo treadmill (Woodway USA, Inc., Waukesha,
WI USA). During the familiarization session and prior
to completing the testing conditions, all participants
completed a graded, non-maximal exercise protocol to
identify the approximate speed and grade combination
that would elicit approximately 55% of each partici-
pant’s heart rate reserve (HRR) [25]. This protocol re-
quired each participant to walk for two minutes
starting at a speed of 107.2 m/minute (4.0 mph) and 0%
grade. Speed was then maintained at 107.2 m/minute
while the grade was increased by 2% every two minutes
until the observed heart rate values reached the desired
heart rate. Each participant was outfitted with a Polar
FT1 heart rate transmitter and chest strap (Polar Elec-
tro Inc., Kempele, Finland). Collected heart rates were
recorded every minute, and the protocol was termi-
nated when heart rate values equivalent to 55% of each
participant’s heart rate reserve were achieved.
Once the desired speed and grade combination were

determined, each participant then completed separate
30-min bouts of treadmill exercise at the individualized
speed and grade combination that had been previously
shown to elicit 55% of heart rate reserve. To match
work completed across all four conditions, no changes
in speed or grade were made throughout any portion of
the completed exercise bouts. Indirect calorimetry was
used to continuously assess oxygen consumption and
substrate oxidation rates throughout each bout of exer-
cise using a ParvoMedics TrueOne 2400 metabolic
measurement system (ParvoMedics, Sandy, UT). On
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subsequent days, the metabolic cart was calibrated
prior to testing following identical procedures. Heart
rate was also continuously assessed using a Polar FT1
heart rate transmitter worn on the wrist and chest. Rat-
ing of perceived exertion (RPE) was assessed every
minute on a 6–20 scale per the procedures of Borg
[28]. Substrate oxidation rates (every five minutes) were
calculated according to the methods of Weir et al. [29].
To further examine the effects of the nutritional inter-
ventions, the total fat oxidized during each five-minute
period was calculated using standard thermal equiva-
lents of oxygen [30].

Statistical analysis
All data is presented as means ± standard deviations
and was entered into Microsoft Excel (Seattle, WA
USA) software and analyzed using IBM SPSS 23
(Armonk, NY USA). Energy expenditure data was nor-
malized to body mass in kilograms. Data was first
checked for normality using standardized skewness
and kurtosis values. Log transformations were per-
formed in cases where the assumption of normality
was violated. However, all statistical outcomes did not
change when using transformed data, therefore
non-transformed data is presented throughout the
paper. Mixed factorial ANOVAs (group x time) with
repeated measures on time were used to assess the
main effects for time and group as well as their
interaction (group x time) for all outcome measures.
A significance level of 0.05 was used to guide statis-
tical decisions. A trend was decided a priori to be
interpreted as any reported p-value that fell between
p = 0.051–0.10. To fully decompose main and inter-
action effects, delta values were computed and
graphs illustrating individual responses were com-
puted in addition to calculating within-group effect
sizes for each condition as well as the effect size of
each nutrient condition (WPI, CAS, and MAL) in
comparison to MAL and CON, respectively. All ef-
fect sizes were interpreted as small (d = < 0.2), mod-
erate (d = 0.5), and large (d = 0.8) according to the
methods of Cohen [31]. One-way ANOVAs with
Tukey post-hoc comparisons were used to identify
differences between testing conditions. Pearson cor-
relations were computed to assess the presence of
any relationships within the data. All results are pre-
sented as mean ± standard deviation.

Results
Dietary intake
The average four-day diet composition reported by
participants prior to Visit 1 was as follows: 2446 ± 800
kcal (28.44 ± 9.30 kcal/kg), 132 ± 56 g (1.53 ± 0.65 g/kg)
protein, 235 ± 101 g (2.73 ± 1.17 g/kg) carbohydrate,

99 ± 37 g (1.15 ± 0.43 g/kg) fat. Each participant was
instructed to replicate this dietary intake across the
remaining testing visits.

Exercise intensity
One-way ANOVA revealed no significant differences
(p = 0.743) in intra-exercise heart rate, rating of per-
ceived exertion (p = 0.985), or oxygen consumption
(p = 0.993) between conditions, suggesting that intensity
was sufficiently standardized across all testing sessions.

