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1 Introduction

In the early 1960s, Kalman among others initiated the Linear Quadratic Regulator
(LQR) in the continuous and discrete cases (see Kalman, 1960, 1964; Kalman and
Koepcke, 1958). Since then the LQR and its extensions have played a fundamental
rôle in control engineering. One such extension is the concept of tracking, first
considered as a regulator problem by Kalman (1963). Applications in Linear
Quadratic Tracking (LQT) include guidance systems, game theory (Bryson and Ho,
1975), and economics (Pindyck, 1972). For a review of the LQT in the continuous
and discrete cases, one can see Tables 1 and 2.

Table 1 The continuous version of the LQT

System: ẋ = Ax + Bu
Output: y = Cx

Cost: J = 1
2 (y − z)T (tf )P (y − z)(tf ) +

1
2

∫ tf

t0

[(y − z)T Q(y − z) + uT Ru](τ)dτ

Gains:
Feedback: K = R−1BT S
Feedforward: Kv = R−1BT

Riccati and Output equations:
−Ṡ = AT S + S(A − BK) + CT QC, S(tf) = CT PC
−v̇ = (A − BK)T v + CT Pz, v(tf) = CT Pz(tf)
Affine optimal control: u = −Kx + Kvv

Table 2 The discrete version of the LQT

System: xk+1 = Axk + Buk, k > 1
Output: yk = Cxk

Cost: Ji = 1
2 (yN − zN )T P (yN − zN ) +

1
2

N−1∑
k=1

[(yk − zk)T Q(yk − zk) + uT
k Ruk]

Gains:
Feedback: Kk = (R + BT Sk+1B)−1BT Sk+1A
Feedforward: Kv

k = (R + BT Sk+1B)−1BT

Riccati and Output equations:
Sk = AT Sk+1(A − BKk) + CT QC, SN = CT PC
vk = (A − BKk)T vk+1 + CT Pzk, vN = CT PzN

Affine optimal control: uk = −Kkxk + Kv
kvk+1

In this paper, we seek to extend our results on the LQR (see Bohner and Wintz,
2010) to include applications in tracking and disturbance/rejection. Here, we
consider the regressive linear time-invariant system

x∆(t) = Ax(t) + Bu(t), y(t) = Cx(t),

associated with the quadratic cost functional

J =
1
2
(Cx − z)T (tf)P (Cx − z)(tf)
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+
1
2

∫ tf

t0

[(Cx − z)T Q(Cx − z) + uT Ru](τ)∆τ,

where P, Q ≥ 0, and R > 0 (see Lewis and Syrmos, 1995; Athans and Falb,
1966). The functions x, u, y and z represent the state, control (input), output, and
the desired reference signal, respectively. We further assume that our system is
completely observable and that the final state is free.

The organisation of this paper is as follows. In Section 2, we provide a brief
introduction to dynamic equations on time scales. In Section 3, we offer the
variational properties needed such that an optimal control exists. Next, we introduce
the Linear Quadratic Tracker (LQT) on time scales in Section 4. In this section, we
find an affine optimal control law that drives the plant to track a desired reference
signal z. This control can be expressed in two terms. The first term represents the
feedback term, which allows the optimal input to be expressed in terms of the
current state and a term that anticipates the desired reference signal. The second
term represents the feedforward term, which anticipates our desired reference signal.
In Section 5, we revisit our results on the LQR for the fixed final state case in Bohner
and Wintz (2010). Using our results for the LQT, we now express our minimum
control in terms of the current state and a term that anticipates the desired reference
signal. Even so, our control law still mirrors the controllability criterion we studied
in Bohner and Wintz (2011). Finally, we provide some examples in Section 6. These
examples include a scalar version of the LQT as well as a disturbance/rejection
model. This work comes from the second author’s dissertation (Wintz, 2009).

2 Preliminaries

Here we offer a brief introduction to the theory of dynamic equations on time scales.
For a more in-depth study of time scales, see Bohner and Peterson’s books (Bohner
and Peterson, 2001, 2003) as well as some recent contributions (Atici et al., 2011;
Kratz et al., 2011; Jackson et al., 2011; Bohner et al., 2011).

Definition 2.1: A time scale T is an arbitrary nonempty closed subset of the real
numbers. We let T

κ = T \ {max T} if max T exists; otherwise T
κ = T.

Example 2.2: The most common examples of time scales are R, Z, hZ for h > 0,
and qN0 for q > 1.

Definition 2.3: We define the forward jump operator σ : T → T and the graininess
function µ : T → [0, ∞) by

σ(t) := inf {s ∈ T : s > t} and µ(t) := σ(t) − t.

For any function f : T → R, we define the function fσ : T → R by fσ = f ◦ σ.

Next, we define the delta (or Hilger) derivative as follows.
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Definition 2.4: Assume f : T → R and let t ∈ T
κ. The delta derivative f∆(t) is the

number (when it exists) such that given any ε > 0, there is a neighbourhood U of t
such that

∣∣[f(σ(t)) − f(s)] − f∆(t)[σ(t) − s]
∣∣ ≤ ε|σ(t) − s| for all s ∈ U.

In the next two theorems, we consider some properties of the delta derivative.

Theorem 2.5 (See Bohner and Peterson (2001, Theorem 1.16)): Let f : T → R be a
function and t ∈ T

κ. Then we have the following:

a If f is differentiable at t, then f is continuous at t.

b If f is continuous at t, where t is right-scattered, then f is differentiable at t
and

f∆(t) =
f(σ(t)) − f(t)

µ(t)
.

c If f is differentiable at t, where t is right-dense, then

f∆(t) = lim
s→t

f(t) − f(s)
t − s

.

d If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t). (1)

Note that (1) is sometimes called the ‘simple useful formula’.