Energy expenditure
Pre-treatment and pre-exercise rates of energy
expenditure (Absolute: 1873 ± 189 kcal/day, Relative:
22 ± 2 kcal/kg/day) were not significantly different
across conditions (p > 0.99). Rates of pre-exercise (pre-
treatment) and post-exercise (post-treatment) resting en-
ergy expenditure (REE) were normalized to body mass (in
kg) and a significant group x time interaction (p = 0.002)
was found. To highlight the differences and changes
across each exercise session, total estimated EE during ex-
ercise was quantified and delta scores were calculated by
subtracting pre-treatment/exercise energy expenditure
from post-exercise energy expenditure. One way
ANOVA revealed significant differences between the
delta scores (p = 0.002) and post-hoc comparisons indi-
cated the within-group change in REE following con-
sumption of WPI (3.41 ± 1.63 kcal/kg) was significantly
greater (p < 0.05) than the within-group change in REE
following consumption of MAL (1.57 ± 0.99 kcal/kg,
p = 0.010) and tended to be greater than the non-feed-
ing control group (2.00 ± 1.91 kcal/kg, p = 0.055). This
trend is notable, as 73% of the participants during the
WPI condition exhibited a change in REE toward the
direction of significance. The within group change in
REE following consumption of CAS (3.38 ± 0.82 kcal/
kg) was greater than those following consumption of
MAL (p = 0.012) and tended to be greater than the
non-feeding control group (p = 0.061) (Fig. 1). Individ-
ual responses for each condition can be found in Fig. 2.
A within-condition effect size for each nutrient (WPI,
CAS, and MAL) was computed in addition to effect
sizes comparing relevant nutrient responses to the
changes seen in MAL and CON and can be found in
Table 1. When compared to MAL and CON, the effect
sizes for WPI and CAS were moderate to large (Table
1). Further, the number of participants during each
condition that yielded a change in energy expenditure
that was greater than the grand mean of all four con-
ditions was greatest during CAS (9 out of 11 partici-
pants = 81.8%) followed by WPI (6 out of 11
participants = 54.5%), then MAL (2 out of 11 partici-
pants = 18.2%), and finally CON (5 out of 11 partici-
pants = 45.4%). One way ANOVA revealed that total
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estimated EE during exercise was significantly differ-
ent between conditions (p = 0.002), and post-hoc
comparisons showed that total intra-exercise EE was
significantly higher (p < 0.05) after ingestion of WPI
(345 ± 31 kcal), CAS (362 ± 32 kcal), and MAL (349.17
± 70 kcal) when compared to CON (293 ± 37 kcal).

Substrate utilization
Post-exercise responses
No significant group x time interaction effect (p = 0.116)
was found for respiratory exchange ratio (RER) data
between pre-exercise and post-exercise resting metabolic
rate measurements for all four experimental conditions
(Fig. 3). To this end, RER significantly decreased (p < 0.05)
from baseline following WPI (d = − 0.77) and CAS
(d = − 0.41) consumption during the post-exercise meas-
urement period while no such change (p > 0.05) was seen
for the MAL (d = 0.04) or the non-feeding control groups

(d = 0.01). No changes between WPI and CAS throughout
the post-exercise measurements were noted. Individual
responses (Fig. 4) and effect sizes for all changes seen in
respiratory exchange ratio data were computed and can be
found in Table 1. The number of participants during each
condition that yielded a change in respiratory exchange ra-
tio that was lower than all four conditions combined was
similar during CAS (7 out of 11 participants = 81.8%) and
WPI (7 out of 11 participants = 81.8%) when evaluated
against MAL (3 out of 11 participants = 27.2%) and CON
(3 out of 11 participants = 27.2%).