Example 2.6: Note the following examples.

a When T = R, then (if the limit exists)

f∆(t) = lim
s→t

f(t) − f(s)
t − s

= f ′(t).

b When T = Z, then

f∆(t) = f(t + 1) − f(t) =: ∆f(t).

c When T = hZ for h > 0, then

f∆(t) =
f(t + h) − f(t)

h
=: ∆hf(t).

d When T = qZ for q > 1, then

f∆(t) =
f(qt) − f(t)

(q − 1)t
=: Dqf(t).
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Next we consider the linearity property as well as the product rules.

Theorem 2.7 (See Bohner and Peterson (2001, Theorem 1.20)): Let f, g : T → R be
differentiable at t ∈ T

κ. Then we have the following:

a For any constants α and β, the sum (αf + βg) : T → R is differentiable at t
with

(αf + βg)∆(t) = αf∆(t) + βg∆(t).

b The product fg : T → R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t).

Definition 2.8: A function f : T → R is said to be rd-continuous on T when f is
continuous in points t ∈ T with σ(t) = t and it has finite left-sided limits in points
t ∈ T with sup {s ∈ T : s < t} = t. The class of rd-continuous functions f : T → R

is denoted by Crd = Crd(T) = Crd(T, R). The set of functions f : T → R that are
differentiable and whose derivative is rd-continuous is denoted by C1

rd.

Theorem 2.9 (See Bohner and Peterson (2001, Theorem 1.74)): Any rd-continuous
function f : T → R has an antiderivative F , i.e., F∆ = f on T

κ.

Definition 2.10: Let f ∈ Crd and let F be any function such that F∆(t) = f(t) for
all t ∈ T

κ. Then the Cauchy integral of f is defined by

∫ b

a

f(t)∆t = F (b) − F (a) for all a, b ∈ T.

Example 2.11: Let a, b ∈ T with a < b and assume that f ∈ Crd.

a When T = R, then

∫ b

a

f(t)∆t =
∫ b

a

f(t)dt.

b When T = Z, then

∫ b

a

f(t)∆t =
b−1∑
t=a

f(t).

c When T = hZ for h > 0, then

∫ b

a

f(t)∆t = h

b/h−1∑
t=a/h

f(th).
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d When T = qN0 for q > 1, then

∫ b

a

f(t)∆t =
∫ b

a

f(t)dq(t) := (q − 1)
∑

t∈[a,b)∩T

tf(t).

Definition 2.12: An m × n matrix-valued function A on T is rd-continuous if each
of its entries are rd-continuous. Furthermore, if m = n, A is said to be regressive
(we write A ∈ R) if

I + µ(t)A(t) is invertible for all t ∈ T
κ.

3 Optimisation of linear systems on time scales

Definition 3.1: Let a, b ∈ T with a < b and α, β ∈ R
n. A function ŷ ∈ C1

rd with
ŷ(a) = α, ŷ(b) = β is said to be a (weak) local minimum to the variational problem

J (y) =
∫ b

a

L(t, yσ(t), y∆(t))∆t → min, (2)

with y(a) = α, y(b) = β, where L : T × R
2n → R, if there exists δ > 0 such that

‖y − ŷ‖ < δ and J (ŷ) ≤ J (y) for all y ∈ C1
rd satisfying ŷ(a) = α and ŷ(b) = β. If

J (ŷ) < J (y) for all ŷ �= y, then ŷ is said to be proper. An η ∈ C1
rd is called an

admissible variation of (2) provided η(a) = η(b) = 0. Let η ∈ C1
rd be an admissible

variation. We define the function Φ : R → R by

Φ(ε) = Φ(ε; y, η) = J (y + εη), ε ∈ R.

Then the first variation of (2) is defined by J1(y, η) = Φ̇(0; y, η), while the second
variation of (2) is defined by J2(y, η) = Φ̈(0; y, η).

In the next two theorems, we provide necessary and sufficient conditions for a local
minimum.

Theorem 3.2 (See Bohner (2004, Theorem 3.2)): If ŷ ∈ C1
rd is a local minimum of

(2), then J1(ŷ, η) = 0 and J2(ŷ, η) ≥ 0 for all admissible variations η.

Thorem 3.3 (See Bohner (2004, Theorem 3.3)): Let ŷ ∈ C1
rd with ŷ(a) = α and

ŷ(b) = β. If J1(ŷ, η) = 0 and J2(ŷ, η) > 0 for all nontrivial admissible variations
η, then ŷ ∈ C1

rd is a proper weak local minimum to (2).

Now we consider the linear time-invariant system

x∆(t) = Ax(t) + Bu(t), x(t0) = x0, (3)
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where x ∈ R
n represents the state and u ∈ R

m represents the input. Associated with
(3) is the quadratic cost functional

J =
1
2
(Cx − z)T (tf)P (Cx − z)(tf)

+
1
2

∫ tf

t0

[(Cx − z)T Q(Cx − z) + uT Ru](τ)∆τ, (4)

where P, Q ≥ 0 and R > 0. To minimise (4), we introduce the augmented cost
functional

J+ = Ψ(x(tf))α +
1
2
(Cx − z)T (tf)P (Cx − z)(tf)

+
1
2

∫ tf

t0

[
(Cx − z)T Q(Cx − z) + uT Ru

]
(τ)∆τ

+
∫ tf

t0

[
(λσ)T (Ax + Bu − x∆)

]
(τ)∆τ

= Ψ(x(tf))α +
1
2
(Cx − z)T (tf)P (Cx − z)(tf)

+
∫ tf

t0

[H(x, u, λσ) − (λσ)T x∆](τ)∆τ,

where the so-called Hamiltonian H is given by

H(x, u, λ) =
1
2
[(Cx − z)T Q(Cx − z) + uT Ru] + λT (Ax + Bu) (5)

while

Ψ(x(tf)) = Cx(tf) − z(tf) (6)

represents a function of the final state. Here α ∈ R and λ ∈ R
n are multipliers to

be determined in later sections. Thus we seek an optimal control that not only
minimises (4), but also guarantees that (6) is equal to zero.

Next, we provide necessary conditions for an optimal control. We assume that

d
dε

∫ tf

t0

f(τ, ε)∆τ =
∫ tf

t0

∂

∂ε
f(τ, ε)∆τ (7)

for all f : T × R → R with f(·, ε), ∂f(·, ε)/∂ε ∈ Crd(T).

Lemma 3.4: Assume (7) holds. Then the first variation of J+ is zero provided that
x, λ, and u satisfy

x∆ = Ax + Bu, (8a)

−λ∆ = AT λσ + CT Q(Cx − z), (8b)

0 = Ru + BT λσ. (8c)
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Proof: First note that

Φ(ε) = J+((x, u, λ) + ε(η1, η2, η3))

= [C(x + εη1) − z](tf)α +
1
2
[C(x + εη1) − z]T (tf)P [C(x + εη1) − z](tf)

+
1
2

∫ tf

t0

{
[C(x + εη1) − z]T Q[C(x + εη1) − z]

}
(τ)∆τ

+
1
2

∫ tf

t0

{
(u + εη2)T R(u + εη2)

}
(τ)∆τ

+
∫ tf

t0

{
(λσ + εησ

3 )T [A(x + εη1) + B(u + εη2) − (x + εη1)∆]
}

(τ)∆τ.

Then

Φ̇(ε) = Cη1(tf)α + ηT
1 (tf)CT P [C(x + εη1) − z](tf)

+
∫ tf

t0

{
ηT
1 CT Q[C(x + εη1) − z] + ηT

2 R(u + εη2)
}

(τ)∆τ

+
∫ tf

t0

{
(ησ

3 )T [A(x + εη1) + B(u + εη2) − (x + εη1)∆]
}

(τ)∆τ

+
∫ tf

t0

{
(λσ + εησ

3 )T (Aη1 + Bη2 − η∆
1 )

}
(τ)∆τ.

Thus the first variation can be written as

Φ̇(0) = Cη1(tf)α + [CT P (Cx − z)(tf)]T η1(tf)

+
∫ tf

t0

{
ηT
1 CT Q(Cx − z) + ηT

2 Ru
}

(τ)∆τ

+
∫ tf

t0

{
(ησ

3 )T (Ax + Bu − x∆) + (λσ)T (Aη1 + Bη2 − η∆
1 )

}
(τ)∆τ

= [Cα + (CT P (Cx − z) − λ)T (tf)]η1(tf) + (λT η1)(t0)

+
∫ tf

t0

{
[λ∆ + AT λσ + CT Q(Cx − z)]T η1

}
(τ)∆τ

+
∫ tf

t0

{
(Ru + BT λσ)T η2 + (Ax + Bu − x∆)T ησ

3
}

(τ)∆τ.

Now in order for Φ̇(0) = 0, we set each coefficient of independent increments
η1, η2, η

σ
3 equal to zero. This yields the necessary conditions for a minimum of (4).

Using the Hamiltonian (5), we have state and costate equations

x∆ = Hλ(x, u, λσ) = Ax + Bu

and

−λ∆ = Hx(x, u, λσ) = AT λσ + CT Q(Cx − z).
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Similarly, we have the stationary condition

0 = Hu(x, u, λσ) = Ru + BT λσ.

This concludes the proof. �

Remark 3.5: We note that x, λ, u solve (8) if and only if they solve

x∆ = Ax − BR−1BT λσ, (9a)

−λ∆ = AT λσ + CT Q(Cx − z), (9b)

u = −R−1BT λσ. (9c)

Note that in order to find an optimal control, one must determine a value for the
costate.

Finally, we give sufficient conditions for a local optimal control.

Lemma 3.6: Assume (7) holds. Then the second variation of J+ is positive
provided that η1 and η2 satisfy the constraints η∆

1 = Aη1 + Bη2 and η2 �= 0.

Proof: Taking the second derivative of Φ, we have

Φ̈(ε) = ηT
1 (tf)CT PCη1(tf) +

∫ tf

t0

{
ηT
1 CT QCη1 + ηT

2 Rη2
}

(τ)∆τ

+2
∫ tf

t0

{
[Aη1 + Bη2 − η∆

1 ]T ησ
3
}

(τ)∆τ.

If we assume that η1 and η2 satisfy the constraint

η∆
1 = Aη1 + Bη2,

then the second variation is given by

Φ̈(0) = ηT
1 (tf)CT PCη1(tf) +

∫ tf

t0

[
ηT
1 CT QCη1 + ηT

2 Rη2
]
(τ)∆τ. (10)

Note that P, Q ≥ 0 while R > 0. Thus if η2 �= 0, then (10) is guaranteed to be
positive. �

4 The Linear Quadratic Tracker

In this section, we seek an affine optimal control that tracks our desired reference
signal. Here we consider the state and costate equations (9a)–(9b) subject to
x(t0) = x0 and λ(tf) = CT P (Cx(tf) − z(tf)). Here (9a) is associated with the
quadratic cost functional (4).
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Remark 4.1: To solve the given boundary value problem, we assume that λ can be
written as a linear combination of the current state and some term that anticipates
the final reference signal. As a result we use the affine sweep condition

λ(t) = S(t)x(t) − v(t), (11)

where v represents an output vector driven by z. Using the terminal condition
S(tf) = CT PC ≥ 0, it is natural to assume that S ≥ 0 as well.