Intra-exercise responses
Intra-exercise (every five minutes) substrate oxidation
rates were assessed and compared between feeding
conditions. A main effect for time (p < 0.001) and a
non-significant group x time interaction effect (p = 0.188)
were identified for RER. Estimations of total fat oxidation

Fig. 1 Delta scores (post-exercise minus pre-exercise of resting energy expenditure levels normalized to body mass in kg). WPI = Whey protein
isolate; CAS = Casein; MAL =Maltodextrin; CON = Control. † denotes a significant (p < 0.05) difference between WPI and MAL. * denotes a significant
(p < 0.05) difference between CAS and MAL

Fig. 2 Individual responses of the delta value (post-exercise – baseline) in relative energy expenditure (kcals/kg/day). WPI = Whey protein isolate;
CAS = Casein; MAL =Maltodextrin; CON = Control. Small black bars within each condition represents the average value for that experimental condition.
Dotted line represents the grand mean for all four experimental conditions
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were made for every 5-min time period through exercise.
A significant main effect for time (p < 0.001) and a signifi-
cant group x time interaction (p = 0.028) was found for
total fat oxidation. To fully decompose the significant
interaction effect, one-way ANOVAs were computed at
each time point and revealed significant between-group
differences in 5-min fat oxidation at 5–10, 10–15min and
25–30min of exercise (Fig. 6). Post-hoc follow-ups re-
vealed that significantly more fat (p < 0.05) was oxidized
after consumption of casein compared to WPI during mi-
nutes 10–15 (CAS: 2.28 ± 0.38 g; WPI: 1.7 ± 0.60 g) and
25–30 (CAS: 3.03 ± 0.55 g; WPI: 2.24 ± 0.50 g) of the
exercise bout. Additionally, MAL consumption was
found to oxidize greater amounts (p < 0.05) of fat in

comparison to WPI during minutes 5–10 of exercise
(MAL: 2.23 ± 0.42 g; WPI: 1.64 ± 0.68 g) (Fig. 6).

Discussion
The purpose of this investigation was to compare the
effects of consuming supplemental levels of whey and
casein, as well as carbohydrate, 30 min prior to a mod-
erate intensity bout of treadmill exercise in comparison
to completing an identical bout of exercise in a fasted
state. The findings from this study indicate that exer-
cising while fasted did not appreciably impact energy
expenditure or substrate utilization either during or
after exercise. Pre-exercise casein protein supplemen-
tation significantly increased rates of post-exercise fat
oxidation and energy expenditure while whey protein
resulted in less total fat oxidized during the exercise
bout compared to casein (Fig. 5 and Fig. 6).
Results from the present study indicate that

pre-exercise protein consumption (WPI: 15.9 ± 8.3%
and CAS: 15.4 ± 3.5%) results in significant increases
in resting energy expenditure following fasted
moderate-intensity exercise compared to an isocaloric
carbohydrate feeding (MAL: 7.3 ± 4.8%) or pre-exer-
cise fasting (CON: 8.9 ± 6.7%). These findings align
with the conclusions of similar investigations that
evaluated the relationship between acute pre-exercise
nutrition interventions and subsequent changes in
post-exercise resting energy expenditure. Wingfield et
al. [20] reported that an acute protein feeding resulted
in significant elevations in resting energy expenditure
for 60 min following exercise compared to a
pre-exercise carbohydrate feeding. Such conclusions
are supported by a well-developed body of research
reporting that the consumption of high protein meals
or short-term high protein diets results in elevated
rates of postprandial dietary thermogenesis compared

Table 1 Effect size calculations

Relative Energy Expenditure (kcal/kg/day)

Effect Size
Within-Group

Effect Size
(Nutrient vs. CON)

Effect Size
(Nutrient vs. MAL)

WPI 1.15 0.91 1.36

CAS 1.32 1.15 2.00

MAL 0.63 − 0.28 –

CON 0.74 – 0.28

Respiratory Exchange Ratio

Effect Size
Within-Group

Effect Size
(Nutrient vs. CON)

Effect Size
(Nutrient vs. MAL)

WPI −0.77 −0.65 −0.97

CAS −0.41 − 0.56 −1.04

MAL 0.04 0.04 –

CON 0.01 – −0.04

WPI =Whey protein isolate; CAS = Casein; MAL =Maltodextrin; CON = Control.
Effect size within-group = (post-exercise – pre-exercise) / pooled SD. Effect Size
(Nutrient vs. CON) = Post-delta – Pre delta / pooled SD. Effect Size (Nutrient vs.
MAL) = Post-delta – Pre-delta / pooled SD