Theorem 4.2: Assume that M = I + µBR−1BT Sσ is invertible. Suppose that S
satisfies

−S∆ = CT QC + AT Sσ + (I + µAT )SσM−1 (
A − BR−1BT Sσ

)
, (12)

while v satisfies

−v∆ = [AT − (I + µAT )SσM−1BR−1BT ]vσ + CT Qz. (13)

If x satisfies

x∆ = M−1[
(
A − BR−1BT Sσ

)
x + BR−1BT vσ] (14)

and λ is as given by (11), then

−λ∆ = AT λσ + CT Q(Cx − z). (15)

Proof: As λ is given by (11), we use the product rule, (12)–(14), and (1) to get

−λ∆ = −S∆x − Sσx∆ + v∆

= CT QCx + AT Sσx + (I + µAT )Sσx∆ − Sσx∆ − AT vσ − CT Qz

= AT Sσ(x + µx∆) − AT vσ + CT Q(Cx − z)
= AT (Sx − v)σ + CT Q(Cx − z)
= AT λσ + CT Q(Cx − z).

This gives (15) as desired. �

We offer another form of the matrix Riccati equation on time scales.

Theorem 4.3: If both R + µBT SσB and I + µBR−1BT Sσ are invertible, then S
solves the Riccati equation (12) if and only if it solves

−S∆ = CT QC + AT Sσ + (I + µAT )SσA

−(I + µAT )SσB(R + µBT SσB)−1BT Sσ(I + µA).

Proof: The proof follows directly from Bohner and Wintz (2010, Lemma 6.3). �

Now we define our feedback and feedforward gains as follows.
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Definition 4.4: Let R + µBT SσB be invertible. Then the matrix-valued functions

K(t) = (R + µ(t)BT Sσ(t)B)−1BT Sσ(t)(I + µ(t)A) (16)

and

Kv(t) = (R + µ(t)BT Sσ(t)B)−1BT . (17)

are called the state feedback (or Kalman gain) and the feedforward gain,
respectively.

Lemma 4.5: Let R + µBT SσB be invertible. Then

µBT SσBR−1BT = µBT BR−1BT Sσ, (R + µBT SσB)R−1BT = BT MT ,

and

KT = (I + µA)T SσM−1BR−1. (18)

Proof: We have

R−1BT = (R + µBT SσB)−1(R + µBT SσB)R−1BT

= (R + µBT SσB)−1BT (I + µSσBR−1BT )
= (R + µBT SσB)−1BT MT ,

from which all three formulas follow. �

Next we determine the form of the affine control-tracker law that minimises (4).

Theorem 4.6: Assume that R + µBT SσB is invertible and suppose that x, λ, u solve
(9) such that (11) holds. Then u can be written in the form

u(t) = −K(t)x(t) + Kv(t)vσ(t), (19)

where K is given by (16) and Kv is given by (17).

Proof: Using (9c), (11), (8a), and (1), we have

u = −R−1BT (Sx − v)σ

= −R−1BT Sσ(x + µx∆) + R−1BT vσ

= −R−1BT Sσ[(I + µA)x + µBu] + R−1BT vσ.

Combining like terms, we have

(I + µR−1BT SσB)u = −R−1BT Sσ(I + µA)x + R−1BT vσ.

Premultiplying by R, we have

(R + µBT SσB)u = −BT Sσ(I + µA)x + BT vσ.
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Then

u = −(R + µBT SσB)−1BT Sσ(I + µA)x + (R + µBT SσB)−1BT vσ.

This concludes the proof. �

Now under the control-tracker law (19), the closed-loop plant can be written as

x∆ = (A − BK)x + BKvvσ. (20)

A block diagram of the affine control scheme is given in Figure 1.

Figure 1 LQT as affine state feedback

Next we rewrite our Riccati and output equations in terms of the closed-loop matrix.
We use these equations to determine our optimal cost.

Corollary 4.7: Let R + µBT SσB be invertible. Then S solves the Riccati equation
(12) if and only if it solves

−S∆ = CT QC + (A − BK)T Sσ

+(I + µ(A − BK)T )Sσ(A − BK) + KT RK. (21)

Similarly v solves the output equation (13) if and only if it solves

−v∆ = (A − BK)T vσ + CT Qz. (22)

Proof: The proof for S follows from Theorem 4.3 and Bohner and Wintz (2010,
Lemma 6.8 and Lemma 6.6). Using (18) in (13), we get (22) directly. �

Note that our Riccati equation (21) is now in Joseph stabilised form (see Lewis and
Syrmos, 1995). In the next theorem, we find our optimal cost functional.

Theorem 4.8: Suppose that S solves (21) with

S(tf) = CT PC (23)

and v solves (22) with

v(tf) = CT Pz(tf). (24)
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If x and u satisfy (20) and (19), then the cost functional (4) can be rewritten as

J =
1
2
xT (t0)S(t0)x(t0) − xT (t0)v(t0) + w(t0), (25)

where the auxiliary function w satisfies

−2w∆(t) = zT (t)Qz(t) − (vσ)T (t)BKv(t)vσ(t), (26a)

w(tf) =
1
2
zT (tf)Pz(tf). (26b)

Proof: We first show
(
xT Sx − 2xT v

)∆
+ (Cx − z)T Q(Cx − z) + uT Ru = −2w∆. (27)

To show (27), note that using the product rule, (1), (20), (22), (21), (17), (19), and
(26a), we have

(xT Sx − 2xT v)∆ = (xT S)∆x + (xT S)σx∆ − 2(xT )∆vσ − 2xT v∆

= ((x∆)T Sσ + xT S∆)x + (x + µx∆)T Sσx∆

−2(xT )∆vσ − 2xT v∆

= [(A − BK)x + BKvvσ]T Sσx + xT S∆x

+[x + µ(A − BK)x + µBKvvσ]T Sσx∆

−2[(A − BK)x + BKvvσ]T vσ

+2xT [(A − BK)T vσ + CT Qz]
= xT (A − BK)T Sσx + (vσ)T KT

v BT Sσx + xT S∆x

+xT [I + µ(A − BK)T ]Sσ[(A − BK)x + BKvvσ]
+µ(vσ)T KT

v BT Sσ[(A − BK)x + BKvvσ]
−2(vσ)T KT

v BT vσ + 2xT CT Qz

= xT [(A − BK)T Sσ + S∆]x
+xT [I + µ(A − BK)T ]Sσ(A − BK)x
+xT [I + µ(A − BK)T ]SσBKvvσ

+(vσ)T KT
v BT Sσ[I + µ(A − BK)]x + 2xT CT Qz

+µ(vσ)T KT
v BT SσBKvvσ − 2(vσ)T KT

v BT vσ

= −xT (CT QC + KT RK)x
+2xT [I + µ(A − BK)T ]SσBKvvσ − (vσ)T KT

v RKvvσ

−(vσ)T BKvvσ + 2xT CT Qz

= −(Cx − z)T Q(Cx − z) + zT Qz − xT KT RKx

+2xT [I + µ(A − BK)T ]SσBKvvσ − (vσ)T BKvvσ

−(Kx + u)T R(Kx + u)
= −(Cx − z)T Q(Cx − z) + zT Qz − 2xT KT RKx

−2xT KT Ru − uT Ru − (vσ)T BKvvσ

+2xT [I + µ(A − BK)T ]SσBKvvσ

= −(Cx − z)T Q(Cx − z) − uT Ru + zT Qz − (vσ)T BKvvσ

+2xT
{[

I + µ(A − BK)T
]
SσB − KT R

}
Kvvσ.
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Now using the feedback gain (16), note that

(I + µ(A − BK)T )SσB − KT R = (I + µAT )SσB − µKT BT SσB − KT R

= (I + µAT )SσB − KT (R + µBT SσB) = 0,

and hence (27) holds. Finally, (27), (23), (24), and (26b) imply

J =
1
2
(Cx − z)T (tf)P (Cx − z)(tf) − 1

2

∫ tf

t0

(
xT Sx − 2xT v

)∆
(τ)∆τ

+
1
2

∫ tf

t0

[(
xT Sx − 2xT v

)∆
+ (Cx − z)T Q(Cx − z) + uT Ru

]
(τ)∆τ

=
1
2
(Cx − z)T (tf)P (Cx − z)(tf) −

∫ tf

t0

(
1
2
xT Sx − xT v + w

)∆

(τ)∆τ

=
1
2
(Cx − z)T (tf)P (Cx − z)(tf) − 1

2
xT (tf)S(tf)x(tf)

+xT (tf)v(tf) − w(tf) +
1
2
xT (t0)S(t0)x(t0) − xT (t0)v(t0) + w(t0)

=
1
2
(Cx − z)T (tf)P (Cx − z)(tf) − 1

2
xT (tf)CT PCx(tf)

+xT (tf)CT Pz(tf) − 1
2
zT (tf)Pz(tf)

+
1
2
xT (t0)S(t0)x(t0) − xT (t0)v(t0) + w(t0).

This shows (25). �

Remark 4.9: Note that when z is removed, the LQT reduces down to the output
quadratic regulator.

5 Linear Quadratic Regulator with final state fixed

In this section, we revisit our results (Bohner and Wintz, 2010) for the LQR.
In the fixed final state case, we sought an open-loop control in terms of a final
state difference. This in turn required the existence of the inverse of a weighted
controllability Gramian. Now using our results on the LQT, we will rewrite this
input in terms of the current state. As a result, our optimal control resembles the
control-tracker law (19). Here we consider the linear system (9) with C = I and
z = 0, i.e.,

x∆ = Ax − BR−1BT λσ, −λ∆ = Qx + AT λσ, u = −R−1BT λσ. (28)

Note that (28) is associated with the cost functional

J =
1
2
xT (tf)S(tf)x(tf) +

1
2

∫ tf

t0

(
xT Qx + uT Ru

)
(τ)∆τ, (29)
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where R > 0 and S(tf), Q ≥ 0. We let z(tf) ∈ R
p and a p × n-matrix C be given.

Moreover, we consider (28) subject to x(t0) = x0 and λ(tf) = S(tf)x(tf) + CT α.
Here, we seek an optimal control that not only minimises (29), but also guarantees

Ψ(x(tf), tf) = Cx(tf) − z(tf) = 0. (30)

Remark 5.1: In order to solve this two-point boundary value problem, we
introduce, as in (11), the affine sweep condition

λ(t) = S(t)x(t) + V (t)α, (31)

where V is not necessarily a square matrix. Again V represents an output matrix.

Theorem 5.2: Assume that M = I + µBR−1BT Sσ is invertible. Suppose that S
satisfies

−S∆ = Q + AT Sσ + (I + µAT )SσM−1 (
A − BR−1BT Sσ

)
(32)

and V satisfies the output equation

−V ∆ =
[
AT − (I + µAT )SσM−1BR−1BT

]
V σ. (33)

If x satisfies

x∆ = M−1 [
(A − BR−1BT Sσ)x − BR−1BT V σα

]
(34)

and λ is as in (31), then

−λ∆ = Qx + AT λσ.

Proof: This follows from Theorem 4.2 by using C = I , z = 0, and v = −V α in
Theorem 4.2. �

Next, we find an optimal control that minimises our cost functional.

Theorem 5.3: Let R + µBT SσB be invertible and suppose that x, u, λ satisfy (28)
such that (31) holds. Then

u(t) = −K(t)x(t) − Kv(t)V σ(t)α, (35)

where K is given by (16) and Kv is given by (17).