Fig. 3 Changes in respiratory exchange ratio before and after exercise. Whey and casein significantly decreased from pre-exercise values in comparison
to fasted control (p < 0.05)
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to lower-protein controls [24, 32–35]. Interestingly, a
recent report has suggested that moderate intensity ex-
ercise may potentiate dietary thermogenesis. Kang et
al. [36] reported that the TEF of a 721-kcal meal (23%
PRO, 41% CHO, 36% FAT) consumed by subjects 60
min before moderate intensity exercise at 50% peak
oxygen consumption (VO2peak) resulted in a two-fold
increase in dietary thermogenesis compared to the iso-
lated TEF of the meal while the subjects remained at rest.
The results reported by Kang et al. [36] suggest that
pre-exercise feeding significantly potentiates energy ex-
penditure during exercise in both males and females, find-
ings which support the conclusions of Davis and
colleagues [37, 38]. Likewise, results reported by Stiegler et
al. [39] support the notion that exercise-induced

potentiation of dietary thermogenesis seems to only occur
if exercise is performed after a meal. While such outcomes
were not directly assessed by the design of the present
study, such an effect would nonetheless align with the re-
sults of this study.
It is vital to mention that because an increase in rest-

ing energy expenditure was detected after every condi-
tion in the present study, a portion of the increased
REE likely resulted from excess post-exercise oxygen
consumption (EPOC) [40], particularly because of the
close proximity that existed between cessation of the
exercise bout and post-exercise REE measurements.
However, Paoli et al. [5] highlighted in their discussion
that an exercise bout consisting of 36 min of treadmill
exercise at 65% HRR was not of sufficient intensity to

Fig. 4 Individual responses of the delta value (post-exercise – baseline) in respiratory exchange ratio (RER). WPI = Whey protein isolate; CAS =
Casein; MAL =Maltodextrin; CON = Control. Small black bars within each condition represents the average value for that experimental condition.
Dotted line represents the grand mean for all four experimental conditions

Fig. 5 Estimated total fat oxidization throughout entire 30-min bout of moderate-intensity cardiovascular exercise. Values were calculated by
multiplying each respective 5-min average of VO2 and RER against standard thermal equivalents and summed. Results were analyzed with One-
way ANOVA. WPI =Whey protein isolate; CAS = Casein; MAL =Maltodextrin; CON = Control. * denotes a significant (p < 0.05) difference between
WPI and CAS
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result in appreciable EPOC after 12 h of recovery.
Because the exercise intervention used in the present
study was of similar duration (30 min) and intensity
(~ 60% HRR), it is likely that EPOC played a relatively
minor role in post-exercise metabolic changes. Similarly,
the exercise intensity implemented in the present inter-
vention and others falls within the range known to elicit
maximal fat oxidation (45–65% maximal oxygen con-
sumption (VO2max) [41]. Thus, the conclusions of this
study regarding substrate utilization and energy expend-
iture should not be extrapolated to exercise interventions
comprised of higher or lower exercise intensities or of du-
rations that reach markedly beyond what was utilized in
the present study.
The absence of differences in intra-exercise RER be-

tween conditions observed during this investigation
somewhat contrasts with earlier reports which con-
cluded that pre-exercise feeding blunts intra-exercise fat
oxidation (Reviewed in Ref. [42]). However, differences
in study duration, exercise intensity, timing of ingestion,
amount of food and composition of food ingested, and
training status of participants are all factors that may
impact changes in energy expenditure and substrate oxi-
dation. Regardless, one-way ANOVA revealed that total
fat oxidized during several five-minute intervals of exer-
cise was significantly lower after ingestion of WPI com-
pared to CAS and MAL, potentially due to differences in
absorption and insulin response between the two protein
sources [43]. While this outcome was not directly mea-
sured in this investigation, it is possible that the insulin
response to WPI ingestion in this investigation was
greater than MAL, as Dalbo et al. [44] reported signifi-
cant post-exercise elevations in insulin after pre-exercise
ingestion of 25 g WPI but not MAL. While our work
should certainly be considered preliminary and pilot in