Proof: This follows from Theorem 4.6 by using C = I , z = 0, and v = −V α in
Theorem 4.6. �

Now under this control law, the closed plant can be written as

x∆ = (A − BK)x − BKvV σα. (36)

Next we want to rewrite our Riccati and output equations in terms of the Kalman
gain.
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Corollary 5.4: Let R + µBT SσB be invertible. Then S solves the Riccati
equation (32) if and only if it solves

−S∆ = Q + (A − BK)T Sσ + (I + µ(A − BK)T )Sσ(A − BK) + KT RK.

Similarly, V solves the output equation (33) if and only if it solves

−V ∆ = (A − BK)T V σ.

Proof: This follows from Corollary 4.7 by using C = I , z = 0, and v = −V α in
Corollary 4.7. �

Now looking back at (35), note that the feedforward term represents the term that
anticipates a final reference signal. As a result, we want to rewrite the Lagrange
multiplier α in terms of this final reference signal. This gives us the following form
of our optimal control.

Theorem 5.5: Suppose that x and u satisfy (36) and (35). Furthermore, assume that
(30) holds and that V satisfies (33) with V (tf) = CT . If the weighted controllability
Gramian

G(t) := −
∫ tf

t

{
(V σ)T B(R + µBT SσB)−1BT V σ

}
(τ)∆τ (37)

is invertible, then u can be written in the form

u(t) = −[K(t) − Kv(t)V σ(t)G−1(t)V T (t)]x(t) − Kv(t)V σ(t)G−1(t)z(tf). (38)

Proof: We let z̃ = V T x + Gα and use the product rule, (33), (18), (36), (37), and
(17) to find

z̃∆ = (V T )∆x + (V σ)T x∆ + G∆α

= −(V σ)T (A − BK)x + (V σ)T BKvV σα

+(V σ)T [(A − BK)x − BKvV σα]
= 0

and thus

z̃(t) = z̃(tf) = V T (tf)x(tf) + G(tf)α = Cx(tf) = z(tf)

by (30). Then

z(tf) = V T (t)x(t) + G(t)α,

which implies that

α = G−1(t)[z(tf) − V T (t)x(t)].

Finally, plugging α into (35) yields (38) as desired. �
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Remark 5.6: Note that just as in Bohner and Wintz (2010), the optimal control
depends on the inverse of a weighted controllability Gramian. If det G(t) = 0 for all
t ∈ [t0, tf ], then the problem is said to be abnormal and there is no solution. If we
pick C = 0, then the problem reduces to the free final state case. On the other hand,
if we pick C = I , the problem reduces to the fixed final state. However, in Bohner
and Wintz (2010), we found an optimal control where S(tf) = Q = 0. Consequently,
our result here is more general.

6 Examples

Example 6.1 (The Continuous LQT): Let T = R and consider

x′(t) = Ax(t) + Bu(t), y(t) = Cx(t),

associated with the cost functional

J =
1
2
(Cx − z)T (tf)P (Cx − z)(tf)

+
1
2

∫ tf

t0

[(Cx − z)T Q(Cx − z) + uT Ru](τ)dτ

(observe part (a) of Examples 2.6 and 2.11). Then the state, costate, and stationary
equations (9) are given by

x′ = Ax − BR−1BT λ, −λ′ = AT λ + CT Q(Cx − z), u = −R−1BT λ.

In this case, our feedback and feedforward gains (16) and (17) are given as

K(t) = R−1BT S(t) and Kv(t) = R−1BT .

Now the control-tracker law (19) and the closed-loop plant (20) can be written as

u(t) = −K(t)x(t) + Kv(t)v(t)

and

x′ = (A − BK)x + BKvv,

respectively, and the closed-loop Riccati and output equations (21) and (22) can be
written as

−S′ = CT QC + KT RK + S(A − BK) + (A − BK)T S

and

−v′ = (A − BK)T v + CT Qz,

respectively. The optimal cost is given by (25), where the function w satisfies

−2w′ = zT Qz − vT BKvv.

A summary of these well-known results can be found in Table 1.
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Example 6.2 (The Discrete LQT): Let T = Z and consider

∆x(t) = Ax(t) + Bu(t), y(t) = Cx(t).

By observing Example 2.6(b) and introducing

Ã = I + A,

we can rewrite the system as

x(t + 1) = Ãx(t) + Bu(t), y(t) = Cx(t),

and the associated cost functional takes the form (observe Example 2.11(b))

J =
1
2
(Cx − z)T (tf)P (Cx − z)(tf) +

1
2

tf−1∑
τ=t0

[(Cx − z)T Q(Cx − z) + uT Ru](τ).

Then the state, costate, and stationary equations (9) are given by

x(t + 1) = Ãx(t) − BR−1BT λ(t + 1),
λ(t) = ÃT λ(t + 1) + CT Q(Cx(t) − z(t)),
u(t) = −R−1BT λ(t + 1).

In this case, our feedback and feedforward gains (16) and (17) are given as

K(t) = (R + BT S(t + 1)B)−1BT S(t + 1)Ã

and

Kv(t) = (R + BT S(t + 1)B)−1BT .

Now the control-tracker law (19) and the closed-loop plant (20) can be written as

u(t) = −K(t)x(t) + Kv(t)v(t + 1)

and

x(t + 1) = (Ã − BK(t))x(t) + BKv(t)v(t + 1),

respectively, and the closed-loop Riccati and output equations (21) and (22) can be
written as

S(t) = CT QC + KT (t)RK(t) + (Ã − BK(t))T S(t + 1)(Ã − BK(t))

and

v(t) = (Ã − BK(t))T v(t + 1) + CT Qz(t),

respectively. The optimal cost is given by (25), where the function w satisfies

w(t) = w(t + 1) +
1
2
zT (t)Qz(t) − 1

2
vT (t + 1)BKv(t)v(t + 1).

A summary of these well-known results can be found in Table 2.
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Example 6.3 (The h-Quantum LQT): Let T = hZ with h > 0 and consider

∆hx(t) = Ax(t) + Bu(t), y(t) = Cx(t),

By observing Example 2.6(c) and introducing

Ã = I + hA, B̃ = hB, Q̃ = hQ, R̃ = hR,

we can rewrite the system as

x(t + h) = Ãx(t) + B̃u(t), y(t) = Cx(t),

and the associated cost functional takes the form (observe Example 2.11(c))

J =
1
2
(Cx − z)T (tf)P (Cx − z)(tf)

+
1
2

tf/h−1∑
τ=t0/h

[(Cx − z)T Q̃(Cx − z) + uT R̃u](τh).

Then the state, costate, and stationary equations (9) are given by

x(t + h) = Ãx(t) − B̃R̃−1B̃T λ(t + h),
λ(t) = ÃT λ(t + h) + CT Q̃(Cx(t) − z(t)),
u(t) = −R̃−1B̃T λ(t + h).

In this case, our feedback and feedforward gains (16) and (17) are given as

K(t) = (R̃ + B̃T S(t + h)B̃)−1B̃T S(t + h)Ã

and

Kv(t) = (R̃ + B̃T S(t + h)B̃)−1B̃T .

Now the control-tracker law (19) and the closed-loop plant (20) can be written as

u(t) = −K(t)x(t) + Kv(t)v(t + h)

and

x(t + h) = (Ã − B̃K(t))x(t) + B̃Kv(t)v(t + h),

respectively, and the closed-loop Riccati and output equations (21) and (22) can be
written as

S(t) = CT Q̃C + KT (t)R̃K(t) + (Ã − B̃K(t))T S(t + h)(Ã − B̃K(t))

and

v(t) = (Ã − B̃K(t))T v(t + h) + CT Q̃z(t),

respectively. The optimal cost is given by (25), where the function w satisfies

w(t) = w(t + h) +
1
2
zT (t)Q̃z(t) − 1

2
vT (t + h)B̃Kv(t)v(t + h).
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Example 6.4 (The q-Quantum LQT): Let T = qN0 with q > 1 and consider

Dqx(t) = Ax(t) + Bu(t), y(t) = Cx(t).

By observing Example 2.6(d) and introducing

Ã(t) = I + (q − 1)tA, B̃(t) = (q − 1)tB,

Q̃(t) = (q − 1)tQ, R̃(t) = (q − 1)tR,

we can rewrite the system as

x(qt) = Ã(t)x(t) + B̃(t)u(t), y(t) = Cx(t),

and the associated cost functional takes the form (observe Example 2.11(d))

J =
1
2
(Cx − z)T (tf)P (Cx − z)(tf)

+
1
2

∑
τ∈[t0,tf )∩T

[(Cx − z)T Q̃(Cx − z) + uT R̃u](τ).

Then the state, costate, and stationary equations (9) are given by

x(qt) = Ã(t)x(t) − B̃(t)R̃−1(t)B̃T (t)λ(qt),
λ(t) = ÃT (t)λ(qt) + CT Q̃(t)(Cx(t) − z(t)),
u(t) = −R̃−1(t)B̃T (t)λ(qt).

In this case, our feedback and feedforward gains (16) and (17) are given as

K(t) = (R̃(t) + B̃T (t)S(qt)B̃(t))−1B̃T (t)S(qt)Ã(t)

and

Kv(t) = (R̃(t) + B̃T (t)S(qt)B̃(t))−1B̃T (t).

Now the control-tracker law (19) and the closed-loop plant (20) can be written as

u(t) = −K(t)x(t) + Kv(t)v(qt)

and

x(qt) = (Ã(t) − B̃(t)K(t))x(t) + B̃(t)Kv(t)v(qt),

respectively, and the closed-loop Riccati and output equations (21) and (22) can be
written as

S(t) = CT Q̃(t)C + KT (t)R̃(t)K(t)
+(Ã(t) − B̃(t)K(t))T S(qt)(Ã(t) − B̃(t)K(t))
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and

v(t) = (Ã(t) − B̃(t)K(t))T v(qt) + CT Q̃(t)z(t),

respectively. The optimal cost is given by (25), where the function w satisfies

w(t) = w(qt) +
1
2
zT (t)Q̃(t)z(t) − 1

2
vT (qt)B̃(t)Kv(t)v(qt).

Example 6.5 (The Scalar LQT): Consider the scalar control system

x∆(t) = ax(t) + bu(t), y(t) = cx(t),

associated with the cost functional

J =
1
2
p(cx − z))2(tf) +

1
2

∫ tf

t0

[q(cx − z)2 + ru2](τ)∆τ.

Then the state, costate, and stationary equations (9) are given by

x∆ = ax − b2

r
λσ, −λ∆ = aλσ + c2qx − cqz, u = − b

r
λσ.

In this case, our feedback and feedforward gains (16) and (17) are given as

k(t) =
b(1 + aµ(t))s(σ(t))
r + µ(t)s(σ(t))b2 and kv(t) =

b

r + µ(t)s(σ(t))b2 .