nature, these results suggest that casein protein may be
preferable to whey protein with respect to intra-exercise
fat oxidation. However, the augmented post-exercise re-
duction in RER following protein feeding observed dur-
ing this investigation is in accordance with earlier
studies and may be the result of transient elevations in
protein synthesis [5, 20]. It is well-established that the
relative contribution of lipids to metabolism increases
during the recovery period following cessation of moder-
ate intensity cardiovascular exercise (45–65% VO2peak)
[45, 46]. In agreement with the present study, Wingfield
and colleagues [20] observed a significant decrease in
RER up to 60min after exercise following a protein feed-
ing compared to carbohydrate feeding, results which
were corroborated by Paoli et al. [5], who noted a sig-
nificant elevation in lipid utilization both 12 and 24 h
after cessation of exercise completed in a postprandial
state when compared to a post-absorptive state. How-
ever, these conclusions reached by Paoli et al. are not
shared by Iwayama and colleagues [10, 11], who re-
ported that 24-h rates of fat oxidation determined via
metabolic chamber were greater in both males and fe-
males following a 60-min bout of post-absorptive cyc-
ling exercise at 50% VO2max compared to an identical
bout of exercise performed after a standardized meal
(15% PRO, 60% CHO, 25% FAT). It is important to
note that the aforementioned studies primarily utilized
mixed meals. Thus, the rates of digestion, TEF re-
sponse, and fuel utilization likely varied greatly in
comparison to the isolated nutrients provided in the
current study.
Chronic relative macronutrient intake in the days prior

to exercise appears to influence rates of substrate oxida-
tion both during and after an exercise bout [20]. Patterson
and Potteiger [47] compared substrate utilization kinetics

Fig. 6 Total fat oxidized during each five-minute interval throughout completion of 30 min of moderate-intensity cardiovascular exercise. WPI =
Whey protein isolate; CAS = Casein; MAL = Maltodextrin; CON = Control. † denotes a significant (p < 0.05) difference between WPI and MAL. *
denotes a significant (p < 0.05) difference between WPI and CAS
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between participants who consumed a low-carbohydrate,
high-protein diet (40% PRO, 20% CHO, 40% FAT) or a
moderate-carbohydrate diet (15% PRO, 55% CHO, 30%
FAT) during the 48-h period before treadmill exercise
at 55% VO2max. The researchers reported that the
low-carbohydrate diet in conjunction with a two-hour
pre-exercise fast elicited significantly increased rates of
intra-exercise and post-exercise fat oxidation and
significantly decreased rates of intra-exercise and post
-exercise carbohydrate oxidation compared to the iso-
caloric, moderate-carbohydrate diet Because the dietary
intake of the participants in the present study were not
overtly controlled, but were advised to keep their nutri-
ent intake the same prior to each visit, it is possible but
not likely that any variation in dietary macronutrient
ratios between conditions impacted our measured out-
comes. In this respect, one should consider that all par-
ticipants were required to complete a food record that
was copied and replicated for each study for each sub-
sequent study visit. Future research investigating meta-
bolic outcome measures during and after exercise
should ensure that all dietary intake is completely con-
trolled in the days prior to testing visits.
Limitations of the current study include the lack of

a mixed gender cohort and the absence of longer-dur-
ation metabolic assessment following the cessation of
exercise, both of which reduce the generalizability of
the study results. To completely assess the effect of
pre-exercise feeding and protein source on post-exer-
cise metabolism, future research should utilize inter-
mittent follow-up metabolic measurements for at
least 12 h following exercise, as inferences regarding
long-term energy expenditure and substrate
utilization cannot be adequately extrapolated from
one acute post-exercise resting metabolic rate assess-
ment. Finally, because no modifications were made to
the participants’ self-directed pre-testing dietary in-
takes, substrate availability may have differed between
participants and thus altered intra-exercise and
post-exercise substrate utilization data. Future re-
search in this area should implement a standardized
diet prior to acute metabolic measurements to re-
duce any confounding influence of dietary intake.

Conclusion
Results from this preliminary investigation suggest
that consumption of 25 g of whey protein isolate or
25 g of casein protein 30 min before moderate-inten-
sity treadmill exercise while fasted significantly in-
creased rates of post-exercise energy expenditure when
compared to the pre-exercise consumption of 25 g of
maltodextrin or a non-caloric control. While differences
in RER during exercise were not observed during either
fasted cardiovascular exercise or post-prandial exercise,

significantly more fat was oxidized following ingestion of
casein vs. whey protein compared at two time points.
Additional research is needed with longer exercise
durations, varying exercise intensities, and nutrients con-
sumed to better determine the impact of these findings.
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