Now the control-tracker law (19) and the closed-loop plant (20) can be written as

u(t) = −k(t)x(t) + kv(t)v(σ(t))

and

x∆ = (a − bk)x + bkvvσ,

respectively, and the closed-loop Riccati and output equations (21) and (22) can be
written as

−s∆ = qc2 + rk2 + (2 + µ(a − bk))(a − bk)sσ = qc2 + rk2 + (2 	 (a − bk))sσ,

(where 2 	 α := α ⊕ α := 2α + µα2 for α ∈ R) and

−v∆ = (a − bk)vσ + cqz,

respectively. The optimal cost (25) is given by

J =
1
2
s(t0)x2(t0) − x(t0)v(t0) + w(t0),

where the auxiliary function w satisfies

−w∆(t) =
1
2
qz2(t) − 1

2
bkv(t)v2(σ(t)).
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Next, we extend our results to consider a disturbance/rejection model. In this case,
we have a known disturbance (see Lewis and Syrmos, 1995; Dorato et al., 1994) in
our state equation.

Example 6.6: In Section 4, we found an affine optimal control in terms of the
current state. However, there are circumstances where it is more convenient to
express the input in terms of an error term. In this example, we consider the state
equation


∆ = A
 + Bu,

where 
 represents the given state that is possibly corrupt, outdated, or incomplete.
Suppose that we want a more desirable state z that contains more information
on the process being modelled. Assuming that z is known, when we plug the
substitution x = 
 − z into the state equation, we have

x∆ = 
∆ − z∆ = A
 + Bu − z∆ = A(x + z) + Bu − z∆ = Ax + Bu + d,

where d = Az − z∆ is a known disturbance. Then picking C = I and z = 0 in (4)
and (23), we use the cost functional

J =
1
2
xT (tf)Px(tf) +

1
2

∫ tf

t0

(xT Qx + uT Ru)(τ)∆τ.

Similarly, we use here the Hamiltonian

H(x, u, λ) =
1
2
(xT Qx + uT Ru) + λT (Ax + Bu + d)

and the state, costate, and stationary equations

x∆ = Ax + Bu + d, −λ∆ = AT λσ + Qx, u = −R−1BT λσ,

subject to x(t0) = x0 and λ(tf) = S(tf)x(tf). Again we use the affine sweep condition
(11). Suppose that S satisfies (12) (with C = I) subject to S(tf) = P while v satisfies

−v∆ = [AT − (I + µAT )SσM−1BR−1BT ]vσ − (I + µAT )SσM−1d

= (A − BK)T vσ − [I + µ(A − BK)T ]Sσd

subject to v(tf) = 0. If x satisfies

x∆ = M−1[
(
A − BR−1BT Sσ

)
x + d + BR−1BT vσ]

and λ is as given by (11), then

−λ∆ = −S∆x − Sσx∆ + v∆

= Qx + AT Sσx + (I + µAT )Sσx∆ − Sσx∆ − AT vσ

= AT Sσ(x + µx∆) − AT vσ + Qx

= AT (Sx − v)σ + Qx

= AT λσ + Qx.
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Note that the disturbance d is known and is already accounted for by the output
equation. It is customary to pick d = 0 when solving for u. This leads to

u = −R−1BT (Sx − v)σ = −R−1BT Sσ(x + µx∆) + R−1BT vσ

= −Kx + Kvvσ,

where the last equation follows as in the proof of Theorem 4.6.

Example 6.7: In this last example, we include a numerical example of the LQT.
We consider a tracking model that can be represented by the SISO (single-input,
single-output) dynamic system

x∆ =




0 1 0 0
0 −2 0 0
3 0 0 0
0 0 1 0


 x +




0
2
0
0


 u, x0 =




7.1
0
0

4.5




y =
[
5 0 0 0

]
x.

We pick our state variables x1, x2, x3, x4 to represent the position, velocity, reference
angle θ, and θ∆, respectively. Given the dynamics of our system, only x1 is observed.
We set the weights in (4) to be P = Q = R = 1. Here we use the methods given in
Section 4 to find a scalar, affine control that forces the above system to track the
deterministic trajectory

z(t) = 0.09(t − 20)2 + 1.

For convenience, we consider only isolated time scales, where it is assumed that
the time scale is known a priori. We implemented our tracking scheme for 20
iterations. Note since the Riccati and output equations as well as the feedback
and feedforward gains do not depend on the current state, these equations can
be pre-computed and stored offline. In the first two cases, we use the same time
scale throughout the entire iteration. In the third case, we let T = 2Z for t < 10
and T = 3Z when t ≥ 10. As a result, the Riccati and output equations are altered
midway through the implementation of the tracking scheme. It follows that the gains
are also changed as the time scale changes. This is an example of a useful engineering
technique called gain scheduling. In Figure 2, we plot the gains, control, and error
for each case.

7 Concluding remarks and future work

Example 6.7 offers a potential application for implementing time scales in radar
analysis. From a numerical standpoint, our results represent a generalised sampling
technique to study flight dynamics of an aircraft, where there are continuous,
discrete, or possibly uneven measurements. When considering the flight plan of an
aircraft, we can sample the aircraft as it takes off, is in flight, and as it lands as three
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Figure 2 LQT control schemes to track z(t) = 0.09(t − 20)2 + 1: (a) Case 1: T = Z;
(b) Case 2: T = 2Z and (c) Case 3: T = 2Z, t < 10 and T = 3Z, t ≥ 10

distinct time scales. Assuming that the dynamics are stationary and the flight plan is
known in advance, we can schedule the gains accordingly. For future research, we
seek to track a trajectory, where the time scale is not known in advance but created
instead by the dynamics of the aircraft. As a result, the aircraft can be tracked ‘on
the fly’.

Throughout this paper, we assumed that each component of the state and
reference vectors are on the same time scale. However, this is not always realistic.
In future work, we seek to study regulator problems, where the components of the
states and inputs have different measurements. Note that Example 6.7 represents an
ideal scenario when we are tracking a deterministic trajectory. We can also track a
stochastic trajectory when the state is also corrupted by noise. This leads us to the
development of the Kalman filter on time scales in a forthcoming paper.
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